The Longest Path in a Random Graph: Directed

Case

Miklés Ajtai, Janos Komlés, Endre Szemerédi

Presented by Zouhaier Ferchiou, Harry Sivasubramaniam

September 21, 2020

1/62

Random Directed Graphs

» D, all directed edges chosen independently with probability p

2/62

Random Directed Graphs

» D, all directed edges chosen independently with probability p

» The expected number of edges in D, is n(n—1)p

3/62

Random Directed Graphs

» D, all directed edges chosen independently with probability p

» The expected number of edges in D, is n(n—1)p

» D] , uniform random digraph with n vertices and N edges

4/62

Longest Directed Paths

> Since (y)k! (%)k_l ~ nak—le=k*/2n

5/62

Longest Directed Paths

» Since (Z)k! (%)k_l ~ nak—le=k?/2n

» random digraph with (1 — €)n edges has longest directed path
of length O(log n) a.a.s

6/62

Longest Directed Paths

» Since (Z)k! (%)k_l ~ nak—le=k?/2n

» random digraph with (1 — €)n edges has longest directed path
of length O(log n) a.a.s

» random digraph with n edges has longest directed path of

length O(y/nlogn) a.a.s

7/62

Longest Directed Paths

» Since (Z)k! (%)k_l ~ nak—le=k?/2n

» random digraph with (1 — €)n edges has longest directed path
of length O(log n) a.a.s

» random digraph with n edges has longest directed path of

length O(y/nlogn) a.a.s

» Note: We can just work with D, , instead of D;,N by coupling

8/62

Main Result

Main Theorem (D,)

D, on contains a path of length cn a.a.s, where o > 1 and

¢ = c(«) is constant.

9/62

Main Result

Main Theorem (D,)

D! contains a directed path of length cn a.a.s, where o > 1 and

n,an
¢ = ¢(«) is constant.

Main Theorem (D, ,)
For oo > 1 there are positive numbers ¢, K and 6 < 1 such that

Pr[D,,’% contains a directed path of length cn] > 1 — K6".

Here and onwards we let p =

10/ 62

Proof Overview

1. We define a graph process that generates D, , and the desired
long directed path

11/62

Proof Overview

1. We define a graph process that generates D, , and the desired
long directed path

2. The process constructs the graph in a Depth First Search like
manner

12/62

Proof Overview

1. We define a graph process that generates D, , and the desired
long directed path

2. The process constructs the graph in a Depth First Search like
manner

3. Use a branching process to analyze it (can have infinitely many
points)

13/62

Proof Overview

1. We define a graph process that generates D, , and the desired
long directed path

2. The process constructs the graph in a Depth First Search like
manner

3. Use a branching process to analyze it (can have infinitely many
points)

4. Show that cn generations occur in the branching process (i.e.
a cn dipath in the first process) well before we have used up all
the points in the first process

14 /62

Directed Graph Process: Attempt 1

Fix an ordering v1, ..., v, of the vertices

15/62

Directed Graph Process: Attempt 1

Fix an ordering v1, ..., v, of the vertices

1. Set vy as root vertex, then select the children of v

16/ 62

Directed Graph Process: Attempt 1

Fix an ordering v1, ..., v, of the vertices
1. Set vy as root vertex, then select the children of v

2. The probability that the children form a given set of k vertices
is pk(]. _ p)n—l—k

17/62

Directed Graph Process: Attempt 1

Fix an ordering vi, ..., v, of the vertices
1. Set vy as root vertex, then select the children of v;
2. The probability that the children form a given set of k vertices
is pk(l __p)nflfk
3. Then select the child of v; with smallest index and determine
its children from the unused vertices

18/ 62

Directed Graph Process: Attempt 1

Fix an ordering vi, ..., v, of the vertices
1. Set vy as root vertex, then select the children of v;
2. The probability that the children form a given set of k vertices
is pk(]. _ p)n—l—k
3. Then select the child of v; with smallest index and determine
its children from the unused vertices

4. ..
Issue: The distributions keep changing. Ex. the probability that v;
has k children is (";l)pk(l — p)"~1=k while the probability that its

first child has / is ("7%7k)p’(1 — p)"~1=k="and so on...

19/62

Directed Graph Process

Fix an ordering vi, ..., v, of the vertices, let m = (1 — §)n for some
d = d(a) > 0 chosen later

20/ 62

Directed Graph Process

Fix an ordering vi, ..., v, of the vertices, let m = (1 — §)n for some
d = d(a) > 0 chosen later

1. Set v; as root vertex and initialize m element set
M = {VQ, cevy Vm+1}

21/62

Directed Graph Process

Fix an ordering vi, ..., v, of the vertices, let m = (1 — §)n for some
d = () > 0 chosen later

1. Set v; as root vertex and initialize m element set
M = {VQ, ey Vm+1}

2. Determine the random number Ch of children of v; in M
according to

A = Pr[Ch = k] = (':) p(1 — p)mk

22/62

Directed Graph Process

Fix an ordering vi, ..., v, of the vertices, let m = (1 — §)n for some
d = () > 0 chosen later

1. Set v; as root vertex and initialize m element set
M = {VQ, ceny Vm+1}

2. Determine the random number Ch of children of v; in M
according to

Ak = Pr[Ch = k] = (':) p(1 — p)mk

3. Select k points at random from M for the children of v; and
then replace them in M with the first k unused vertices

23/62

Directed Graph Process

Fix an ordering vi, ..., v, of the vertices, let m = (1 — §)n for some
d = d(a) > 0 chosen later

1. Set v; as root vertex and initialize m element set
M= {va,...;Vms1}

2. Determine the random number Ch of children of v; in M
according to

A = Pr[Ch = k] = (T) pk(1 — p)m=k

3. Select k points at random from M for the children of v; and
then replace them in M with the first k unused vertices

4. Recursively repeat on the first child until branch dies, then
repeat on the sibling of the node that went extinct (Essentially
a depth first search!)

24 /62

Directed Graph Process

Fix an ordering v1, ..., v, of the vertices, let m = (1 — d)n for some
d = d(a) > 0 chosen later
1. Set v; as root vertex and initialize m element set
M = {VQ, ey Vm—i—l}
2. Determine the random number Ch of children of v; in M
according to

Ak = Pr[Ch = k] = (':) p(1 — p)mk

3. Select k points at random from M for the children of v; and
then replace them in M with the first k unused vertices

4. Recursively repeat on the first child until branch dies, then
repeat on the sibling of the node that went extinct (Essentially
a depth first search!)

5. If tree dies out, pick unused vertex with smallest index and
restart the process until no vertices remain unused

25 /62

Directed Graph Process Cont'd

» The previous procedure stops when we have used up all on
surplus points (recall m = (1 — d)n)

26 /62

Directed Graph Process Cont'd

» The previous procedure stops when we have used up all dn
surplus points (recall m = (1 — d)n)

» Do we use up all dn points before cn generations?

27 /62

Directed Graph Process Cont'd

» The previous procedure stops when we have used up all 6n
surplus points (recall m = (1 — d)n)
» Do we use up all dn points before cn generations?

» The result of the previous process is a collection of disjoint
trees (We have generated a subgraph of D, , so far)

28 /62

Directed Graph Process Cont'd

» The previous procedure stops when we have used up all 6n
surplus points (recall m = (1 — d)n)
» Do we use up all dn points before cn generations?

» The result of the previous process is a collection of disjoint
trees (We have generated a subgraph of D, , so far)

» To guarantee a D, , we appropriately randomize the remaining
directed edges (i.e. edges between children, from one tree to
another, from child to ancestor, etc.)

20 /62

Directed Graph Process Cont'd

» The previous procedure stops when we have used up all §n
surplus points (recall m = (1 — d)n)
» Do we use up all dn points before cn generations?

» The result of the previous process is a collection of disjoint
trees (We have generated a subgraph of D, , so far)

» To guarantee a D, , we appropriately randomize the remaining
directed edges (i.e. edges between children, from one tree to
another, from child to ancestor, etc.)

Note: BFS can only give us at most a log n path but DFS can
potentially give us much longer paths

30/62

Galton-Watson Branching Process

» Let A= mp = (1—9)a. We will choose ¢ small so that A > 1

31/62

Galton-Watson Branching Process

» Let A =mp = (1—-9)a. We will choose § small so that A > 1
» Consider branching process with branching distribution
)\k

k
Ak = Pr[Ch = k] = <':> pk(1—p)™k ~ (”;5) e P — Feﬂ

32/62

Galton-Watson Branching Process

» Let A= mp = (1—0)a. We will choose ¢ small so that A > 1

» Consider branching process with branching distribution

m B m k .)\k 3
we=pich =K = (7)pra-pymt o~ PR e 2o

» Recall: at time t = 0 a single particle is born and gives birth to
Ch many children and then dies. At each t > 1 each existing
particle independently gives birth to Ch children and dies.

33/62

Galton-Watson Branching Process

» Let A= mp = (1—9)a. We will choose § small so that A > 1

» Consider branching process with branching distribution

)\k = Pr[Ch = k] = <k>pk(1—p)m_k ~ (kpl)e_mp = Fe_A

» Recall: at time t = 0 a single particle is born and gives birth to
Ch many children and then dies. At each t > 1 each existing
particle independently gives birth to Ch children and dies.

» At each level assign a random order to the branches so the
"leftmost infinite path" (LIP) is well defined

34 /62

Galton-Watson Branching Process

» Let A= mp = (1—9)a. We will choose ¢ small so that A >1

» Consider branching process with branching distribution

k)\k
we=pich =K = (7)pra-pymt o~ PR S

» Recall: at time t = 0 a single particle is born and gives birth to
Ch many children and then dies. At each t > 1 each existing
particle independently gives birth to Ch children and dies.

> At each level assign a random order to the branches so the
"leftmost infinite path" (LIP) is well defined

» Recall: Since A > 1 there exists Q@ = Q(A, m) such that the
probability of extinction is @ < 1

35/62

Results on Branching Processes

Let T denote the total population until extinction conditioned on
process dying. Let Ty, T»,... be a sequence of independent RVs
distributed according to T and set S = T1 + .. + Ty

36 /62

Results on Branching Processes

Let T denote the total population until extinction conditioned on
process dying. Let Ty, T»,... be a sequence of independent RVs
distributed according to T and set S = T1 +.. + Ty

Claim 1
Pr[Sen > $n] is exponentially small, where € = ¢(a, d)

37/62

Results on Branching Processes

Let T denote the total population until extinction conditioned on
process dying. Let Ty, T»,... be a sequence of independent RVs
distributed according to T and set S, = T7 + .. + Ty

Claim 1
Pr[Sen > Sn] is exponentially small, where € = ¢(a, d)
Lk = # of points to the left of LIP (inclusive) at level k.

Claim 2
There exists ¢ = c(a) > 0 such that Pr[Lc, > $n] is exponentially
small.

38/62

Results on Branching Processes

Let T denote the total population until extinction conditioned on
process dying. Let T1, T»,... be a sequence of independent RVs
distributed according to T and set Sy = T1 + .. + Ty

Claim 1
Pr[Sen > gn] is exponentially small, where € = ¢(a, §)
Ly = # of points to the left of LIP (inclusive) at level k.

Claim 2
There exists ¢ = c(a) > 0 such that Pr[Lc, > %n] is exponentially
small.

Claim 3
For all m, extinction probability @ = Q(\, m) < Qo = Quo(\) < 1.

39/62

Proof of Main Result

» Claim 3 and independence = first en processes go extinct
with probability at most Qg"

40/62

Proof of Main Result

» Claim 3 and independence — first en processes go extinct
with probability at most Qg"

> Claim 1 and 2 = Pr[S., > $n] and Pr[L, > $n] are also
exponentially small

41/62

Proof of Main Result

» Claim 3 and independence — first en processes go extinct
with probability at most Qg"

> Claim 1 and 2 = Pr[S., > $n] and Pr[L, > $n] are also
exponentially small

» By union bound none of these events occur = there is an
index j < en such that Ty, ..., Tj_; are finite and T; in infinite

42 /62

Proof of Main Result

» Claim 3 and independence — first en processes go extinct
with probability at most Qj"

» Claim1and 2 = Pr[S, > gn] and Pr[Lc, > gn] are also
exponentially small

» By union bound none of these events occur = there is an
index j < en such that Ty, ..., Tj_; are finite and T; in infinite

> At most %n vertices used in our corresponding graph process
so far

43/62

Proof of Main Result

» Claim 3 and independence — first en processes go extinct
with probability at most Qg"

> Claim 1 and 2 = Pr[S., > $n] and Pr[L, > $n] are also
exponentially small

» By union bound none of these events occur = there is an
index j < en such that Ty, ..., Tj_; are finite and T; in infinite

> At most %n vertices used in our corresponding graph process
so far

> At most %n vertices used by taking the corresponding points
to the left of LIP (inclusive) at level cn. This also gives us the
cn directed path.

44 /62

Proof of Main Result

>

| 2

Claim 3 and independence — first en processes go extinct
with probability at most Q"

Claim 1 and 2 = Pr[S., > gn] and Pr[Lc, > gn] are also
exponentially small

By union bound none of these events occur = there is an
index j < en such that Ty, ..., Tj_; are finite and T; in infinite
At most %n vertices used in our corresponding graph process
so far

At most %n vertices used by taking the corresponding points
to the left of LIP (inclusive) at level cn. This also gives us the
cn directed path.

We had a surplus of dn vertices in the original graph process
so we are done!

45 /62

Proof of Claim 3

Let £(x) = > k>0 Aexk. Since E[Ch] = A > 1 it is well known that
Q is the unique root of the equation Q = f(Q) for 0 < Q < 1.

46 /62

Proof of Claim 3

Let f(x) = > ;>0 AkxX. Since E[Ch] = A > 1 it is well known that
Q is the unique root of the equation @ = f(Q) for 0 < Q < 1.

Note that f(x) =(1—p+px)" = (1 — w)m and is monotone
increasing in m since for C = A(1 — x) by AM-GM

L1 €)1 6) < (()) ()™

47/62

Proof of Claim 3

Let f(x) = > ;=0 Akx*. Since E[Ch] = X > 1 it is well known that
Q is the unique root of the equation @ = f(Q) for 0 < @ < 1.

Note that f(x) = (1 —p+px)" = (1 — @)’" and is monotone
increasing in m since for C = A(1 — x) by AM-GM

L(1-€). (1-€) < (1+;;<;fn>)m“ (-

Also, f(x) < e *17%) and thus Q < Qo < 1 for all m where Q is
the unique solution on (0,1) to Qy = e *1=@)_ Equivalently,
Qo = X where x is unique value in (0, 1) for which xe™ = Xe™.

48 /62

(Sketchy) Proof of Claim 1

We want Pr[Ty + ... + Tep > %n] exponentially small

49 /62

(Sketchy) Proof of Claim 1

We want Pr[Ty + ... + Tep > %n] exponentially small

Pr[Sen > Sn] = Prlexp(tSen) > exp(tin/2)] < % (Markov)

50 /62

(Sketchy) Proof of Claim 1

We want Pr[T1 + ... + Tep > %n] exponentially small
Pr[Sen > §n] = Prlexp(tScn) > exp(tdn/2)] < H=ELSAl (Markov)

By independence of T;, E[exp(tSen)] = [[i2; Eexp(tT) < K"

51/62

(Sketchy) Proof of Claim 1

We want Pr[T1 + ... + Tep > gn] exponentially small

Pr[Sen > §n] = Prlexp(tS.n) > exp(tdn/2)] < =LA (Markov)

By independence of T;, E[exp(tSen)] = [[i2; Eexp(tT) < K"

Pick e small (in terms of a, d) and pick t = ty to get exponentially
small probability

52 /62

(Sketchy) Proof of Claim 1

We want Pr[Ty + ... + Tep > %n] exponentially small

Pr[Sen > 3] = Prlexp(tS.n) > exp(tdn/2)] < LBl (Markov)

By independence of T;, E[exp(tSen)] = [[i2; Eexp(tT) < K"

Pick € small (in terms of o, 0) and pick t = ty to get exponentially
small probability

Lastly show E[e®] < K for to = to(\) > 0 and K = K()\) > 0

53 /62

(Sketchy) Proof of Claim 1 Cont'd

Let T be the total population and t; = Pr[T = /], then we have
to=0and t,oc=1—-Q,and for / > 1

f/ZZM Z [

k=0 /1+...+/k:/—1il,'21

54 /62

(Sketchy) Proof of Claim 1 Cont'd

Let T be the total population and t; = Pr[T = /], then we have
to=0and t,c =1— Q, and for [> 1

fIZZ>\k Z fll'”flk

k=0 h+...+l=I1-1:[>1

Then g(x) = >_,_; tix' satisfies g(x) = xf(g(x)) so it is defined
uniquely for x < 1 (By LIFT) and so g(x) < Q

55 /62

(Sketchy) Proof of Claim 1 Cont'd

Let T be the total population and t; = Pr[T = /], then we have
to=0and t.o =1— Q, and for [>'1

f/:ZAk Z [T
k=0

= h+...+l=1-1:[>1

Then g(x) = >_,_; t;x/ satisfies g(x) = xf(g(x)) so it is defined
uniquely for x < 1 (By LIFT) and so g(x) < Q

X0

By a continuity argument g(x) can be defined up to yg = 0oy

where xg = (rrll:{’)p is the maximum of ﬁ under the assumption
g <xo

56 /62

(Sketchy) Proof of Claim 1 Cont'd

T is total population conditioned of the process going extinct. Thus
7
Q

ET =g'(1) = % ~ ﬁ where g(x) =", tx! = g(x)/@

tj=Pr[T=1/=Pr[T=1IT <oo] =

57 /62

(Sketchy) Proof of Claim 1 Cont'd

T is total population conditioned on the process going extinct.
Thus

ti=Pr[T=1=Pr[T=IT <o0] =—

ET =g'(1) = — f/(Q) —/\Q where g(x) =3, tx = g2(x)/@

58 /62

(Sketchy) Proof of Claim 1 Cont'd

T is total population conditioned on the process going extinct.
Thus _
— S t
t,:Pr[T:l]:Pr[T:l\T<oo]:5I

ET =g'(1) = L~ —1_ where g(x)=>_0 tix! = g(x)/Q

59 /62

(Sketchy) Proof of Claim 1 Cont'd

T is total population conditioned on the process going extinct.
Thus B

t

Q

ET =g'(1) = % ~ ﬁ where g(x) = >, tix' = g(x)/Q

t)=Pr[T=1]=Pr[T =T < 0] =

Now Ee®T = g(e®) < g(y) = g < ¢-

We are done as Q is an increasing function in m so é is uniformly

bounded in m as needed

60 /62

Conclusion

The proof of claim 2 can be done by a similar approach to the
proof of claim 1. That is, we define an appropriate RV, bound the
MGF and use this to derive the concentration bound.

61/62

Conclusion

Thank youl

62 /62

