The Longest Path in a Random Graph: Directed Case

Miklós Ajtai, János Komlós, Endre Szemerédi

Presented by Zouhaier Ferchiou, Harry Sivasubramaniam

September 21, 2020

 > $D_{n,p}$ all directed edges chosen independently with probability p

- ▶ $D_{n,p}$ all directed edges chosen independently with probability p
- ▶ The expected number of edges in $D_{n.p}$ is n(n-1)p

- ▶ $D_{n,p}$ all directed edges chosen independently with probability p
- The expected number of edges in $D_{n.p}$ is n(n-1)p
- ▶ $D'_{n,N}$ uniform random digraph with *n* vertices and *N* edges

• Since
$$\binom{n}{k}k!\left(\frac{\alpha}{n}\right)^{k-1} \sim n\alpha^{k-1}e^{-k^2/2n}$$

• Since
$$\binom{n}{k}k!\left(\frac{\alpha}{n}\right)^{k-1} \sim n\alpha^{k-1}e^{-k^2/2n}$$

► random digraph with (1 - ε)n edges has longest directed path of length O(log n) a.a.s

• Since
$$\binom{n}{k}k!\left(\frac{\alpha}{n}\right)^{k-1} \sim n\alpha^{k-1}e^{-k^2/2n}$$

- ► random digraph with (1 − ε)n edges has longest directed path of length O(log n) a.a.s
- ► random digraph with n edges has longest directed path of length O(√n log n) a.a.s

- Since $\binom{n}{k}k!\left(\frac{\alpha}{n}\right)^{k-1} \sim n\alpha^{k-1}e^{-k^2/2n}$
- ► random digraph with (1 − ε)n edges has longest directed path of length O(log n) a.a.s
- random digraph with n edges has longest directed path of length O(\sqrt{n \log n}) a.a.s
- ▶ Note: We can just work with $D_{n,p}$ instead of $D'_{n,N}$ by coupling

Main Theorem $(D'_{n,N})$

 $D'_{n,\alpha n}$ contains a path of length cn a.a.s, where $\alpha > 1$ and $c = c(\alpha)$ is constant.

Main Theorem $(D'_{n,N})$

 $D'_{n,\alpha n}$ contains a directed path of length cn a.a.s, where $\alpha > 1$ and $c = c(\alpha)$ is constant.

Main Theorem $(D_{n,p})$

For $\alpha > 1$ there are positive numbers c, K and $\theta < 1$ such that

 $\Pr[D_{n,\frac{\alpha}{n}} \text{ contains a directed path of length } cn] > 1 - K\theta^n.$

Here and onwards we let $p = \frac{\alpha}{n}$

1. We define a graph process that generates $D_{n,p}$ and the desired long directed path

- 1. We define a graph process that generates $D_{n,p}$ and the desired long directed path
- 2. The process constructs the graph in a Depth First Search like manner

- 1. We define a graph process that generates $D_{n,p}$ and the desired long directed path
- 2. The process constructs the graph in a Depth First Search like manner
- 3. Use a branching process to analyze it (can have infinitely many points)

- 1. We define a graph process that generates $D_{n,p}$ and the desired long directed path
- 2. The process constructs the graph in a Depth First Search like manner
- 3. Use a branching process to analyze it (can have infinitely many points)
- 4. Show that *cn* generations occur in the branching process (i.e. a cn dipath in the first process) well before we have used up all the points in the first process

1. Set v_1 as root vertex, then select the children of v_1

- 1. Set v_1 as root vertex, then select the children of v_1
- 2. The probability that the children form a given set of k vertices is $p^k(1-p)^{n-1-k}$

- 1. Set v_1 as root vertex, then select the children of v_1
- 2. The probability that the children form a given set of k vertices is $p^k(1-p)^{n-1-k}$
- 3. Then select the child of v_1 with smallest index and determine its children from the unused vertices

- 1. Set v_1 as root vertex, then select the children of v_1
- 2. The probability that the children form a given set of k vertices is $p^k(1-p)^{n-1-k}$
- 3. Then select the child of v_1 with smallest index and determine its children from the unused vertices

4. ...

Issue: The distributions keep changing. Ex. the probability that v_1 has k children is $\binom{n-1}{k}p^k(1-p)^{n-1-k}$ while the probability that its first child has l is $\binom{n-1-k}{l}p^l(1-p)^{n-1-k-l}$ and so on...

1. Set v_1 as root vertex and initialize m element set $M = \{v_2, ..., v_{m+1}\}$

- 1. Set v_1 as root vertex and initialize m element set $M = \{v_2, ..., v_{m+1}\}$
- 2. Determine the random number **Ch** of children of v_1 in M according to

$$\lambda_k = \Pr[\mathbf{Ch} = k] = \binom{m}{k} p^k (1-p)^{m-k}$$

- 1. Set v_1 as root vertex and initialize m element set $M = \{v_2, ..., v_{m+1}\}$
- Determine the random number Ch of children of v₁ in M according to

$$\lambda_k = \Pr[\mathbf{Ch} = k] = \binom{m}{k} p^k (1-p)^{m-k}$$

3. Select k points at random from M for the children of v_1 and then replace them in M with the first k unused vertices

Directed Graph Process

Fix an ordering $v_1, ..., v_n$ of the vertices, let $m = (1 - \delta)n$ for some $\delta = \delta(\alpha) > 0$ chosen later

- 1. Set v_1 as root vertex and initialize m element set $M = \{v_2, ..., v_{m+1}\}$
- 2. Determine the random number **Ch** of children of v_1 in M according to

$$\lambda_k = \Pr[\mathbf{Ch} = k] = \binom{m}{k} p^k (1-p)^{m-k}$$

- 3. Select k points at random from M for the children of v_1 and then replace them in M with the first k unused vertices
- Recursively repeat on the first child until branch dies, then repeat on the sibling of the node that went extinct (Essentially a depth first search!)

Directed Graph Process

Fix an ordering $v_1, ..., v_n$ of the vertices, let $m = (1 - \delta)n$ for some $\delta = \delta(\alpha) > 0$ chosen later

- 1. Set v_1 as root vertex and initialize m element set $M = \{v_2, ..., v_{m+1}\}$
- 2. Determine the random number **Ch** of children of v_1 in M according to

$$\lambda_k = \Pr[\mathbf{Ch} = k] = \binom{m}{k} p^k (1-p)^{m-k}$$

- 3. Select k points at random from M for the children of v_1 and then replace them in M with the first k unused vertices
- Recursively repeat on the first child until branch dies, then repeat on the sibling of the node that went extinct (Essentially a depth first search!)
- 5. If tree dies out, pick unused vertex with smallest index and restart the process until no vertices remain unused

► The previous procedure stops when we have used up all δn surplus points (recall $m = (1 - \delta)n$)

- ► The previous procedure stops when we have used up all δn surplus points (recall $m = (1 \delta)n$)
- Do we use up all δn points before cn generations?

- ► The previous procedure stops when we have used up all δn surplus points (recall $m = (1 \delta)n$)
- Do we use up all δn points before cn generations?
- The result of the previous process is a collection of disjoint trees (We have generated a subgraph of D_{n,p} so far)

- ► The previous procedure stops when we have used up all δn surplus points (recall $m = (1 \delta)n$)
- Do we use up all δn points before cn generations?
- The result of the previous process is a collection of disjoint trees (We have generated a subgraph of D_{n,p} so far)
- ► To guarantee a D_{n,p} we appropriately randomize the remaining directed edges (i.e. edges between children, from one tree to another, from child to ancestor, etc.)

- ► The previous procedure stops when we have used up all δn surplus points (recall $m = (1 \delta)n$)
- Do we use up all δn points before cn generations?
- The result of the previous process is a collection of disjoint trees (We have generated a subgraph of D_{n,p} so far)
- ► To guarantee a D_{n,p} we appropriately randomize the remaining directed edges (i.e. edges between children, from one tree to another, from child to ancestor, etc.)

Note: BFS can only give us at most a log *n* path but *DFS* can potentially give us much longer paths

• Let $\lambda = mp = (1 - \delta)\alpha$. We will choose δ small so that $\lambda > 1$

Let λ = mp = (1 - δ)α. We will choose δ small so that λ > 1
 Consider branching process with branching distribution

$$\lambda_k = \Pr[\mathbf{Ch} = k] = \binom{m}{k} p^k (1-p)^{m-k} \sim \frac{(mp)^k}{k!} e^{-mp} = \frac{\lambda^k}{k!} e^{-\lambda}$$

Let λ = mp = (1 − δ)α. We will choose δ small so that λ > 1
 Consider branching process with branching distribution

$$\lambda_k = \Pr[\mathbf{Ch} = k] = \binom{m}{k} p^k (1-p)^{m-k} \sim \frac{(mp)^k}{k!} e^{-mp} = \frac{\lambda^k}{k!} e^{-\lambda}$$

► Recall: at time t = 0 a single particle is born and gives birth to Ch many children and then dies. At each t ≥ 1 each existing particle independently gives birth to Ch children and dies. Let λ = mp = (1 − δ)α. We will choose δ small so that λ > 1
 Consider branching process with branching distribution

$$\lambda_k = \Pr[\mathbf{Ch} = k] = \binom{m}{k} p^k (1-p)^{m-k} \sim \frac{(mp)^k}{k!} e^{-mp} = \frac{\lambda^k}{k!} e^{-\lambda}$$

- ► Recall: at time t = 0 a single particle is born and gives birth to Ch many children and then dies. At each t ≥ 1 each existing particle independently gives birth to Ch children and dies.
- At each level assign a random order to the branches so the "leftmost infinite path" (LIP) is well defined

Galton-Watson Branching Process

Let λ = mp = (1 − δ)α. We will choose δ small so that λ > 1
 Consider branching process with branching distribution

$$\lambda_k = \Pr[\mathsf{Ch} = k] = \binom{m}{k} p^k (1-p)^{m-k} \sim \frac{(mp)^k}{k!} e^{-mp} = \frac{\lambda^k}{k!} e^{-\lambda}$$

- ▶ Recall: at time t = 0 a single particle is born and gives birth to Ch many children and then dies. At each t ≥ 1 each existing particle independently gives birth to Ch children and dies.
- At each level assign a random order to the branches so the "leftmost infinite path" (LIP) is well defined
- Recall: Since λ > 1 there exists Q = Q(λ, m) such that the probability of extinction is Q < 1</p>

Claim 1 $\Pr[S_{\epsilon n} > \frac{\delta}{2}n]$ is exponentially small, where $\epsilon = \epsilon(\alpha, \delta)$

Claim 1 $\Pr[S_{\epsilon n} > \frac{\delta}{2}n]$ is exponentially small, where $\epsilon = \epsilon(\alpha, \delta)$ $L_k = \#$ of points to the left of LIP (inclusive) at level k. Claim 2 There exists $c = c(\alpha) > 0$ such that $\Pr[L_{cn} > \frac{\delta}{2}n]$ is exponentially small.

Claim 1

 $\Pr[S_{\epsilon n} > \frac{\delta}{2}n]$ is exponentially small, where $\epsilon = \epsilon(\alpha, \delta)$

 $L_k = \#$ of points to the left of LIP (inclusive) at level k.

Claim 2

There exists $c = c(\alpha) > 0$ such that $\Pr[L_{cn} > \frac{\delta}{2}n]$ is exponentially small.

Claim 3

For all *m*, extinction probability $Q = Q(\lambda, m) < Q_0 = Q_0(\lambda) < 1$.

▶ Claim 3 and independence \implies first ϵn processes go extinct with probability at most $Q_0^{\epsilon n}$

- ▶ Claim 3 and independence \implies first ϵn processes go extinct with probability at most $Q_0^{\epsilon n}$
- ► Claim 1 and 2 \implies $\Pr[S_{\epsilon n} > \frac{\delta}{2}n]$ and $\Pr[L_{cn} > \frac{\delta}{2}n]$ are also exponentially small

- ▶ Claim 3 and independence \implies first ϵn processes go extinct with probability at most $Q_0^{\epsilon n}$
- ► Claim 1 and 2 \implies $\Pr[S_{\epsilon n} > \frac{\delta}{2}n]$ and $\Pr[L_{cn} > \frac{\delta}{2}n]$ are also exponentially small
- ▶ By union bound none of these events occur \implies there is an index $j \le \epsilon n$ such that $T_1, ..., T_{j-1}$ are finite and T_j in infinite

- ▶ Claim 3 and independence \implies first ϵn processes go extinct with probability at most $Q_0^{\epsilon n}$
- ► Claim 1 and 2 \implies $\Pr[S_{\epsilon n} > \frac{\delta}{2}n]$ and $\Pr[L_{cn} > \frac{\delta}{2}n]$ are also exponentially small
- ▶ By union bound none of these events occur \implies there is an index $j \le \epsilon n$ such that $T_1, ..., T_{j-1}$ are finite and T_j in infinite
- At most $\frac{\delta}{2}n$ vertices used in our corresponding graph process so far

- ▶ Claim 3 and independence \implies first ϵn processes go extinct with probability at most $Q_0^{\epsilon n}$
- ► Claim 1 and 2 \implies $\Pr[S_{\epsilon n} > \frac{\delta}{2}n]$ and $\Pr[L_{cn} > \frac{\delta}{2}n]$ are also exponentially small
- ▶ By union bound none of these events occur \implies there is an index $j \le \epsilon n$ such that $T_1, ..., T_{j-1}$ are finite and T_j in infinite
- At most $\frac{\delta}{2}n$ vertices used in our corresponding graph process so far
- ► At most ^δ/₂n vertices used by taking the corresponding points to the left of LIP (inclusive) at level *cn*. This also gives us the *cn* directed path.

Proof of Main Result

- ▶ Claim 3 and independence \implies first ϵn processes go extinct with probability at most $Q_0^{\epsilon n}$
- ► Claim 1 and 2 \implies $\Pr[S_{\epsilon n} > \frac{\delta}{2}n]$ and $\Pr[L_{cn} > \frac{\delta}{2}n]$ are also exponentially small
- ▶ By union bound none of these events occur \implies there is an index $j \le \epsilon n$ such that $T_1, ..., T_{j-1}$ are finite and T_j in infinite
- At most $\frac{\delta}{2}n$ vertices used in our corresponding graph process so far
- At most $\frac{\delta}{2}n$ vertices used by taking the corresponding points to the left of LIP (inclusive) at level *cn*. This also gives us the *cn* directed path.
- We had a surplus of δn vertices in the original graph process so we are done!

Let $f(x) = \sum_{k\geq 0} \lambda_k x^k$. Since $\mathbb{E}[\mathbf{Ch}] = \lambda > 1$ it is well known that Q is the unique root of the equation Q = f(Q) for $0 \leq Q < 1$.

Let $f(x) = \sum_{k \ge 0} \lambda_k x^k$. Since $\mathbb{E}[\mathbf{Ch}] = \lambda > 1$ it is well known that Q is the unique root of the equation Q = f(Q) for $0 \le Q < 1$.

Note that $f(x) = (1 - p + px)^m = (1 - \frac{\lambda(1-x)}{m})^m$ and is monotone increasing in *m* since for $C = \lambda(1-x)$ by AM-GM

$$1 \cdot \left(1 - \frac{C}{m}\right) \dots \left(1 - \frac{C}{m}\right) \le \left(\frac{1 + m(1 - \frac{C}{m})}{m+1}\right)^{m+1} = \left(1 - \frac{C}{m+1}\right)^{m+1}$$

Let $f(x) = \sum_{k \ge 0} \lambda_k x^k$. Since $\mathbb{E}[\mathbf{Ch}] = \lambda > 1$ it is well known that Q is the unique root of the equation Q = f(Q) for $0 \le Q < 1$.

Note that $f(x) = (1 - p + px)^m = (1 - \frac{\lambda(1-x)}{m})^m$ and is monotone increasing in *m* since for $C = \lambda(1-x)$ by AM-GM

$$1 \cdot \left(1 - \frac{C}{m}\right) \dots \left(1 - \frac{C}{m}\right) \le \left(\frac{1 + m(1 - \frac{C}{m})}{m+1}\right)^{m+1} = \left(1 - \frac{C}{m+1}\right)^{m+1}$$

Also, $f(x) \leq e^{-\lambda(1-x)}$ and thus $Q < Q_0 < 1$ for all m where Q_0 is the unique solution on (0,1) to $Q_0 = e^{-\lambda(1-Q_0)}$. Equivalently, $Q_0 = \frac{x}{\lambda}$ where x is unique value in (0,1) for which $xe^{-x} = \lambda e^{-\lambda}$.

We want $\Pr[T_1 + ... + T_{\epsilon n} > \frac{\delta}{2}n]$ exponentially small

We want
$$\Pr[T_1 + ... + T_{\epsilon n} > \frac{\delta}{2}n]$$
 exponentially small
 $\Pr[S_{\epsilon n} > \frac{\delta}{2}n] = \Pr[\exp(tS_{\epsilon n}) > \exp(t\delta n/2)] \le \frac{\mathbb{E}[\exp(tS_{\epsilon n})]}{\exp(t\delta n/2)}$ (Markov)

We want
$$\Pr[T_1 + ... + T_{\epsilon n} > \frac{\delta}{2}n]$$
 exponentially small
 $\Pr[S_{\epsilon n} > \frac{\delta}{2}n] = \Pr[\exp(tS_{\epsilon n}) > \exp(t\delta n/2)] \le \frac{\mathbb{E}[\exp(tS_{\epsilon n})]}{\exp(t\delta n/2)}$ (Markov)

By independence of T_i , $\mathbb{E}[\exp(tS_{\epsilon n})] = \prod_{i=1}^{\epsilon n} \mathbb{E}\exp(tT) \leq K^{\epsilon n}$

We want
$$\Pr[T_1 + ... + T_{\epsilon n} > \frac{\delta}{2}n]$$
 exponentially small
 $\Pr[S_{\epsilon n} > \frac{\delta}{2}n] = \Pr[\exp(tS_{\epsilon n}) > \exp(t\delta n/2)] \le \frac{\mathbb{E}[\exp(tS_{\epsilon n})]}{\exp(t\delta n/2)}$ (Markov)

By independence of T_i , $\mathbb{E}[\exp(tS_{\epsilon n})] = \prod_{i=1}^{\epsilon n} \mathbb{E} \exp(tT) \leq K^{\epsilon n}$ Pick ϵ small (in terms of α, δ) and pick $t = t_0$ to get exponentially small probability We want $\Pr[T_1 + ... + T_{\epsilon n} > \frac{\delta}{2}n]$ exponentially small $\Pr[S_{\epsilon n} > \frac{\delta}{2}n] = \Pr[\exp(tS_{\epsilon n}) > \exp(t\delta n/2)] \le \frac{\mathbb{E}[\exp(tS_{\epsilon n})]}{\exp(t\delta n/2)}$ (Markov)

By independence of T_i , $\mathbb{E}[\exp(tS_{\epsilon n})] = \prod_{i=1}^{\epsilon n} \mathbb{E}\exp(tT) \leq K^{\epsilon n}$ Pick ϵ small (in terms of α, δ) and pick $t = t_0$ to get exponentially small probability

Lastly show $\mathbb{E}[e^{t_0 T}] \leq K$ for $t_0 = t_0(\lambda) > 0$ and $K = K(\lambda) > 0$

Let \overline{T} be the total population and $\overline{t}_l = \Pr[\overline{T} = l]$, then we have $\overline{t}_0 = 0$ and $\overline{t}_{\infty} = 1 - Q$, and for $l \ge 1$

$$\overline{t}_l = \sum_{k=0} \lambda_k \sum_{l_1 + \ldots + l_k = l-1: l_i \ge 1} \overline{t}_{l_1} \cdots \overline{t}_{l_k}$$

Let \overline{T} be the total population and $\overline{t}_l = \Pr[\overline{T} = l]$, then we have $\overline{t}_0 = 0$ and $\overline{t}_{\infty} = 1 - Q$, and for $l \ge 1$

$$\overline{t}_l = \sum_{k=0} \lambda_k \sum_{l_1 + \dots + l_k = l-1: l_l \ge 1} \overline{t}_{l_1} \cdots \overline{t}_{l_k}$$

Then $\overline{g}(x) = \sum_{l=1} \overline{t}_l x^l$ satisfies $\overline{g}(x) = x f(\overline{g}(x))$ so it is defined uniquely for x < 1 (By LIFT) and so $\overline{g}(x) < Q$

Let \overline{T} be the total population and $\overline{t}_l = \Pr[\overline{T} = l]$, then we have $\overline{t}_0 = 0$ and $\overline{t}_{\infty} = 1 - Q$, and for $l \ge 1$

$$\overline{t}_{l} = \sum_{k=0}^{l} \lambda_{k} \sum_{l_{1}+\ldots+l_{k}=l-1: l_{i} \geq 1} \overline{t}_{l_{1}} \cdots \overline{t}_{l_{k}}$$

Then $\overline{g}(x) = \sum_{l=1} \overline{t}_l x^l$ satisfies $\overline{g}(x) = x f(\overline{g}(x))$ so it is defined uniquely for x < 1 (By LIFT) and so $\overline{g}(x) < Q$

By a continuity argument $\overline{g}(x)$ can be defined up to $y_0 = \frac{x_0}{f(x_0)}$ where $x_0 = \frac{1-p}{(m-1)p}$ is the maximum of $\frac{x}{f(x)}$ under the assumption $\overline{g} < x_0$ ${\mathcal T}$ is total population conditioned of the process going extinct. Thus

$$t_{l} = \Pr[T = l] = \Pr[\overline{T} = l | \overline{T} < \infty] = \frac{\overline{t}_{l}}{Q}$$
$$\mathbb{E}T = g'(1) = \frac{1}{1 - f'(Q)} \sim \frac{1}{1 - \lambda Q} \text{ where } g(x) = \sum_{l=0} t_{l} x^{l} = \overline{g}(x)/Q$$

 ${\cal T}$ is total population conditioned on the process going extinct. Thus $$\overline{\ }$

$$t_{l} = \Pr[T = l] = \Pr[\overline{T} = l | \overline{T} < \infty] = \frac{t_{l}}{Q}$$
$$\mathbb{E}T = g'(1) = \frac{1}{1 - f'(Q)} \sim \frac{1}{1 - \lambda Q} \text{ where } g(x) = \sum_{l=0} t_{l} x^{l} = \overline{g}(x)/Q$$

 ${\cal T}$ is total population conditioned on the process going extinct. Thus $_$

$$t_{l} = \Pr[T = l] = \Pr[\overline{T} = l | \overline{T} < \infty] = \frac{t_{l}}{Q}$$
$$\mathbb{E}T = g'(1) = \frac{1}{1 - f'(Q)} \sim \frac{1}{1 - \lambda Q} \text{ where } g(x) = \sum_{l=0} t_{l} x^{l} = \overline{g}(x)/Q$$
$$\text{Now } \mathbb{E}e^{t_{0}T} = g(e^{t_{0}}) \leq g(y_{0}) = \frac{x_{0}}{Q} < \frac{1}{Q}.$$

 ${\mathcal T}$ is total population conditioned on the process going extinct. Thus

$$t_l = \Pr[T = l] = \Pr[\overline{T} = l | \overline{T} < \infty] = \frac{\overline{t}_l}{Q}$$

$$\mathbb{E}T = g'(1) = \frac{1}{1 - f'(Q)} \sim \frac{1}{1 - \lambda Q} \text{ where } g(x) = \sum_{l=0} t_l x^l = \overline{g}(x)/Q$$

Now $\mathbb{E}e^{t_0 T} = g(e^{t_0}) \leq g(y_0) = \frac{x_0}{Q} < \frac{1}{Q}.$

We are done as Q is an increasing function in m so $\frac{1}{Q}$ is uniformly bounded in m as needed

The proof of claim 2 can be done by a similar approach to the proof of claim 1. That is, we define an appropriate RV, bound the MGF and use this to derive the concentration bound.

Thank you!