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Main Result

Main Theorem (G (n,m))
G (n, (1+ ε)n2 ) contains a path of length αn a.a.s, where
α = α(ε) > 0 is constant.
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Main Theorem (G (n,m))
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For c > 1

2 , G (n, cn ) contains a path of length αn a.a.s, where
α = α(c) > 0 is constant.
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Main Result

Main Theorem (G (n,m))
G (n, (1+ ε)n2 ) contains a path of length αn a.a.s, where
α = α(ε) > 0 is constant.

Main Theorem (G (n, p))
For c > 1

2 , G (n, cn ) contains a path of length αn a.a.s, where
α = α(c) > 0 is constant.
These are equivalent since we can find ε1 ≤ ε2 and a coupling such
that a.a.s: G (n, (1+ ε1)

n
2 ) ⊆G (n, cn )⊆ G (n, (1+ ε2)

n
2 ). (you have

proved this on assignment 1)
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Strategy

1. Put away εn edges in reserve (they won’t be considered until
step 3).
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Strategy

1. Put away εn edges in reserve (they won’t be considered until
step 3).

2. Show that a linear number of vertices can be covered with
disjoint big cycles (≥ δ log(n)) using non reserve edges. Throw
away the rest of the graph.
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2. Show that a linear number of vertices can be covered with
disjoint big cycles (≥ δ log(n)) using non reserve edges. Throw
away the rest of the graph.

3. Split cycles into arcs, and connect them with the reserve edges.
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Strategy

1. Put away εn edges in reserve (they won’t be considered until
step 3).

2. Show that a linear number of vertices can be covered with
disjoint big cycles (≥ δ log(n)) using non reserve edges. Throw
away the rest of the graph.

3. Split cycles into arcs, and connect them with the reserve edges.
4. Find a long path in the arc-arc graph, inducing a long path in

G (n, p).
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Strategy

1. Put away εn edges in reserve (they won’t be considered until
step 3).

2. Show that a linear number of vertices can be covered with
disjoint big cycles (≥ δ log(n)) using non reserve edges. Throw
away the rest of the graph.

3. Split cycles into arcs, and connect them with the reserve edges.
4. Find a long path in the arc-arc graph, inducing a long path in

G (n, p).
Note: we will switch between considering G (n, cn )and G (n, αn) for
different lemmas. Since these can be coupled, the results will hold
for both a.a.s.
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Strategy

Note that step 4 :
I Find a long path in the arc-arc graph

Requires a a similar theorem to our objective for directed graphs,
which we will present in detail on Wednesday.
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Strategy

Note that step 4 :
I Find a long path in the arc-arc graph

Requires a a similar theorem to our objective for directed graphs,
which my mates will go present in detail on Wednesday.

Main Theorem (D(n, p))
For c > 1

2 , D(n, cn ) contains a directed path of length α′n a.a.s,
where α′ = α′(c) > 0 is constant.
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1 - Reserve edges

When considering G (n, cn ),c > 1, we can do a 2 step randomization
with c ′

n and ε
n so the total probability that each edge appears is c

n ,
with c ′ > 1 and ε > 0.
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2 - Reserve edges

When considering G (n, cn ),c > 1, we can do a 2 step randomization
with c ′

n and ε
n so the total probability that each edge appears is c

n ,
with c ′ > 1 and ε > 0.
We will prove that we can a.a.s cover order n vertices with big
cycles from G (n, c

′

n ) and we can ’connect them’ with edges from
G (n, εn ).
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2 - Disjoint long cycles

First we give an upper bound that G (n, cn )is a forest. This will be
useful to claim that most of the graph is covered by disjoint cycles.
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2 - Disjoint long cycles

First we give an upper bound that G (n, cn )is a forest. This will be
useful to claim that most of the graph is covered by disjoint cycles.

Lemma
For p = c

n , c > 1 :

Pr(G (n,
c

n
)is a forest) < 2

√
ntn.

Where t = t(c) = ce
1
2c−

c
2 < 1.
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Forest bound

Let Gk(n) be the number of graphs with n labelled vertices
consisting of k disjoint trees.
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Forest bound

Let Gk(n) be the number of graphs with n labelled vertices
consisting of k disjoint trees.

Pr(G (n,
c

n
) is a forest) ≤

n∑
k=0

Gk(n)p
n−k(1− p)N−n+k

= pn(1− p)N−n
n∑

k=0

Gk(n)(
p

1− p
)k
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Forest bound

To bound the Gk(n) sum, we will make use of the generating
function for disjoint trees on n vertices, given by :

∞∑
n=0

Gk(n)
xn

n!
=

(y − y2

2 )k

k!

where x = ye−y .
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Forest bound

To bound the Gk(n) sum, we will make use of the generating
function for disjoint trees on n vertices, given by :

∞∑
n=0

Gk(n)
xn

n!
=

(y − y2

2 )k

k!

where x = ye−y .
Note that we are interested in bounding a sum of the form∑n

k=0 Gk(n)t
k , so we can do the following :
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Forest bound

To bound the Gk(n) sum, we will make use of the generating
function for disjoint trees on n vertices, given by :

∞∑
n=0

Gk(n)
xn

n!
=

(y − y2

2 )k

k!

where x = ye−y .
Note that we are interested in bounding a sum of the form∑n

k=0 Gk(n)t
k , so we can do the following :

n∑
k=0

Gk(n)t
k =

n!

xn
(

n∑
k=0

Gk(n)t
k)
xn

n!

≤ n!

xn
[
∞∑
n=0

(
n∑

k=0

Gk(n)t
k)
xn

n!
] =

n!

xn
et(y−

y2
2 ) = n!(ye−y )−net(y−

y2
2 )
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Forest bound

Now we can simply substitute t = 1−p
p = n

c − 1 and y = 1 :
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Forest bound

Now we can simply substitute t = 1−p
p = n

c − 1 and y = 1 to get :

Pr(G (n,
c

n
) is a forest) = pn(1− p)N−n

n∑
k=0

Gk(n)(
p

1− p
)k

≤ (
c

n
)n(1− c

n
)N−nn!ene

t
2
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Forest bound

Now we can simply substitute t = 1−p
p = n

c − 1 and y = 1 to get :

Pr(G (n,
c

n
) is a forest) = pn(1− p)N−n

n∑
k=0

Gk(n)(
p

1− p
)k

≤ (
c

n
)n(1− c

n
)N−nn!ene

t
2

≤ cne
−c(N−n)

n n!(
e

n
)ne

n
2c−

1
2
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Forest bound

Now we can simply substitute t = 1−p
p = n

c − 1 and y = 1 to get :

Pr(G (n,
c

n
) is a forest) = pn(1− p)N−n

n∑
k=0

Gk(n)(
p

1− p
)k

≤ (
c

n
)n(1− c

n
)N−nn!ene

t
2

≤ cne
−c(N−n)

n n!(
e

n
)ne

n
2c−

1
2

≤ cne
−cn
2 e
√
ne

n
2c e−

1
2

(here we used that N ≤ n2

2 and n! ≤ e(ne )
n√n), which is the upper

Sterling approximation.)
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Forest bound

Now we can simply substitute t = 1−p
p = n

c − 1 and y = 1 to get :

Pr(G (n,
c

n
) is a forest) = pn(1− p)N−n

n∑
k=0

Gk(n)(
p

1− p
)k

≤ (
c

n
)n(1− c

n
)N−nn!ene

t
2

≤ cne
−c(N−n)

n n!(
e

n
)ne

n
2c−

1
2

≤ cne
−cn
2 e
√
ne

n
2c e−

1
2

≤ 2
√
nαn

where α = ce
1
2c−

c
2 .
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2 - Disjoint long cycles

Consider a collection of disjoint cycles, maximal with respect to the
total number of vertices covered, say kn.
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2 - Disjoint long cycles

Consider a collection of disjoint cycles, maximal with respect to the
total number of vertices covered, say kn.
=⇒ G (n, cn )contains a forest of size n(1− k).
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2 - Disjoint long cycles

Now since every subgraph of size n′ = n(1− k) of G (n, cn )behaves
like G (n′, (1−k)cn′ ), we can upper bound:

Pr(G (n,
c

n
) contains a forest of size n′)
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2 - Disjoint long cycles

Now since every subgraph of size n′ = n(1− k) of G (n, cn )behaves
like G (n′, (1−k)cn′ ), we can upper bound:

Pr(G (n,
c

n
) contains a forest of size n′)

≤
(
n

n′

)
Pr(G (n′,

(1− k)c

n′
) is a forest)

≤
(

n

(1− k)n

)
2
√
n(1− k)(tc(1−k))

n(1−k)
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2 - Disjoint long cycles

Now since every subgraph of size n′ = n(1− k) of G (n, cn )behaves
like G (n′, (1−k)cn′ ), we can upper bound:

Pr(G (n,
c

n
) contains a forest of size n′)

≤
(
n

n′

)
Pr(G (n′,

(1− k)c

n′
) is a forest)

≤
(

n

(1− k)n

)
2
√
n(1− k)(tc(1−k))

n(1−k)

≤ 2
√
1− k(

e

(1− k)
)(1−k)n

√
nt

n(1−k)
c(1−k)
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2 - Disjoint long cycles

Hence we have

Pr(G (n,
c

n
) contains a forest of size n′) ≤ 2

√
1− kenf (k)

where f (k) = (1− k)(1− log(1− k)) + 1
2
log n
n + (1− k) log tc(1−k).
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2 - Disjoint long cycles

Hence we have

Pr(G (n,
c

n
) contains a forest of size n′) = 2

√
1− kenf (k)

where f (k) = (1− k)(1− log(1− k)) + 1
2
log n
n + (1− k) log tc(1−k).

Recall that : log tc(1−k) = log[c(1− k)e
1

2c(1−k)
− c(1−k)

2 ] =

log c + log(1− k) + 1
2c(1−k) −

c(1−k)
2
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2 - Disjoint long cycles

Hence we have

Pr(G (n,
c

n
) contains a forest of size n′) = 2

√
1− kenf (k)

where f (k) = (1− k)(1− log(1− k)) + 1
2
log n
n + (1− k) log tc(1−k).

Recall that : log tc(1−k) = log[c(1− k)e
1

2c(1−k)
− c(1−k)

2 ] =

log c + log(1− k) + 1
2c(1−k) −

c(1−k)
2

Therefore : f (k) = (1+ o(1))[(1− k)(1+ log c) + 1
2c − (1− k)2 c

2 ]
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2 - Disjoint long cycles

Hence we have

Pr(G (n,
c

n
) contains a forest of size n′) = 2

√
1− kenf (k)

where f (k) = (1− k)(1− log(1− k)) + 1
2
log n
n + (1− k) log tc(1−k).

Recall that : log tc(1−k) = log[c(1− k)e
1

2c(1−k)
− c(1−k)

2 ] =

log c + log(1− k) + 1
2c(1−k) −

c(1−k)
2

Therefore :
f (k) = (1+o(1))[(1−k)(1+log c)+ 1

2c−(1−k)
2 c

2 ] = (1+o(1))f ′(k)
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2 - Disjoint long cycles

Hence we have

Pr(G (n,
c

n
) contains a forest of size n′) = 2

√
1− kenf (k)

where f (k) = (1− k)(1− log(1− k)) + 1
2
log n
n + (1− k) log tc(1−k).

Recall that : log tc(1−k) = log[c(1− k)e
1

2c(1−k)
− c(1−k)

2 ] =

log c + log(1− k) + 1
2c(1−k) −

c(1−k)
2

Therefore :
f (k) = (1+o(1))[(1−k)(1+log c)+ 1

2c−(1−k)
2 c

2 ] = (1+o(1))f ′(k)
Note that f ′(0) < 0 for c > 1 and f ′(1) > 0, with f ′ monotone and
continuous on [0,1], so there must be a root x0, and picking k = x0

2
ensures that a.a.s kn vertices are covered by disjoint cycles as
f ′(k) < 0.
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2 - Disjoint long cycles

It remains to prove that not many of these cycles are big.
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2 - Disjoint long cycles

It remains to prove that not many of these cycles are big.
=⇒ We show that by proving we can’t cover δn vertices with small
cycles (< λ log n) for any δ > 0. (so we lose at most o(n) to small
cycles)
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2 - Disjoint long cycles

Hence we bound :

Pr(δn vertices are covered by cycles of size ≤ λ log n)
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2 - Disjoint long cycles

Hence we bound :

Pr(δn vertices are covered by cycles of size ≤ λ log n)

≤
(
n

δn

)
2δn(δn)!pδ(n)

1
( δn
λ log n )!

since δn! determines an ordering of the vertices and 2δn determines
a subset of the vertices denoting the breakpoints of when a new
cycle starts. The denominator is due to the permutation of cycle
placements, since each cycle is small there must be at least δn

λ log n
of them.
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2 - Disjoint long cycles

Now note that for sufficiently large m:

2mm!pm
1

( m
γ logm )!

< (mpe−
1
γ )m
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Now note that for sufficiently large m:

2mm!pm
1

( m
γ logm )!

< (mpe−
1
γ )m

Hence from above applied to δn we get :

Pr(δn vertices are covered by cycles of size ≤ λ log n)

≤
(
n

δn

)
2δn(δn)!pδ(n)

1
( δn
λ log n )!
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2 - Disjoint long cycles

Now note that for sufficiently large m:

2mm!pm
1

( m
γ logm )!

< (mpe−
1
γ )m

Hence from above applied to δn we get :

Pr(δn vertices are covered by cycles of size ≤ λ log n)

≤
(
n

δn

)
2δn(δn)!pδ(n)

1
( δn
λ log n )!

≤
(
n

δn

)
(δce−

1
γ )δn

42 / 58



2 - Disjoint long cycles

Now note that for sufficiently large m:

2mm!pm
1

( m
γ logm )!

< (mpe−
1
γ )m

Hence from above applied to δn we get :

Pr(δn vertices are covered by cycles of size ≤ λ log n)

≤
(
n

δn

)
2δn(δn)!pδ(n)

1
( δn
λ log n )!

≤
(
n

δn

)
(δce−

1
γ )δn

≤ (
e

δ
δce−

1
γ )δn = o(1)

when γ is small enough, and hence a.a.s kn vertices are covered by
disjoint long cycles.
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3 - Arc connect

Given disjoint long cycles (> λ log n) that cover at least kn
vertices, do the following :
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3 - Arc connect

Given disjoint long cycles (> λ log n) that cover at least kn
vertices, do the following :
I cut each of them into arcs of length L to obtain A1..An′ .

(Throw away < L leftover)
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3 - Arc connect

Given disjoint long cycles (> λ log n) that cover at least kn
vertices, do the following :
I cut each of them into arcs of length L to obtain A1..An′ .
I Arbitrarily assign a source/sink to endpoints of each arc.
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3 - Arc connect

Given disjoint long cycles (> λ log n) that cover at least kn
vertices, do the following :
I cut each of them into arcs of length L to obtain A1..An′ .
I Arbitrarily assign a source/sink to endpoints of each arc.

Fix δ1 < 1
4 . We call the first δ1L vertices of Ai , starting from the

source, the tail of Ai , and the last δ1L vertices, ending with the
sink, the tail of Ai .
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3 - Arc connect

Given disjoint long cycles (> λ log n) that cover at least kn
vertices, do the following :
I cut each of them into arcs of length L to obtain A1..An′ .
I Arbitrarily assign a source/sink to endpoints of each arc.

Fix δ1 < 1
4 . We call the first δ1L vertices of Ai , starting from the

source, the tail of Ai , and the last δ1L vertices, ending with the
sink, the tail of Ai .
I Construct a directed graph D on vertices {1...n′}.
I create an edge in D from Ai to Aj if there is a reserve edge

connecting a vertex in the head of Ai to a vertex in the tail of
Aj .
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3 - Arc connect

For each possible edge of D, it appears with probability
p′ = 1− (1− ε

n )
(δL)2 (since we have (δL)2 possible pairs of vertices

inducing the edge) independently from the rest.
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3 - Arc connect

For each possible edge of D, it appears with probability
p′ = 1− (1− ε

n )
(δL)2 (since we have (δL)2 possible pairs of vertices

inducing the edge) independently from the rest
=⇒ D behaves like a directed random graph with edge probability
p′.
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4 - Directed Black box

To use the theorem for the directed case, we still need to show that
D is dense enough.
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4 - Directed Black box

To use the theorem for the directed case, we still need to show that
D is dense enough.
First note that n′ ∼ kn

L , and hence we have :

p′ = 1− (1− ε

n
)(δL)

2 ≥ (1− o(1))
ε(δL)2

n
(union bound)
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4 - Directed Black box

To use the theorem for the directed case, we still need to show that
D is dense enough.
First note that n′ ∼ kn

L , and hence we have :

p′ = 1− (1− ε

n
)(δL)

2 ≥ (1− o(1))
ε(δL)2

n
(union bound)

≥ (1− o(1))
εkδ2L

n′

53 / 58



4 - Directed Black box

To use the theorem for the directed case, we still need to show that
D is dense enough.
First note that n′ ∼ kn

L , and hence we have :

p′ = 1− (1− ε

n
)(δL)

2 ≥ (1− o(1))
ε(δL)2

n
(union bound)

≥ (1− o(1))
εkδ2L

n′

So by picking L large enough, we can guarantee εkδ2L is as big of a
constant as we wish. (which we can do since the only restriction on
L is that it is o(log n))
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4 - Directed Black box

Using the result on dense directed random graphs, we a.a.s
guarantee a directed path of length (1− δ)n′.
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Conclusion

Using the result on dense directed random graphs, we a.a.s
guarantee a directed path of length (1− δ)n′.
The induced path in the original graph must cover at least
(1− δ)n′(1− 2δ)L vertices.
Hence a.a.s we have a path of length :

(1− δ)n′(1− 2δ)L ∼ (1− δ)(1− 2δ)kn ≥ (1− 3δ)kn = αn

Where α is a fixed constant.
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Thank you !

Any Questions ?
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Thank you !

On Wednesday we will investigate the directed case.
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