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Main Result

Main Theorem (G(n, m))

G(n, (1 +€)5) contains a path of length an a.a.s, where
a = afe) > 0 is constant.
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Main Result

Main Theorem (G(n, m))

G(n,(1+ €)5) contains a path of length an a.a.s, where
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Main Theorem (G(n, p))

For ¢ > % G(n, %) contains a path of length an a.a.s, where
a = a(c) > 0 is constant.
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Main Result

Main Theorem (G(n, m))
G(n,(1+ €)5) contains a path of length an a.a.s, where
a = afe) > 0 is constant.

Main Theorem (G(n, p))
For ¢ > %, G(n, £) contains a path of length an a.a.s, where
a = afc) > 0 is constant.

These are equivalent since we can find €1 < €, and a coupling such
that a.a.st G(n, (1+€1)5) CG(n, £)C G(n, (1 +€2)5). (you have
proved this on assignment 1)
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1. Put away en edges in reserve (they won't be considered until
step 3).
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1. Put away en edges in reserve (they won't be considered until
step 3).

2. Show that a linear number of vertices can be covered with
disjoint big cycles (> 0 log(n)) using non reserve edges. Throw
away the rest of the graph.
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1. Put away en edges in reserve (they won't be considered until
step 3).

2. Show that a linear number of vertices can be covered with

disjoint big cycles (> d log(n)) using non reserve edges. Throw
away the rest of the graph.

3. Split cycles into arcs, and connect them with the reserve edges.

4. Find a long path in the arc-arc graph, inducing a long path in
G(n, p).
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1. Put away en edges in reserve (they won't be considered until
step 3).

2. Show that a linear number of vertices can be covered with
disjoint big cycles (> 0 log(n)) using non reserve edges. Throw
away the rest of the graph.

3. Split cycles into arcs, and connect them with the reserve edges.

4. Find a long path in the arc-arc graph, inducing a long path in
G(n,p).
Note: we will switch between considering G(n, £)and G(n, an) for

different lemmas. Since these can be coupled, the results will hold
for both a.as.
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Note that step 4 :
» Find a long path in the arc-arc graph

Requires a a similar theorem to our objective for directed graphs,
which we will present in detail on Wednesday.
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Note that step 4 :
» Find a long path in the arc-arc graph
Requires a a similar theorem to our objective for directed graphs,
which my mates will go present in detail on Wednesday.
Main Theorem (D(n, p))

For ¢ > % D(n, £) contains a directed path of length o/n a.as,
where o/ = o/(c) > 0 is constant.
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1 - Reserve edges

When considering G(n, £),c > 1, we can do a 2 step randomization

with %l and £ so the total probability that each edge appears is <,
with ¢/ > 1 and € > 0.
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2 - Reserve edges

When considering G(n, £),c > 1, we can do a 2 step randomization
with % and £ so the total probability that each edge appears is *,
with ¢/ > 1 and € > 0.
We will prove that we can a.a.s cover order n vertices with big

/ , ’ .
cycles from G(n, <) and we can 'connect them’ with edges from

G(n, 7).
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2 - Disjoint long cycles

First we give an upper bound that G(n, {)is a forest. This will be
useful to claim that most of the graph is covered by disjoint cycles.
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2 - Disjoint long cycles

First we give an upper bound that G(n, ¢)is a forest. This will be
useful to claim that most of the graph is covered by disjoint cycles.

Lemma
C

Forp=%c>1:

n

Pr(G(n, %)is a forest) < 2¢/nt".

NIn

Where t = t(c) = ce2e 5 < 1.
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Let Gk(n) be the number of graphs with n labelled vertices
consisting of k disjoint trees.
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Let Gk(n) be the number of graphs with n labelled vertices
consisting of k disjoint trees.

Pr(G(n —) is a forest) < ZGk(n n k )N_n+k

)Y Gl
k=0
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To bound the Gk(n) sum, we will make use of the generating
function for disjoint trees on n vertices, given by :

2

N (o)
nZ:%Gk(n)n!: ” o

where x = ye™Y.
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To bound the Gk(n) sum, we will make use of the generating
function for disjoint trees on n vertices, given by :

2

S 2l
nZ:%Gk(n)n!: : K

where x = ye™Y.
Note that we are interested in bounding a sum of the form
> h—o Gk(n)tX, so we can do the following :
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To bound the Gi(n) sum, we will make use of the generating
function for disjoint trees on n vertices, given by :

OO n y? )k

-4
;)Gk(n)n!: : K

where x = ye™.
Note that we are interested in bounding a sum of the form
> h—o Gk(n)t¥, so we can do the following :

Z Gi(n)th = (Z k(n)t")%’;
k=0 :
< )%I,[Z(Z Gk( k)i] _ 76 *é) — n!(ye*y)*”et(yfé)

n=0 k=0
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- . _1-p _ n 1.
Now we can simply substitute t = Sr=2- landy=1:
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Now we can simply substitute t = 1%” =Z—1andy=1toget:

Pr(G(n, %) is a forest) = p"(1 — p)N—nZ Gk(n)(%)k
k=0

< (E)r = S)Vrntene?
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Now we can simply substitute t = I_Tp =2_1andy=1to get:

Pr(G(n, %) is a forest) = p"(1 — p)anZ Gk(n)(%)k
k=0

C c .
< (2)"(1 - =)N"nlene2
—(n)( n) nle"e
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. . _1-p _ n — .
Now we can simply substitute t = = land y =1 to get :

Pr(G(n, %) is a forest) = p"(1 — p)N—nZ Gk(n)(%)k
k=0

C
< (2Y(1 — N—n |40 ,5
< (S - SyVrniene
< e~ nI(Eyredih
n

Sterling approximation.)
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. . _1-p _ n — .
Now we can simply substitute t = Sr=2-1 and y =1 to get :

Pr(G(n, %) is a forest) = p"(1 — p)anZ Gk(n)(%)k
k=0

C c .
< (S S)Nrniened
—(n)( n) nle"e

—c(N—n) e 1
<c"en o nl(=)"ez "z
n

—cn n _l
S CneTeﬁeTce 2
< 2v/na”

1 _c
where o = ce2c 2.
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2 - Disjoint long cycles

Consider a collection of disjoint cycles, maximal with respect to the
total number of vertices covered, say kn.
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2 - Disjoint long cycles

Consider a collection of disjoint cycles, maximal with respect to the
total number of vertices covered, say kn.
= G(n, £)contains a forest of size n(1 — k).
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2 - Disjoint long cycles

Now since every subgraph of size n’ = n(1 — k) of G(n, £)behaves

like G(n', (1= k) ), we can upper bound:

Pr(G(n, E) contains a forest of size n')
n
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2 - Disjoint long cycles

Now since every subgraph of size n' = n(1 — k) of G(n, £)behaves

like G(n (1= k)c) we can upper bound:

c : ,
Pr(G(n, =) contains a forest of size n’)
n

< (:) pr(G(n, & _n,k)c) is a forest)
< (1 1) 2V Rt
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2 - Disjoint long cycles

Now since every subgraph of size n" = n(1 — k) of G(n, £)behaves

like G(n', (1= k) ), we can upper bound:

Pr(G(n, E) contains a forest of size n')
n

< <:> pr(G(n, & _n,k)c) is a forest)
((1 )2\/7 c(1-k))"H

<2¢f(( ))(1 k)”ft:((ll :
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2 - Disjoint long cycles

Hence we have

Pr(G(n, E) contains a forest of size n') < 2v/1 — ke (¥)
n

where (k) = (1 — k)(1 — log(1 — k)) + 1'&” 4 (1 — k) log te1_).-

n
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2 - Disjoint long cycles

Hence we have

Pr(G(n, S) contains a forest of size n') = 2v/1 — ke (k)
n

where f(k) = (1 — k)(1 — log(1 — k)) + 3'%” + (1 — k) log t (1 _)-

n

_ 1 c(1l=k)
Recall that : log t.(1_x) = log[c(1 — k)ex0=h""2 ] =

1-k
log ¢ + log(1 — k) + 2c(11—k) et 5 )
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2 - Disjoint long cycles

Hence we have

Pr(G(n, %) contains a forest of size n') = 2v/1 — ke (¥)

where f(k) = (1 — k)(1 — log(1 — k)) + 1'87 4 (1 — k) log te(1—k)-

1 _c(lfk)
Recall that : log to(;_x) = log[c(1 — k)e?@-H 2 | =

log ¢ +log(1 — k) + gy — V7

Therefore : f(k) = (1+ o(1))[(1 — k)(1 +logc) + 5= — (1 — k)5
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2 - Disjoint long cycles

Hence we have

Pr(G(n, E) contains a forest of size n') = 2v/1 — ke" (k)
n

where f(k) = (1 — k)(1 — log(1 — k)) + '82 4 (1 — k) log t(1_)-

1 1 c(1—k)

Recall that : log te(1—) = log[c(1 — k)e>(=F " ] =
1—k

log ¢ + log(1 — k) + 2c(117k) _ o« = )

Therefore :
f(k) = (1+o(1)[(1—k)(1+log ¢)+5-—(1—k)?§] = (1+0(1))f' (k)

34 /58



2 - Disjoint long cycles

Hence we have

Pr(G(n, %) contains a forest of size n') = 21/1 — ke" (k)

where f(k) = (1 — k)(1 —log(1 — k)) + % =2+ (1 — k) log te—k)-

1 75(17k)
Recall that : log t.(1_x) = log[c(l — k)e2G-H 2 ] =

log c + log(1 — k) + 2c(11—k) - c(lz_k)

Therefore :

f(k) = (1+0(1))[(1—k)(1+log c)—i—i—(l—k)zg] = (140(1))f'(k)
Note that f/(0) < 0 for ¢ > 1 and f’(1) > 0, with f" monotone and
continuous on [0,1], so there must be a root xp, and picking k = 2
ensures that a.a.s kn vertices are covered by disjoint cycles as
f'(k) < 0.
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2 - Disjoint long cycles

It remains to prove that not many of these cycles are big.
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2 - Disjoint long cycles

It remains to prove that not many of these cycles are big.

— We show that by proving we can't cover dn vertices with small
cycles (< Alog n) for any 6 > 0. (so we lose at most o(n) to small
cycles)
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2 - Disjoint long cycles

Hence we bound :

Pr(dn vertices are covered by cycles of size < Alog n)
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2 - Disjoint long cycles

Hence we bound :

Pr(dn vertices are covered by cycles of size < \log n)

n on o(n) 1
<5n> (Altz)gn)!

since dn! determines an ordering of the vertices and 2% determines
a subset of the vertices denoting the breakpoints of when a new
cycle starts. The denominator is due to the permutation of cycle

. . [Sn
placements, since each cycle is small there must be at least Xlogh
of them.
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2 - Disjoint long cycles

Now note that for sufficiently large m:

1 _1
—m oy < (mpe™ )"

2Mmlp™
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Now note that for sufficiently large m:

1

2" mlp™ < (mpe™ 7)™

Hence from above applied to dn we get :

Pr(dn vertices are covered by cycles of size < Alog n)

n on o(n) 1
< 2°7(6n)!p™
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2 - Disjoint long cycles

Now note that for sufficiently large m:

1
2"mlp™ ; < (mpe 7)"

(Frogm)!

Hence from above applied to dn we get :

Pr(dn vertices are covered by cycles of size < Alog n)

n on d(n) 1
< 2°"(on)!p -

< < 5”n> (Sce™ )
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2 - Disjoint long cycles

Now note that for sufficiently large m:

1
2"mlp™ ; < (mpe 7)"

(Frogm)!

Hence from above applied to dn we get :

Pr(dn vertices are covered by cycles of size < Alog n)

n 1
< < >26n(6n)!p6(n)n
on (Aignﬂ

< (;n) (5cef%)6n

< (géce—%)% — o(1)

when + is small enough, and hence a.a.s kn vertices are covered by
disjoint long cycles.
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Given disjoint long cycles (> Alog n) that cover at least kn
vertices, do the following :
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Given disjoint long cycles (> Alog n) that cover at least kn
vertices, do the following :

» cut each of them into arcs of length L to obtain A;j..A,.
(Throw away < L leftover)
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Given disjoint long cycles (> Alog n) that cover at least kn
vertices, do the following :

» cut each of them into arcs of length L to obtain A;j..A,.

» Arbitrarily assign a source/sink to endpoints of each arc.
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Given disjoint long cycles (> Alog n) that cover at least kn
vertices, do the following :

» cut each of them into arcs of length L to obtain A;..A, .
» Arbitrarily assign a source/sink to endpoints of each arc.

Fix 01 < %. We call the first §1L vertices of A;, starting from the
source, the tail of A;, and the last d1L vertices, ending with the
sink, the tail of A;.

47 /58



Given disjoint long cycles (> Alog n) that cover at least kn
vertices, do the following :

» cut each of them into arcs of length L to obtain Aj..A,.
» Arbitrarily assign a source/sink to endpoints of each arc.

Fix 01 < %. We call the first §1L vertices of A;, starting from the
source, the tail of A;, and the last §1L vertices, ending with the
sink, the tail of A;.
» Construct a directed graph D on vertices {1...n"}.
» create an edge in D from A; to A; if there is a reserve edge
connecting a vertex in the head of A; to a vertex in the tail of
A;.
J
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For each possible edge of D, it appears with probability
pP=1—-(1- %)(M)z (since we have (§L)? possible pairs of vertices
inducing the edge) independently from the rest.
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For each possible edge of D, it appears with probability
pP=1—(1- %)(M)z (since we have (§L)? possible pairs of vertices
inducing the edge) independently from the rest

= D behaves like a directed random graph with edge probability
/

p.
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4 - Directed Black box

To use the theorem for the directed case, we still need to show that
D is dense enough.
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4 - Directed Black box

To use the theorem for the directed case, we still need to show that

D is dense enough.

First note that n’ ~ % and hence we have :

P/ =1- (]_ — E)(él—)z > (1 - 0(1))6(5L)2

p p (union bound)
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4 - Directed Black box

To use the theorem for the directed case, we still need to show that

D is dense enough.

First note that n’ ~ an and hence we have :

p=1-(1— %)(M)z > (1— 0(1))6(‘”)2 (union bound)
€ 2
> (1 o(1)) X0
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4 - Directed Black box

To use the theorem for the directed case, we still need to show that
D is dense enough.
First note that n’ ~ an and hence we have :

p=1-(1— %)(M)z > (1— 0(1))6(5:)2 (union bound)
> (1- o) Pt

So by picking L large enough, we can guarantee ekd?L is as big of a
constant as we wish. (which we can do since the only restriction on
L is that it is o(log n))
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4 - Directed Black box

Using the result on dense directed random graphs, we a.a.s
guarantee a directed path of length (1 —d)n'.
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Conclusion

Using the result on dense directed random graphs, we a.a.s
guarantee a directed path of length (1 —d)n'.

The induced path in the original graph must cover at least
(1 —6)n'(1 — 25)L vertices.

Hence a.a.s we have a path of length :

(1—6)n"(1 —26)L ~ (1L —68)(1 —28)kn > (1 — 38)kn = an

Where o is a fixed constant.
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Any Questions 7
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On Wednesday we will investigate the directed case.
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