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Random Directed Graphs

I Dn,p all directed edges chosen independently with probability p
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Random Directed Graphs

I Dn,p all directed edges chosen independently with probability p

I The expected number of edges in Dn.p is n(n − 1)p

I D ′n,N uniform random digraph with n vertices and N edges
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Longest Directed Paths

I Since
(n
k

)
k!
(
α
n

)k−1 ∼ nαk−1e−k
2/2n

I random digraph with (1− ε)n edges has longest directed path
of length O(log n) a.a.s

I random digraph with n edges has longest directed path of
length O(

√
n log n) a.a.s

I Note: We can just work with Dn,p instead of D ′n,N by coupling
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Main Result

Main Theorem (D ′n,N)
D ′n,αn contains a path of length cn a.a.s, where α > 1 and
c = c(α) is constant.
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Main Result

Main Theorem (D ′n,N)
D ′n,αn contains a directed path of length cn a.a.s, where α > 1 and
c = c(α) is constant.

Main Theorem (Dn,p)
For α > 1 there are positive numbers c ,K and θ < 1 such that

Pr[Dn,α
n
contains a directed path of length cn] > 1− Kθn.

Here and onwards we let p = α
n

10 / 62



Proof Overview

1. We define a graph process that generates Dn,p and the desired
long directed path
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Proof Overview

1. We define a graph process that generates Dn,p and the desired
long directed path

2. The process constructs the graph in a Depth First Search like
manner

3. Use a branching process to analyze it (can have infinitely many
points)

4. Show that cn generations occur in the branching process (i.e.
a cn dipath in the first process) well before we have used up all
the points in the first process
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Directed Graph Process: Attempt 1

Fix an ordering v1, ..., vn of the vertices
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1. Set v1 as root vertex, then select the children of v1

2. The probability that the children form a given set of k vertices
is pk(1− p)n−1−k

3. Then select the child of v1 with smallest index and determine
its children from the unused vertices
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Directed Graph Process: Attempt 1

Fix an ordering v1, ..., vn of the vertices
1. Set v1 as root vertex, then select the children of v1

2. The probability that the children form a given set of k vertices
is pk(1− p)n−1−k

3. Then select the child of v1 with smallest index and determine
its children from the unused vertices

4. ...
Issue: The distributions keep changing. Ex. the probability that v1

has k children is
(n−1

k

)
pk(1− p)n−1−k while the probability that its

first child has l is
(n−1−k

l

)
pl(1− p)n−1−k−l and so on...
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Directed Graph Process

Fix an ordering v1, ..., vn of the vertices, let m = (1− δ)n for some
δ = δ(α) > 0 chosen later
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1. Set v1 as root vertex and initialize m element set

M = {v2, ..., vm+1}
2. Determine the random number Ch of children of v1 in M

according to

λk = Pr[Ch = k] =

(
m

k

)
pk(1− p)m−k

3. Select k points at random from M for the children of v1 and
then replace them in M with the first k unused vertices

4. Recursively repeat on the first child until branch dies, then
repeat on the sibling of the node that went extinct (Essentially
a depth first search!)
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Directed Graph Process

Fix an ordering v1, ..., vn of the vertices, let m = (1− δ)n for some
δ = δ(α) > 0 chosen later
1. Set v1 as root vertex and initialize m element set

M = {v2, ..., vm+1}
2. Determine the random number Ch of children of v1 in M

according to

λk = Pr[Ch = k] =

(
m

k

)
pk(1− p)m−k

3. Select k points at random from M for the children of v1 and
then replace them in M with the first k unused vertices

4. Recursively repeat on the first child until branch dies, then
repeat on the sibling of the node that went extinct (Essentially
a depth first search!)

5. If tree dies out, pick unused vertex with smallest index and
restart the process until no vertices remain unused
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Directed Graph Process Cont’d

I The previous procedure stops when we have used up all δn
surplus points (recall m = (1− δ)n)
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Directed Graph Process Cont’d

I The previous procedure stops when we have used up all δn
surplus points (recall m = (1− δ)n)

I Do we use up all δn points before cn generations?
I The result of the previous process is a collection of disjoint

trees (We have generated a subgraph of Dn,p so far)
I To guarantee a Dn,p we appropriately randomize the remaining

directed edges (i.e. edges between children, from one tree to
another, from child to ancestor, etc.)

Note: BFS can only give us at most a log n path but DFS can
potentially give us much longer paths
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Galton-Watson Branching Process

I Let λ = mp = (1− δ)α. We will choose δ small so that λ > 1
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I Recall: at time t = 0 a single particle is born and gives birth to
Ch many children and then dies. At each t ≥ 1 each existing
particle independently gives birth to Ch children and dies.
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Galton-Watson Branching Process

I Let λ = mp = (1− δ)α. We will choose δ small so that λ > 1
I Consider branching process with branching distribution

λk = Pr[Ch = k] =

(
m

k

)
pk(1−p)m−k ∼ (mp)k

k!
e−mp =

λk

k!
e−λ

I Recall: at time t = 0 a single particle is born and gives birth to
Ch many children and then dies. At each t ≥ 1 each existing
particle independently gives birth to Ch children and dies.

I At each level assign a random order to the branches so the
"leftmost infinite path" (LIP) is well defined

I Recall: Since λ > 1 there exists Q = Q(λ,m) such that the
probability of extinction is Q < 1
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Results on Branching Processes

Let T denote the total population until extinction conditioned on
process dying. Let T1,T2, ... be a sequence of independent RVs
distributed according to T and set Sk = T1 + ..+ Tk
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process dying. Let T1,T2, ... be a sequence of independent RVs
distributed according to T and set Sk = T1 + ..+ Tk

Claim 1
Pr[Sεn >

δ
2n] is exponentially small, where ε = ε(α, δ)

Lk = # of points to the left of LIP (inclusive) at level k .

Claim 2
There exists c = c(α) > 0 such that Pr[Lcn > δ

2n] is exponentially
small.
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Results on Branching Processes

Let T denote the total population until extinction conditioned on
process dying. Let T1,T2, ... be a sequence of independent RVs
distributed according to T and set Sk = T1 + ..+ Tk

Claim 1
Pr[Sεn >

δ
2n] is exponentially small, where ε = ε(α, δ)

Lk = # of points to the left of LIP (inclusive) at level k .

Claim 2
There exists c = c(α) > 0 such that Pr[Lcn > δ

2n] is exponentially
small.

Claim 3
For all m, extinction probability Q = Q(λ,m) < Q0 = Q0(λ) < 1.
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Proof of Main Result

I Claim 3 and independence =⇒ first εn processes go extinct
with probability at most Qεn

0
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Proof of Main Result

I Claim 3 and independence =⇒ first εn processes go extinct
with probability at most Qεn

0

I Claim 1 and 2 =⇒ Pr[Sεn >
δ
2n] and Pr[Lcn >

δ
2n] are also

exponentially small
I By union bound none of these events occur =⇒ there is an

index j ≤ εn such that T1, ...,Tj−1 are finite and Tj in infinite
I At most δ

2n vertices used in our corresponding graph process
so far

I At most δ
2n vertices used by taking the corresponding points

to the left of LIP (inclusive) at level cn. This also gives us the
cn directed path.

I We had a surplus of δn vertices in the original graph process
so we are done!

45 / 62



Proof of Claim 3

Let f (x) =
∑

k≥0 λkx
k . Since E[Ch] = λ > 1 it is well known that

Q is the unique root of the equation Q = f (Q) for 0 ≤ Q < 1.
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Proof of Claim 3

Let f (x) =
∑

k≥0 λkx
k . Since E[Ch] = λ > 1 it is well known that

Q is the unique root of the equation Q = f (Q) for 0 ≤ Q < 1.

Note that f (x) = (1− p + px)m = (1− λ(1−x)
m )m and is monotone

increasing in m since for C = λ(1− x) by AM-GM

1·
(
1− C

m

)
...

(
1− C

m

)
≤

(
1+m(1− C

m )

m + 1

)m+1

=

(
1− C

m + 1

)m+1

.
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Let f (x) =
∑

k≥0 λkx
k . Since E[Ch] = λ > 1 it is well known that

Q is the unique root of the equation Q = f (Q) for 0 ≤ Q < 1.

Note that f (x) = (1− p + px)m = (1− λ(1−x)
m )m and is monotone

increasing in m since for C = λ(1− x) by AM-GM

1·
(
1− C

m

)
...

(
1− C

m

)
≤

(
1+m(1− C

m )

m + 1

)m+1

=

(
1− C

m + 1

)m+1

.

Also, f (x) ≤ e−λ(1−x) and thus Q < Q0 < 1 for all m where Q0 is
the unique solution on (0, 1) to Q0 = e−λ(1−Q0). Equivalently,
Q0 = x

λ where x is unique value in (0, 1) for which xe−x = λe−λ.
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(Sketchy) Proof of Claim 1

We want Pr[T1 + ...+ Tεn >
δ
2n] exponentially small
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(Sketchy) Proof of Claim 1

We want Pr[T1 + ...+ Tεn >
δ
2n] exponentially small

Pr[Sεn >
δ
2n] = Pr[exp(tSεn) > exp(tδn/2)] ≤ E[exp(tSεn)]

exp(tδn/2) (Markov)

By independence of Ti , E[exp(tSεn)] =
∏εn

i=1 E exp(tT ) ≤ K εn

Pick ε small (in terms of α, δ) and pick t = t0 to get exponentially
small probability

Lastly show E[et0T ] ≤ K for t0 = t0(λ) > 0 and K = K (λ) > 0
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(Sketchy) Proof of Claim 1 Cont’d

Let T be the total population and t l = Pr[T = l ], then we have
t0 = 0 and t∞ = 1− Q, and for l ≥ 1

t l =
∑
k=0

λk
∑

l1+...+lk=l−1:li≥1

t l1 · · · t lk
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(Sketchy) Proof of Claim 1 Cont’d

Let T be the total population and t l = Pr[T = l ], then we have
t0 = 0 and t∞ = 1− Q, and for l ≥ 1

t l =
∑
k=0

λk
∑

l1+...+lk=l−1:li≥1

t l1 · · · t lk

Then g(x) =
∑

l=1 t lx
l satisfies g(x) = xf (g(x)) so it is defined

uniquely for x < 1 (By LIFT) and so g(x) < Q

By a continuity argument g(x) can be defined up to y0 = x0
f (x0)

where x0 = 1−p
(m−1)p is the maximum of x

f (x) under the assumption
g < x0
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(Sketchy) Proof of Claim 1 Cont’d

T is total population conditioned of the process going extinct. Thus

tl = Pr[T = l ] = Pr[T = l |T <∞] =
t l
Q

ET = g ′(1) = 1
1−f ′(Q) ∼

1
1−λQ where g(x) =

∑
l=0 tlx

l = g(x)/Q

57 / 62



(Sketchy) Proof of Claim 1 Cont’d

T is total population conditioned on the process going extinct.
Thus

tl = Pr[T = l ] = Pr[T = l |T <∞] =
t l
Q

ET = g ′(1) = 1
1−f ′(Q) ∼

1
1−λQ where g(x) =

∑
l=0 tlx

l = g(x)/Q

58 / 62



(Sketchy) Proof of Claim 1 Cont’d

T is total population conditioned on the process going extinct.
Thus

tl = Pr[T = l ] = Pr[T = l |T <∞] =
t l
Q

ET = g ′(1) = 1
1−f ′(Q) ∼

1
1−λQ where g(x) =

∑
l=0 tlx

l = g(x)/Q

Now Eet0T = g(et0) ≤ g(y0) =
x0
Q < 1

Q .

59 / 62



(Sketchy) Proof of Claim 1 Cont’d

T is total population conditioned on the process going extinct.
Thus

tl = Pr[T = l ] = Pr[T = l |T <∞] =
t l
Q

ET = g ′(1) = 1
1−f ′(Q) ∼

1
1−λQ where g(x) =

∑
l=0 tlx

l = g(x)/Q

Now Eet0T = g(et0) ≤ g(y0) =
x0
Q < 1

Q .

We are done as Q is an increasing function in m so 1
Q is uniformly

bounded in m as needed
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Conclusion

The proof of claim 2 can be done by a similar approach to the
proof of claim 1. That is, we define an appropriate RV, bound the
MGF and use this to derive the concentration bound.

61 / 62



Conclusion

Thank you!
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