The Longest Path in a Random Graph: Directed Case

Miklós Ajtai, János Komlós, Endre Szemerédi

Presented by Zouhaier Ferchiou, Harry Sivasubramaniam

September 21, 2020

Random Directed Graphs

- $D_{n, p}$ all directed edges chosen independently with probability p

Random Directed Graphs

- $D_{n, p}$ all directed edges chosen independently with probability p
- The expected number of edges in $D_{n . p}$ is $n(n-1) p$

Random Directed Graphs

- $D_{n, p}$ all directed edges chosen independently with probability p
- The expected number of edges in $D_{n . p}$ is $n(n-1) p$
- $D_{n, N}^{\prime}$ uniform random digraph with n vertices and N edges

Longest Directed Paths

- Since $\binom{n}{k} k!\left(\frac{\alpha}{n}\right)^{k-1} \sim n \alpha^{k-1} e^{-k^{2} / 2 n}$

Longest Directed Paths

- Since $\binom{n}{k} k!\left(\frac{\alpha}{n}\right)^{k-1} \sim n \alpha^{k-1} e^{-k^{2} / 2 n}$
- random digraph with $(1-\epsilon) n$ edges has longest directed path of length $O(\log n)$ a.a.s

Longest Directed Paths

- Since $\binom{n}{k} k!\left(\frac{\alpha}{n}\right)^{k-1} \sim n \alpha^{k-1} e^{-k^{2} / 2 n}$
- random digraph with $(1-\epsilon) n$ edges has longest directed path of length $O(\log n)$ a.a.s
- random digraph with n edges has longest directed path of length $O(\sqrt{n \log n})$ a.a.s

Longest Directed Paths

- Since $\binom{n}{k} k!\left(\frac{\alpha}{n}\right)^{k-1} \sim n \alpha^{k-1} e^{-k^{2} / 2 n}$
- random digraph with $(1-\epsilon) n$ edges has longest directed path of length $O(\log n)$ a.a.s
- random digraph with n edges has longest directed path of length $O(\sqrt{n \log n})$ a.a.s
- Note: We can just work with $D_{n, p}$ instead of $D_{n, N}^{\prime}$ by coupling

Main Result

Main Theorem ($D_{n, N}^{\prime}$)
$D_{n, \alpha n}^{\prime}$ contains a path of length cn a.a.s, where $\alpha>1$ and $c=c(\alpha)$ is constant.

Main Result

Main Theorem ($D_{n, N}^{\prime}$)
$D_{n, \alpha n}^{\prime}$ contains a directed path of length $c n$ a.a.s, where $\alpha>1$ and $c=c(\alpha)$ is constant.

Main Theorem ($D_{n, p}$)
For $\alpha>1$ there are positive numbers c, K and $\theta<1$ such that

$$
\operatorname{Pr}\left[D_{n, \frac{\alpha}{n}} \text { contains a directed path of length } c n\right]>1-K \theta^{n} \text {. }
$$

Here and onwards we let $p=\frac{\alpha}{n}$

Proof Overview

1. We define a graph process that generates $D_{n, p}$ and the desired long directed path

Proof Overview

1. We define a graph process that generates $D_{n, p}$ and the desired long directed path
2. The process constructs the graph in a Depth First Search like manner

Proof Overview

1. We define a graph process that generates $D_{n, p}$ and the desired long directed path
2. The process constructs the graph in a Depth First Search like manner
3. Use a branching process to analyze it (can have infinitely many points)

Proof Overview

1. We define a graph process that generates $D_{n, p}$ and the desired long directed path
2. The process constructs the graph in a Depth First Search like manner
3. Use a branching process to analyze it (can have infinitely many points)
4. Show that $c n$ generations occur in the branching process (i.e. a cn dipath in the first process) well before we have used up all the points in the first process

Directed Graph Process: Attempt 1

Fix an ordering v_{1}, \ldots, v_{n} of the vertices

Directed Graph Process: Attempt 1

Fix an ordering v_{1}, \ldots, v_{n} of the vertices

1. Set v_{1} as root vertex, then select the children of v_{1}

Directed Graph Process: Attempt 1

Fix an ordering v_{1}, \ldots, v_{n} of the vertices

1. Set v_{1} as root vertex, then select the children of v_{1}
2. The probability that the children form a given set of k vertices is $p^{k}(1-p)^{n-1-k}$

Directed Graph Process: Attempt 1

Fix an ordering v_{1}, \ldots, v_{n} of the vertices

1. Set v_{1} as root vertex, then select the children of v_{1}
2. The probability that the children form a given set of k vertices is $p^{k}(1-p)^{n-1-k}$
3. Then select the child of v_{1} with smallest index and determine its children from the unused vertices

Directed Graph Process: Attempt 1

Fix an ordering v_{1}, \ldots, v_{n} of the vertices

1. Set v_{1} as root vertex, then select the children of v_{1}
2. The probability that the children form a given set of k vertices is $p^{k}(1-p)^{n-1-k}$
3. Then select the child of v_{1} with smallest index and determine its children from the unused vertices
4. ...

Issue: The distributions keep changing. Ex. the probability that v_{1} has k children is $\binom{n-1}{k} p^{k}(1-p)^{n-1-k}$ while the probability that its first child has I is $\binom{n-1-k}{l} p^{\prime}(1-p)^{n-1-k-l}$ and so on...

Directed Graph Process

Fix an ordering v_{1}, \ldots, v_{n} of the vertices, let $m=(1-\delta) n$ for some $\delta=\delta(\alpha)>0$ chosen later

Directed Graph Process

Fix an ordering v_{1}, \ldots, v_{n} of the vertices, let $m=(1-\delta) n$ for some $\delta=\delta(\alpha)>0$ chosen later

1. Set v_{1} as root vertex and initialize m element set $M=\left\{v_{2}, \ldots, v_{m+1}\right\}$

Directed Graph Process

Fix an ordering v_{1}, \ldots, v_{n} of the vertices, let $m=(1-\delta) n$ for some $\delta=\delta(\alpha)>0$ chosen later

1. Set v_{1} as root vertex and initialize m element set $M=\left\{v_{2}, \ldots, v_{m+1}\right\}$
2. Determine the random number Ch of children of v_{1} in M according to

$$
\lambda_{k}=\operatorname{Pr}[\mathbf{C h}=k]=\binom{m}{k} p^{k}(1-p)^{m-k}
$$

Directed Graph Process

Fix an ordering v_{1}, \ldots, v_{n} of the vertices, let $m=(1-\delta) n$ for some $\delta=\delta(\alpha)>0$ chosen later

1. Set v_{1} as root vertex and initialize m element set

$$
M=\left\{v_{2}, \ldots, v_{m+1}\right\}
$$

2. Determine the random number Ch of children of v_{1} in M according to

$$
\lambda_{k}=\operatorname{Pr}[\mathbf{C h}=k]=\binom{m}{k} p^{k}(1-p)^{m-k}
$$

3. Select k points at random from M for the children of v_{1} and then replace them in M with the first k unused vertices

Directed Graph Process

Fix an ordering v_{1}, \ldots, v_{n} of the vertices, let $m=(1-\delta) n$ for some $\delta=\delta(\alpha)>0$ chosen later

1. Set v_{1} as root vertex and initialize m element set $M=\left\{v_{2}, \ldots, v_{m+1}\right\}$
2. Determine the random number Ch of children of v_{1} in M according to

$$
\lambda_{k}=\operatorname{Pr}[\mathbf{C h}=k]=\binom{m}{k} p^{k}(1-p)^{m-k}
$$

3. Select k points at random from M for the children of v_{1} and then replace them in M with the first k unused vertices
4. Recursively repeat on the first child until branch dies, then repeat on the sibling of the node that went extinct (Essentially a depth first search!)

Directed Graph Process

Fix an ordering v_{1}, \ldots, v_{n} of the vertices, let $m=(1-\delta) n$ for some $\delta=\delta(\alpha)>0$ chosen later

1. Set v_{1} as root vertex and initialize m element set $M=\left\{v_{2}, \ldots, v_{m+1}\right\}$
2. Determine the random number Ch of children of v_{1} in M according to

$$
\lambda_{k}=\operatorname{Pr}[\mathbf{C h}=k]=\binom{m}{k} p^{k}(1-p)^{m-k}
$$

3. Select k points at random from M for the children of v_{1} and then replace them in M with the first k unused vertices
4. Recursively repeat on the first child until branch dies, then repeat on the sibling of the node that went extinct (Essentially a depth first search!)
5. If tree dies out, pick unused vertex with smallest index and restart the process until no vertices remain unused

Directed Graph Process Cont'd

- The previous procedure stops when we have used up all δn surplus points (recall $m=(1-\delta) n$)

Directed Graph Process Cont'd

- The previous procedure stops when we have used up all δn surplus points (recall $m=(1-\delta) n$)
- Do we use up all δn points before $c n$ generations?

Directed Graph Process Cont'd

- The previous procedure stops when we have used up all δn surplus points (recall $m=(1-\delta) n$)
- Do we use up all δn points before $c n$ generations?
- The result of the previous process is a collection of disjoint trees (We have generated a subgraph of $D_{n, p}$ so far)

Directed Graph Process Cont'd

- The previous procedure stops when we have used up all δn surplus points (recall $m=(1-\delta) n$)
- Do we use up all δn points before $c n$ generations?
- The result of the previous process is a collection of disjoint trees (We have generated a subgraph of $D_{n, p}$ so far)
- To guarantee a $D_{n, p}$ we appropriately randomize the remaining directed edges (i.e. edges between children, from one tree to another, from child to ancestor, etc.)

Directed Graph Process Cont'd

- The previous procedure stops when we have used up all δn surplus points (recall $m=(1-\delta) n$)
- Do we use up all δn points before $c n$ generations?
- The result of the previous process is a collection of disjoint trees (We have generated a subgraph of $D_{n, p}$ so far)
- To guarantee a $D_{n, p}$ we appropriately randomize the remaining directed edges (i.e. edges between children, from one tree to another, from child to ancestor, etc.)
Note: BFS can only give us at most a $\log n$ path but DFS can potentially give us much longer paths

Galton-Watson Branching Process

- Let $\lambda=m p=(1-\delta) \alpha$. We will choose δ small so that $\lambda>1$

Galton-Watson Branching Process

- Let $\lambda=m p=(1-\delta) \alpha$. We will choose δ small so that $\lambda>1$
- Consider branching process with branching distribution

$$
\lambda_{k}=\operatorname{Pr}[\mathrm{Ch}=k]=\binom{m}{k} p^{k}(1-p)^{m-k} \sim \frac{(m p)^{k}}{k!} e^{-m p}=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

Galton-Watson Branching Process

- Let $\lambda=m p=(1-\delta) \alpha$. We will choose δ small so that $\lambda>1$
- Consider branching process with branching distribution

$$
\lambda_{k}=\operatorname{Pr}[\mathbf{C h}=k]=\binom{m}{k} p^{k}(1-p)^{m-k} \sim \frac{(m p)^{k}}{k!} e^{-m p}=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

- Recall: at time $t=0$ a single particle is born and gives birth to Ch many children and then dies. At each $t \geq 1$ each existing particle independently gives birth to Ch children and dies.

Galton-Watson Branching Process

- Let $\lambda=m p=(1-\delta) \alpha$. We will choose δ small so that $\lambda>1$
- Consider branching process with branching distribution

$$
\lambda_{k}=\operatorname{Pr}[\mathbf{C h}=k]=\binom{m}{k} p^{k}(1-p)^{m-k} \sim \frac{(m p)^{k}}{k!} e^{-m p}=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

- Recall: at time $t=0$ a single particle is born and gives birth to Ch many children and then dies. At each $t \geq 1$ each existing particle independently gives birth to Ch children and dies.
- At each level assign a random order to the branches so the "leftmost infinite path" (LIP) is well defined

Galton-Watson Branching Process

- Let $\lambda=m p=(1-\delta) \alpha$. We will choose δ small so that $\lambda>1$
- Consider branching process with branching distribution

$$
\lambda_{k}=\operatorname{Pr}[\mathbf{C h}=k]=\binom{m}{k} p^{k}(1-p)^{m-k} \sim \frac{(m p)^{k}}{k!} e^{-m p}=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

- Recall: at time $t=0$ a single particle is born and gives birth to Ch many children and then dies. At each $t \geq 1$ each existing particle independently gives birth to Ch children and dies.
- At each level assign a random order to the branches so the "leftmost infinite path" (LIP) is well defined
- Recall: Since $\lambda>1$ there exists $Q=Q(\lambda, m)$ such that the probability of extinction is $Q<1$

Results on Branching Processes

Let T denote the total population until extinction conditioned on process dying. Let T_{1}, T_{2}, \ldots be a sequence of independent RV s distributed according to T and set $S_{k}=T_{1}+. .+T_{k}$

Results on Branching Processes

Let T denote the total population until extinction conditioned on process dying. Let T_{1}, T_{2}, \ldots be a sequence of independent RV s distributed according to T and set $S_{k}=T_{1}+. .+T_{k}$

Claim 1
$\operatorname{Pr}\left[S_{\epsilon n}>\frac{\delta}{2} n\right]$ is exponentially small, where $\epsilon=\epsilon(\alpha, \delta)$

Results on Branching Processes

Let T denote the total population until extinction conditioned on process dying. Let T_{1}, T_{2}, \ldots be a sequence of independent RV s distributed according to T and set $S_{k}=T_{1}+. .+T_{k}$

Claim 1
$\operatorname{Pr}\left[S_{\epsilon n}>\frac{\delta}{2} n\right]$ is exponentially small, where $\epsilon=\epsilon(\alpha, \delta)$
$L_{k}=\#$ of points to the left of LIP (inclusive) at level k.
Claim 2
There exists $c=c(\alpha)>0$ such that $\operatorname{Pr}\left[L_{c n}>\frac{\delta}{2} n\right]$ is exponentially small.

Results on Branching Processes

Let T denote the total population until extinction conditioned on process dying. Let T_{1}, T_{2}, \ldots be a sequence of independent RVs distributed according to T and set $S_{k}=T_{1}+. .+T_{k}$

Claim 1
$\operatorname{Pr}\left[S_{\epsilon n}>\frac{\delta}{2} n\right]$ is exponentially small, where $\epsilon=\epsilon(\alpha, \delta)$
$L_{k}=\#$ of points to the left of LIP (inclusive) at level k.
Claim 2
There exists $c=c(\alpha)>0$ such that $\operatorname{Pr}\left[L_{c n}>\frac{\delta}{2} n\right]$ is exponentially small.

Claim 3
For all m, extinction probability $Q=Q(\lambda, m)<Q_{0}=Q_{0}(\lambda)<1$.

Proof of Main Result

- Claim 3 and independence \Longrightarrow first ϵn processes go extinct with probability at most $Q_{0}^{\epsilon n}$

Proof of Main Result

- Claim 3 and independence \Longrightarrow first ϵn processes go extinct with probability at most $Q_{0}^{\epsilon n}$
- Claim 1 and $2 \Longrightarrow \operatorname{Pr}\left[S_{\epsilon n}>\frac{\delta}{2} n\right]$ and $\operatorname{Pr}\left[L_{c n}>\frac{\delta}{2} n\right]$ are also exponentially small

Proof of Main Result

- Claim 3 and independence \Longrightarrow first ϵn processes go extinct with probability at most $Q_{0}^{\epsilon n}$
- Claim 1 and $2 \Longrightarrow \operatorname{Pr}\left[S_{\epsilon n}>\frac{\delta}{2} n\right]$ and $\operatorname{Pr}\left[L_{c n}>\frac{\delta}{2} n\right]$ are also exponentially small
- By union bound none of these events occur \Longrightarrow there is an index $j \leq \epsilon n$ such that T_{1}, \ldots, T_{j-1} are finite and T_{j} in infinite

Proof of Main Result

- Claim 3 and independence \Longrightarrow first ϵn processes go extinct with probability at most $Q_{0}^{\epsilon n}$
- Claim 1 and $2 \Longrightarrow \operatorname{Pr}\left[S_{\epsilon n}>\frac{\delta}{2} n\right]$ and $\operatorname{Pr}\left[L_{c n}>\frac{\delta}{2} n\right]$ are also exponentially small
- By union bound none of these events occur \Longrightarrow there is an index $j \leq \epsilon n$ such that T_{1}, \ldots, T_{j-1} are finite and T_{j} in infinite
- At most $\frac{\delta}{2} n$ vertices used in our corresponding graph process so far

Proof of Main Result

- Claim 3 and independence \Longrightarrow first ϵn processes go extinct with probability at most $Q_{0}^{\epsilon n}$
- Claim 1 and $2 \Longrightarrow \operatorname{Pr}\left[S_{\epsilon n}>\frac{\delta}{2} n\right]$ and $\operatorname{Pr}\left[L_{c n}>\frac{\delta}{2} n\right]$ are also exponentially small
- By union bound none of these events occur \Longrightarrow there is an index $j \leq \epsilon n$ such that T_{1}, \ldots, T_{j-1} are finite and T_{j} in infinite
- At most $\frac{\delta}{2} n$ vertices used in our corresponding graph process so far
- At most $\frac{\delta}{2} n$ vertices used by taking the corresponding points to the left of LIP (inclusive) at level $c n$. This also gives us the cn directed path.

Proof of Main Result

- Claim 3 and independence \Longrightarrow first ϵn processes go extinct with probability at most $Q_{0}^{\epsilon n}$
- Claim 1 and $2 \Longrightarrow \operatorname{Pr}\left[S_{\epsilon n}>\frac{\delta}{2} n\right]$ and $\operatorname{Pr}\left[L_{c n}>\frac{\delta}{2} n\right]$ are also exponentially small
- By union bound none of these events occur \Longrightarrow there is an index $j \leq \epsilon n$ such that T_{1}, \ldots, T_{j-1} are finite and T_{j} in infinite
- At most $\frac{\delta}{2} n$ vertices used in our corresponding graph process so far
- At most $\frac{\delta}{2} n$ vertices used by taking the corresponding points to the left of LIP (inclusive) at level $c n$. This also gives us the cn directed path.
- We had a surplus of δn vertices in the original graph process so we are done!

Proof of Claim 3

Let $f(x)=\sum_{k \geq 0} \lambda_{k} x^{k}$. Since $\mathbb{E}[\mathbf{C h}]=\lambda>1$ it is well known that Q is the unique root of the equation $Q=f(Q)$ for $0 \leq Q<1$.

Proof of Claim 3

Let $f(x)=\sum_{k \geq 0} \lambda_{k} x^{k}$. Since $\mathbb{E}[\mathbf{C h}]=\lambda>1$ it is well known that Q is the unique root of the equation $Q=f(Q)$ for $0 \leq Q<1$.
Note that $f(x)=(1-p+p x)^{m}=\left(1-\frac{\lambda(1-x)}{m}\right)^{m}$ and is monotone increasing in m since for $C=\lambda(1-x)$ by AM-GM

$$
1 \cdot\left(1-\frac{C}{m}\right) \ldots\left(1-\frac{C}{m}\right) \leq\left(\frac{1+m\left(1-\frac{C}{m}\right)}{m+1}\right)^{m+1}=\left(1-\frac{C}{m+1}\right)^{m+1}
$$

Proof of Claim 3

Let $f(x)=\sum_{k \geq 0} \lambda_{k} x^{k}$. Since $\mathbb{E}[\mathbf{C h}]=\lambda>1$ it is well known that Q is the unique root of the equation $Q=f(Q)$ for $0 \leq Q<1$.
Note that $f(x)=(1-p+p x)^{m}=\left(1-\frac{\lambda(1-x)}{m}\right)^{m}$ and is monotone increasing in m since for $C=\lambda(1-x)$ by AM-GM
$1 \cdot\left(1-\frac{C}{m}\right) \ldots\left(1-\frac{C}{m}\right) \leq\left(\frac{1+m\left(1-\frac{C}{m}\right)}{m+1}\right)^{m+1}=\left(1-\frac{C}{m+1}\right)^{m+1}$
Also, $f(x) \leq e^{-\lambda(1-x)}$ and thus $Q<Q_{0}<1$ for all m where Q_{0} is the unique solution on $(0,1)$ to $Q_{0}=e^{-\lambda\left(1-Q_{0}\right)}$. Equivalently, $Q_{0}=\frac{x}{\lambda}$ where x is unique value in $(0,1)$ for which $x e^{-x}=\lambda e^{-\lambda}$.

(Sketchy) Proof of Claim 1

We want $\operatorname{Pr}\left[T_{1}+\ldots+T_{\epsilon n}>\frac{\delta}{2} n\right]$ exponentially small

(Sketchy) Proof of Claim 1

We want $\operatorname{Pr}\left[T_{1}+\ldots+T_{\epsilon n}>\frac{\delta}{2} n\right]$ exponentially small
$\operatorname{Pr}\left[S_{\epsilon n}>\frac{\delta}{2} n\right]=\operatorname{Pr}\left[\exp \left(t S_{\epsilon n}\right)>\exp (t \delta n / 2)\right] \leq \frac{\mathbb{E}\left[\exp \left(t S_{\epsilon n}\right)\right]}{\exp (t \delta n / 2)}$ (Markov)

(Sketchy) Proof of Claim 1

We want $\operatorname{Pr}\left[T_{1}+\ldots+T_{\epsilon n}>\frac{\delta}{2} n\right]$ exponentially small
$\operatorname{Pr}\left[S_{\epsilon n}>\frac{\delta}{2} n\right]=\operatorname{Pr}\left[\exp \left(t S_{\epsilon n}\right)>\exp (t \delta n / 2)\right] \leq \frac{\mathbb{E}\left[\exp \left(t S_{\epsilon}\right)\right]}{\exp (t \delta n / 2)}$ (Markov)

By independence of $T_{i}, \mathbb{E}\left[\exp \left(t S_{\epsilon n}\right)\right]=\prod_{i=1}^{\epsilon n} \mathbb{E} \exp (t T) \leq K^{\epsilon n}$

(Sketchy) Proof of Claim 1

We want $\operatorname{Pr}\left[T_{1}+\ldots+T_{\epsilon n}>\frac{\delta}{2} n\right]$ exponentially small
$\operatorname{Pr}\left[S_{\epsilon n}>\frac{\delta}{2} n\right]=\operatorname{Pr}\left[\exp \left(t S_{\epsilon n}\right)>\exp (t \delta n / 2)\right] \leq \frac{\mathbb{E}\left[\exp \left(t S_{\epsilon n}\right)\right]}{\exp (t \delta n / 2)}$ (Markov)

By independence of $T_{i}, \mathbb{E}\left[\exp \left(t S_{\epsilon n}\right)\right]=\prod_{i=1}^{\epsilon n} \mathbb{E} \exp (t T) \leq K^{\epsilon n}$
Pick ϵ small (in terms of α, δ) and pick $t=t_{0}$ to get exponentially small probability

(Sketchy) Proof of Claim 1

We want $\operatorname{Pr}\left[T_{1}+\ldots+T_{\epsilon n}>\frac{\delta}{2} n\right]$ exponentially small
$\operatorname{Pr}\left[S_{\epsilon n}>\frac{\delta}{2} n\right]=\operatorname{Pr}\left[\exp \left(t S_{\epsilon n}\right)>\exp (t \delta n / 2)\right] \leq \frac{\mathbb{E}\left[\exp \left(t S_{\epsilon}\right)\right]}{\exp (t \delta n / 2)}$ (Markov)

By independence of $T_{i}, \mathbb{E}\left[\exp \left(t S_{\epsilon n}\right)\right]=\prod_{i=1}^{\epsilon n} \mathbb{E} \exp (t T) \leq K^{\epsilon n}$
Pick ϵ small (in terms of α, δ) and pick $t=t_{0}$ to get exponentially small probability
Lastly show $\mathbb{E}\left[e^{t_{0} T}\right] \leq K$ for $t_{0}=t_{0}(\lambda)>0$ and $K=K(\lambda)>0$

(Sketchy) Proof of Claim 1 Cont'd

Let \bar{T} be the total population and $\bar{t}_{l}=\operatorname{Pr}[\bar{T}=l]$, then we have $\bar{t}_{0}=0$ and $\bar{t}_{\infty}=1-Q$, and for $I \geq 1$

$$
\bar{t}_{l}=\sum_{k=0} \lambda_{k} \sum_{l_{1}+\ldots+l_{k}=l-1: i_{i} \geq 1} \bar{t}_{l_{1}} \cdots \bar{t}_{l_{k}}
$$

(Sketchy) Proof of Claim 1 Cont'd

Let \bar{T} be the total population and $\bar{t}_{l}=\operatorname{Pr}[\bar{T}=l]$, then we have $\bar{t}_{0}=0$ and $\bar{t}_{\infty}=1-Q$, and for $I \geq 1$

$$
\bar{t}_{l}=\sum_{k=0} \lambda_{k} \sum_{l_{1}+\ldots+l_{k}=l-1: l_{i} \geq 1} \bar{t}_{l_{1}} \cdots \bar{t}_{l_{k}}
$$

Then $\bar{g}(x)=\sum_{l=1} \bar{t}_{1} x^{\prime}$ satisfies $\bar{g}(x)=x f(\bar{g}(x))$ so it is defined uniquely for $x<1$ (By LIFT) and so $\bar{g}(x)<Q$

(Sketchy) Proof of Claim 1 Cont'd

Let \bar{T} be the total population and $\bar{t}_{l}=\operatorname{Pr}[\bar{T}=l]$, then we have $\bar{t}_{0}=0$ and $\bar{t}_{\infty}=1-Q$, and for $I \geq 1$

$$
\bar{t}_{l}=\sum_{k=0} \lambda_{k} \sum_{l_{1}+\ldots+l_{k}=l-1: l_{i} \geq 1} \bar{t}_{l_{1}} \cdots \bar{t}_{l_{k}}
$$

Then $\bar{g}(x)=\sum_{l=1} \bar{t}_{l} x^{\prime}$ satisfies $\bar{g}(x)=x f(\bar{g}(x))$ so it is defined uniquely for $x<1$ (By LIFT) and so $\bar{g}(x)<Q$
By a continuity argument $\bar{g}(x)$ can be defined up to $y_{0}=\frac{x_{0}}{f\left(x_{0}\right)}$ where $x_{0}=\frac{1-p}{(m-1) p}$ is the maximum of $\frac{x}{f(x)}$ under the assumption $\bar{g}<x_{0}$

(Sketchy) Proof of Claim 1 Cont'd

T is total population conditioned of the process going extinct. Thus

$$
t_{l}=\operatorname{Pr}[T=l]=\operatorname{Pr}[\bar{T}=\| \mid \bar{T}<\infty]=\frac{\bar{t}_{l}}{Q}
$$

$\mathbb{E} T=g^{\prime}(1)=\frac{1}{1-f^{\prime}(Q)} \sim \frac{1}{1-\lambda Q}$ where $g(x)=\sum_{l=0} t_{l} x^{\prime}=\bar{g}(x) / Q$

(Sketchy) Proof of Claim 1 Cont'd

T is total population conditioned on the process going extinct.
Thus

$$
t_{l}=\operatorname{Pr}[T=l]=\operatorname{Pr}[\bar{T}=\| \mid \bar{T}<\infty]=\frac{\bar{t}_{l}}{Q}
$$

$\mathbb{E} T=g^{\prime}(1)=\frac{1}{1-f^{\prime}(Q)} \sim \frac{1}{1-\lambda Q}$ where $g(x)=\sum_{l=0} t_{l} x^{\prime}=\bar{g}(x) / Q$

(Sketchy) Proof of Claim 1 Cont'd

T is total population conditioned on the process going extinct.
Thus

$$
t_{l}=\operatorname{Pr}[T=l]=\operatorname{Pr}[\bar{T}=l \mid \bar{T}<\infty]=\frac{\bar{t}_{l}}{Q}
$$

$\mathbb{E} T=g^{\prime}(1)=\frac{1}{1-f^{\prime}(Q)} \sim \frac{1}{1-\lambda Q}$ where $g(x)=\sum_{l=0} t_{l} x^{\prime}=\bar{g}(x) / Q$
Now $\mathbb{E} e^{t_{0} T}=g\left(e^{t_{0}}\right) \leq g\left(y_{0}\right)=\frac{x_{0}}{Q}<\frac{1}{Q}$.

(Sketchy) Proof of Claim 1 Cont'd

T is total population conditioned on the process going extinct.
Thus

$$
t_{l}=\operatorname{Pr}[T=l]=\operatorname{Pr}[\bar{T}=\| \mid \bar{T}<\infty]=\frac{\bar{t}_{l}}{Q}
$$

$\mathbb{E} T=g^{\prime}(1)=\frac{1}{1-f^{\prime}(Q)} \sim \frac{1}{1-\lambda Q}$ where $g(x)=\sum_{l=0} t_{l} x^{\prime}=\bar{g}(x) / Q$ Now $\mathbb{E} e^{t_{0} T}=g\left(e^{t_{0}}\right) \leq g\left(y_{0}\right)=\frac{x_{0}}{Q}<\frac{1}{Q}$.

We are done as Q is an increasing function in m so $\frac{1}{Q}$ is uniformly bounded in m as needed

Conclusion

The proof of claim 2 can be done by a similar approach to the proof of claim 1. That is, we define an appropriate RV, bound the MGF and use this to derive the concentration bound.

Conclusion

Thank you!

