WaterlooClarke: TREC 2015 Total Recall Track

Haotian Zhang, Wu Lin, Yipeng Wang, Charles L. A. Clarke and Mark D. Smucker

> Data System Group University of Waterloo

> > TREC, 2015

Background

Objective

- Implement automatic or semi-automatic methods to identify as many relevant documents as possible from document collections.
- Meanwhile, require as less review effort as possible. Review effort means relevance feedback from assessors.

Recall vs. Review Effort

Adam Roegiest, Charles L. A. Clarke, Gordon V. Cormack Maura R. Grossman. Total Recall Track Overview TREC 2015

Baseline

Methodology

- Cormack, Gordon V., and Maura R. Grossman. "Multi-Faceted Recall of Continuous Active Learning for Technology-Assisted Review.", SIGIR 2015.
 - "Seed set" is constructed from the query terms.
 - 2 Logistic Regression classification.
 - Select the highest-scoring documents for review.
 - Repeat the above process until collecting a sufficient number of relevant documents.
- SAL: Simple active learning
- SPL: Simple passive learning
- Comparison: Auto-TAR > SAL > SPL

Potential Directions

Seed Selection

"Seed Set" can determine the trend of classification. Stronger seed set could accelerate the retrieval process.

Feature Engineering

Unigram TF-IDF based feature cannot represent the exact meaning of some phases. etc, "Deutsche Mark"

Classifier

Logistic Regression seems easy to beat.

Query Expansion

The flow of relevant documents provide informative terms to expand original query.

Seed Selection

Clustering-Based Seed Selection

- lacksquare Select Top K documents with the highest BM25 score.
- Latent semantic indexing and dimension reduction via SVD.
- **③** K-Means clustering on the set of selected documents.

Sampling Strategy

Exploration vs. Exploitation

$$l_t \in \operatorname*{argmax}_{v \in 1, \dots, k} \left\{ \tfrac{r_{\mathsf{v}}}{t_{\mathsf{v}}} + \sqrt{\tfrac{\mu \log(\sum_{c=1}^{|C|} t_{\mathsf{c}})}{t_{\mathsf{v}}}} \right\}$$

WATERLOO

Seed Selection

Graph Strategy

- Ocuments are considered as nodes in the graph.
- We run K-means T times to cluster these documents.
- ① The weight $w_{i,j}$ of a undirected edge between node i and node j is $w_{i,j} = \sum_{t=1}^T \mathbf{I}_t(i,j)$.
- Traverse the priority queue created based on the weights between documents.

Seed Selection

Jumping Strategy

 Greedy search in one cluster and switch to other cluster when not relevant document is found.

Weighted Strategy

 Assign weight for each cluster and decay the weight when encountering not relevant document.

Table: Number of relevant documents found in 50 seeds

Methods	tr0	tr1	tr2	tr3	tr4	tr5	tr6
Jumping	46	1	2	10	47	49	40
Weighted	46	0	2	10	47	49	42
Sampling	45	1	2	14	48	49	46
Graph	47	2	2	15	45	50	45

Feature Engineering

n-gram Model

```
\#Rel: 1\{
Deutsch: Weight_1
Mark: Weight_2
Deutsch\ Mark: Weight_3
\}
```

- The dependency relationship between terms cannot be represented by unigram model.
- TF-IDF value of unigram, 2-gram, 3-gram. And the combination of these features.
- Other features, the entropy weighting LSI:

$$g_i = 1 + \sum_{i} \frac{p_{ij} \log p_{ij}}{\log n}, \text{ where } p_{ij} = \frac{tf_{ij}}{gf_i}$$
 (1)

Classifier Selection

Logistic Regression Model

- The document farthest from the decision boundary is selected for judging.
- LR and other linear model is well enough for sparse high-dimensional feature such as TF-IDF.

Classifier Selection

Classifier Comparison

Classifier	Toolbox	Feature	
Logistic Regression	Sofia-ML	Unigram TF-IDF	
Logistic Regression	Sofia-ML	N-gram TF-IDF	
Logistic Regression	Sofia-ML	4-char TF-IDF	
Linear SVM	LIBSVM	Unigram TF-IDF	
Linear SVM & LR fusion	Sofia-ML	4-gram TF-IDF	
RBF SVM	LIBSVM	Entropy	
RBF SVM	LIBSVM	Unigram TF-IDF	
Decision Tree	Scikit-Learn	Unigram TF-IDF	
Naive Bayes	Scikit-Learn	Unigram TF-IDF	
AdaBoost	Scikit-Learn	Unigram TF-IDF	
Gradient Boosting	XGboost	Unigram TF-IDF	

Table: Classifiers Applied

Classifier Selection

Cross Validation

 Though performing 5-fold cross-validation, Gaussian(RBF) kernel SVM tends to overfit in training set. Grid search for soft margin parameters: C and γ .

Other Linear Model

- Linear SVM and Linear regression performs nearly the same as LR. Linear models work with $d(dimensionality) \gg n(documents)$.
- The RRF fusion of ranking lists generated from 5 different LR classifiers can slightly improve the accuracy of classification.

WATERLOO

Query Expansion

Simple Mixture Model - Obtain Informative Terms

Zhai, Chengxiang, and John Lafferty. "Model-based feedback in the language modeling approach to information retrieval." CIKM, 2001.

SM assumes that terms in relevant documents are generated as below:

- **①** Given two models θ_0 and θ_1 ;
- ② Given a mixing coefficient, $\overrightarrow{\pi} = (1 \pi, \pi)$;
- **3** For the j-th term in the i-th relevant document:
 - Firstly, independently generate a latent model indicator, $z_{ii} \sim \text{Bernoulli}(z|\overrightarrow{\pi});$
 - Then, independently generate a term, $w_{ji} \sim d(w|\theta_{z_{ji}})$;

Query Expansion

Simple Mixture Model

The background model indicates the noise when generating a document:

$$d(w|\theta_1) = 0.5 \times d(w|\theta_{\text{corpus}}) + 0.5 \times d(w|\theta_{\text{non-rel}})$$
 (2)

The probabilistic model $p(F|\theta)$ generates each word in F independently according to θ is:

$$d(F|\theta) = \prod_{i} \prod_{w} d(w|\theta)^{c(w;d_i)}$$
(3)

Use simple mixture model, the log-likelihood of feedback documents is:

$$\log d(F|\theta_0) = \sum_{i} \sum_{w} c(w; d_i) \log((1 - \pi)d(w|\theta_0) + \pi d(w|\theta_1))$$
 (4)

Submission

At-Home

 We ran our own system and accessed the automated assessor via the Internet. Two runs were successfully submitted: UWPAH1(without query expansion) and UWPAH2(with query expansion).

Sandbox

 We also submitted one fully automated solution (without query expansion), which the track coordinators executed as a virtual machine within a restricted environment.

Submission

Seed Selection

Graph Strategy

Feature Engineering

• Unigram & 2-gram TF-IDF value

Classifier

Logistic Regression

Query Expansion

• Top k terms in relevance model for each iteration

Result

Evaluation Methods

- Effort at 75%, 80% recall
- Gain curve
- "Recall@aR+b" values defined as the "Recall" that is achieved when "Effort" is equal to aR+b, where a and b are constant number

Table: Average review effort for each run at 75% recall

Run	Corpus	BMI	UW
UWPAH1	Athome1	3862	3716
UWPAH1	Athome2	2258	2013
UWPAH1	Athome3	777	1070
UWPAH1	Mimic	8948	9196
UWPAH1	Kaine	74761	71816
UWPAH2	Athome1	3862	3682

There is no statistically significant difference between our method and BMI.

Result

Table: Review effort at 75% recall in Athome1 for UWPAH1 and UWPAH2

Topic	UWPAH1	UWPAH2	
athome100	4019	3968	
athome101	4503	4491	
athome102	1402	1417	
athome103	4307	4305	
athome104	272	291	
athome105	2898	2981	
athome106	12861	12892	
athome107	1914	1892	
athome108	2337	2228	
athome109	2642	2358	

There is no statistically significant difference between our method and BMI.

Conclusion

Conclusion

- Logistic Regression is super efficient for high dimensional sparse data.
- Feature engineering matters.
- Baseline is hard to beat.