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Abstract. This paper describes the main functionalities of an ontology-
based data explorer for Key Performance Indicators (KPI), aimed to sup-
port users in the extraction of KPI values from a shared repository. Data
produced by partners of a Virtual Enterprise are semantically annotated
through a domain ontology in which KPIs are described together with
their mathematical formulas. Based on this model and on reasoning ca-
pabilities, the tool provides functionalities for dynamic aggregation of
data and computation of KPI values through the formula. In this way,
besides the usual drill-down, a novel mode of data exploration is enabled,
based on the expansion of a KPI into its components.

1 Introduction

In recent years the capability to innovate and collaborate among different en-
terprises is more and more considered a crucial skill to react more dynamically
to market changes and reduce risks [1]. However, one of the main issues to over-
come, especially in the management of temporary networks of enterprises (i.e.,
Virtual Enterprises, or VE), is the integration of heterogeneous data, and the
need to evaluate common Key Performance Indicators (KPI) that are capable
to measure performances of the whole VE. In such distributed scenarios, besides
heterogeneities due to the use of different terminologies, procedures and pro-
cesses, each enterprise usually adopts a different set of KPIs to measure their
own performances. This introduces a new type of heterogeneity hindering the
possibility to monitor comparative performances for the whole VE.

This work is conceived within the European project BIVEE1, that is targeted
at supporting Virtual Enterprises in the achievement of common innovation
projects. With the aim to address the above-mentioned issues, the development
of the BIVEE platform follows an ontology-based approach for data access, that
is frequently used to tackle the problem of integrating and accessing heteroge-
neous sources, abstracting from how data are maintained. In such a way, a data
layer is responsible of storing actual KPI data produced by enterprises, while a

1 http://bivee.eu
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conceptual model is shared among all the partners and provides a common ter-
minology used to express user requests. Finally, the mapping between the two
layers allows to rewrite ontological queries in a language suitable for the data
layer.

The conceptual model is here represented by KPIOnto, an ontology devoted
to formalise the domain of KPIs and their relations in a logic language. Differing
from most of available proposals in the Literature (e.g., [2–5]), in BIVEE KPIs
are also formally described through the mathematical formulas needed for their
calculation starting from other KPIs. In such a way, different heterogeneities
among enterprises can be solved by semantic enrichment of data, or by reasoning
over the formulas.

On the top of BIVEE platform, in this work we introduce KPI Explorer, a tool
designed to provide users with access to KPI data in an intuitive and informa-
tive fashion. Through the reference to KPIOnto, the tool supports users in the
graphical composition of a query. Unlike traditional reporting softwares or data
exploration tools, the back-end functionalities of KPI Explorer, by exploiting the
ontology, are aimed at (1) query rewriting and its execution on the Data Stor-
age, but also to (2) dynamically, transparently and automatically calculate KPI
values that are not materialized, but that can be inferred from those available,
providing more complete results to users; such advanced functions are enabled
by reasoning capabilities that exploit ontological relations among concepts as
well as manipulation of mathematical KPI formulas. As for the former, for in-
stance, let us suppose that a KPI is measured by an enterprise on a monthly
basis. Given that the concept of “quarter” is described in KPIOnto and every
quarter is linked to its corresponding months, it is possible to evaluate the KPI
by aggregation of these ones. As regards the latter, let us consider two enter-
prises willing to compare performance about a certain KPI that, however, is
provided just by one of the two; given that formulas are explicitly represented, if
the KPI can be obtained for the other enterprise through some formula starting
from the KPIs that are currently provided, it will be possible to dynamically
compute the final value for both of them. Finally, users can refine the results by
applying both classical operators like roll-up/drill-down, and a novel “indicator
drill-down” operator, that allows to expand an indicator into its components,
allowing the user to gain a better understanding of KPI trends.

This work is structured as follows: Section 2 discusses the most relevant con-
tributions in the Literature, while in Section 3 we introduce those modules of
the BIVEE architecture that are central to this work, namely the ontology KPI-
Onto and the Raw Data Handler. Section 4 introduces the Explorer, discussing
both back-end functionalities for query rewriting and reasoning aimed at the
evaluation of KPIs and at the manipulation of their formulas. The front-end
of the tool is also described and some examples are given. Section 5 presents
some experimentations carried on to evaluate the efficacy and efficiency of the
proposed approach. Finally, Section 6 provides some final remarks.



An Ontology-Based Data Exploration Tool for Key Performance Indicators 729

2 Related Work

The sharing of data coming from distributed, autonomous and heterogeneous
sources arises problems of data inconsistencies and asks for methods to inte-
grate them in a unified view. Given that local schemas are independently devel-
oped, they usually have different structure and terminology and several syntactic,
structural, and semantic conflicts can occur during schema integration [6].

Several approaches have been proposed in the Literature for schema matching,
that is the basic problem in database integration. While real data are produced
by the sources, a common approach is to rely on a global schema to obtain
an integrated and virtual view, through global-as-view (GAV) and local-as-view
(LAV) approaches [7]. Recently, due to the explosive growth of distributed appli-
cations, the need of semantic integration is becoming more and more critical. In
fact, semantic heterogeneity may persist even if both syntactic and schemas het-
erogeneities do not occur (e.g., naming the same concept differently). Semantic
data integration relies on conceptual and machine-understandable representation
of data and their relationships to avoid heterogeneities and allow interoperabil-
ity. The main methodologies used in the Literature refer to a single ontology
approach in which all source schemas are mapped to a central ontology, or a
multiple-ontologies approach, with mapping among the local schemas and no
shared global view, closely related to GAV and LAV approaches [8]. Ontologies
are not only useful as a global conceptualization, but also to support the defi-
nition of semantic mappings between the local sources and the global ontology,
and to support the user in the formulation of high-level queries over the global
schema and its rewriting into local queries. Integration is far more complex when
the data models of the sources are multidimensional, as in the case of the present
work and in the data warehouse field. Multidimensional models are specifically
suited to support data analysis rather than perform on-line transactions, and
categorize data as facts with associated quantitative measures, or as a hierarchy
of dimensions that describe the facts.

The multidimensional model takes into account the aggregative aspect, defin-
ing a data cube as a multi-level, multidimensional database with aggregate data
at multiple granularities [9]. The definition of powerful OLAP operators like
drill-down directly comes from this model. Semantic representations of the mul-
tidimensional model have been recently proposed [9–12] mainly with the aim to
reduce the gap between the high-level business view of indicators and the tech-
nical view of data cubes, to simplify and to automatize the main steps in design
and analysis. In particular, support to data cube design is considered in [13],
while improvement of OLAP functionalities are presented in [4].

Although the complex nature of indicators is well-known, the compound na-
ture of indicators is far less explored. Proposals in [2, 13–18] include in the rep-
resentations of indicator properties some notion of formula in order to support
the automatic generation of customized data marts, the calculation of indica-
tors [13, 14, 16], or the interoperability of heterogeneous and autonomous data
warehouses [2]. In the above proposals, formula representation does not rely
on logic-based languages, hence reasoning is limited to formula evaluation by
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ad-hoc modules. No inference mechanism and formula manipulation is enabled.
Formal, logic-based representations of dependencies among indicators are pro-
posed in [17, 18]. These properties are represented by logical predicates (e.g.
isCalculated [18], correlated [17]) and reasoning allows to infer implicit dependen-
cies among indicators useful for organization modeling, design, as well as reuse,
exchange and alignment of business knowledge. An ontological representation of
indicator formulas is proposed in [15] in order to exchange business calculation
definitions and to infer their availability on a given data mart through semantic
reasoning, with strong similarities with our previous work [19].

3 Knowledge-Centric BIVEE Platform

The BIVEE project relies on a knowledge-centric approach in which the semantic
layer, namely the PIKR [20], represents the foundation supporting advanced
functions of the whole environment. It maintains semantic metadata for all the
entities of the VE (from actors to products, from innovative ideas to production
plans) and offers advanced services. In this Section we briefly discuss the back-
end modules of BIVEE infrastructures that are more relevant in the context of
this paper. They include KPIOnto, the ontology that is used to represent KPIs
and dimensions in the platform, and the Raw Data Handler, where data from
enterprises are semantically enriched and stored.

3.1 KPI Ontology

A number of Performance Indicators definitions have been introduced, including
glossaries provided by researchers and research groups [21,22], and international
and national public bodies (e.g. OECD2). While these cannot be regarded as
proper models, due to their informal nature, also some reference frameworks
for supply chain management were proposed, e.g. the Supply Chain Operations
Reference model (SCOR) [23] and Value Reference Model (VRM)3 that are the
two most comprehensive and widely adopted (see also [24] for a more detailed
list of performance measurement approaches and KPI description).

Therefore, in order to derive the main properties for the development of KPI-
Onto [25], an ontology devoted to formally describe indicators, we referred to
VRM with some additional contributions from other glossaries, and to the mul-
tidimensional model of data warehouse domain. This choice is justified by three
main reasons: (1) the VRM explicitly addresses networked enterprises, that is
the reference scenario of this work, (2) the model provides the most complete and
detailed description of the properties of indicators, and (3) the BIVEE project
itself mainly referred to the VRM model to develop its business innovation
reference framework [24].

2 http://www.oecd.org/std/leading-indicators/

glossaryforoecdcompositeleadingindicators.htm
3 http://www.value-chain.org/en/cms/1960

http://www.oecd.org/std/leading-indicators/glossaryforoecdcompositeleadingindicators.htm
http://www.oecd.org/std/leading-indicators/glossaryforoecdcompositeleadingindicators.htm
http://www.value-chain.org/en/cms/1960
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Following the VRM model, in KPIOnto KPIs are arranged in a taxonomy
according to the enterprise area of intervention or process (e.g. customer, corpo-
rate governance, supply chain operation, procurement, human resources, finance
and accounting), and are described by a set of properties. Among them, we in-
clude the unit of measurement, a textual description, its business object (e.g.,
Cost, Velocity), and the dimensions along which it can be computed (e.g., Time,
Product, Organization) according to the multidimensional model.

For what concerns dimensions, they are arranged in a hierarchy of levels
through a partOf relation, where each level represents a different way of group-
ing elements of the same dimension [26]. In this way, the “Month” level is partOf
“Quarter”, while this is partOf “Semester”, that in turn is partOf “Year”. Is-
tances of levels are called members (e.g,“2013” is member of “Year”), and are
related to other instances through the same partOf relation. Through this prop-
erty, and its inverse hasPart, it is possible to implement the classical roll-up
and drill-down operators for analysis of multidimensional cubes, that allow to
navigate among levels to aggregate and disaggregate values.

A KPI can be either atomic or compound, i.e. it can be computed from
other lower-level indicators. In this case, dependencies of compound KPIs on its
operands are defined by means of algebraic expressions, that is a Formula capable
to express the semantics of an indicator. A formula describes how a compound in-
dicator is calculated. In KPIOnto each formula is characterized by an aggregation
function, the specification of how the formula is presented, the semantics (i.e.,
the mathematical meaning) of the formula, and references to its components,
which are in turn (formulas of) indicators. For instance, Costs DeliverPhase,
that measures all costs related to delivery phase, is compound and has the fol-
lowing formula Costs Ship+Costs Pack+Costs OrPre+Costs Deliv, while
Costs Ship is atomic and has no associated formula. In Figure 1 an excerpt of
KPIOnto is shown, in which the indicator “Costs DeliverPhase” is described to-
gether with a portion of the Indicator taxonomy. Relations between the indicator
and its dimensions are shown, including a fragment of the Dimension hierarchy.
As discussed in the experimental Section, the relations among indicators that
are encoded in formulas can be represented as a formula graph, where each node
is an indicator, linked to the components of its formula through edges.

While the descriptive information of the ontology are represented in OWL24,
KPI formulas are directly represented as algebraic expressions and stored in
a repository of formulas that relies on the W3C Recommendation MathML5

and the emerging standard OpenMath6. They are two XML-based standards
widely used for rendering equations in web browsers. They provide a language
to represent mathematical formulas capable, respectively, to describe the con-
tent/presentation of a generic formula and the semantics of mathematical ob-
jects. Hence, through such languages, each formula is fully represented together
with its dependencies.

4 http://www.w3.org/TR/owl2-overview/
5 http://www.w3.org/Math/
6 http://www.openmath.org/

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/Math/
http://www.openmath.org/
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Fig. 1. Excerpt of KPIOnto

The knowledge available in KPIOnto is exploited to support advanced func-
tionalities of the platform, like those described in next Section. In order to work
with different typologies of languages and perform reasoning, we refer to Logic
Programming as a common logical layer, for its capability to manipulate both
OWL2 axioms and mathematical equations. In particular, reasoning functionali-
ties have been implemented in Prolog, while XSB7 was chosen as logic program-
ming database system for its efficiency. Basic functionalities are mainly aimed
to enable manipulation of mathematical formulas, and targeted to achieve the
following reasoning tasks:

– formula rewriting, simplification and resolution of equations, adapted from
PRESS (PRolog Equation Solving System) [27], a formalization of algebra
in Prolog. Such functions are also used to infer, for a given indicator, all the
possible rewritings of a formula;

– checking of dependencies among formulas;
– multidimensional query handler, described in Subsection 4.1.

3.2 Raw Data Handler

The service platform and Raw Data Handler (RDH) are aimed to address data
gathering and storage, together with the management of data interoperability

7 http://xsb.sourceforge.net/

http://xsb.sourceforge.net/
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Table 1. Example of table for Costs Ship in the Data Storage

VE Enterprise Year Semester Quarter Month Week Cat Product Value
VirEnt1 ACME1 2013 2013-S1 2013-Q1 2013-01 NULL Armchair NULL 6.23
VirEnt1 ACME1 2013 2013-S1 2013-Q1 2013-02 NULL Armchair Mod 245 1.29
VirEnt1 ACME2 2013 2013-S1 2013-Q1 NULL NULL Armchair Mod 245 2.50
VirEnt1 ACME2 2013 2013-S1 2013-Q2 NULL NULL Armchair NULL 13.22
VirEnt1 ACME2 2013 2013-S1 2013-Q2 NULL NULL Table NULL 14.97

among the heterogeneous enterprises cooperating in a Virtual Enterprise. Data
gathering and its semantic leverage are achieved through ETL modules, that
extract all the relevant information from distributed data sources, and transform
data items by providing the needed semantic enrichment. This last is performed
by domain experts that annotate the schema of each source with respect to
ontological concepts. It has to be noted that, although the mapping is done
in a manual way, it is required only in the setup phase of the VE. Morover,
semantic-based tools are available in the ETL module to guide the user in the
definition of mappings. Finally, the platform manages data loading into a Data
Storage (DS), thus building a materialized centralized database that is updated
whenever new data are made available by enterprises. In this work we refer to
MySQL as database management system.

Each indicator described in KPIOnto is represented in the DS by a dedicated
table, whose schema is defined by the indicator value, the specification of the
enterprise and the VE, together with the related dimensions. It has to be noted
that, in general, each enterprise provides data about only a subset of all possible
indicators, hence resulting in a sparse DS. For what concerns dimensions, the
schema contains a column for each level of every compatible dimension. For
instance, a fragment of the schema for Costs Ship is shown in Table 1, in which
some example records for two different fictitious enterprises (ACME1, ACME2)
are also represented. Each record shows a KPI value (in thousands of euros) that
was measured at a different time and for a different product, while NULL values
are reported whenever the KPI value is not specified for a certain level because
it was pre-aggregated at a higher level (e.g. in the first, Week is NULL since the
value refers to overall shipping costs measured in the whole 2013-01 and for the
whole category Armchair, while the second refers to a specific product).

It has to be noted that several conflicts may occur while mapping enterprise
data to KPI described in KPIOnto. In fact, besides usual conflicts about names
or dimensions (e.g. homonymous indicators, or the same indicator measured
along different dimensions), also conflicts about measures can occur (e.g., the
same indicator calculated through different formulas). For lack of space we do
not delve into further details on strategies to reconcile such situations, and refer
the interested reader to [28], and to [24] for more general details about RDH.

4 KPI Explorer

In order to access KPI data, a uniform view over them is needed, independently
of the original data sources. The KPI Explorer is a tool aimed to allow users to
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Fig. 2. Architecture of KPI Explorer and back-end services

visually compose a request expressed in terms of the common reference vocabu-
lary for the platform, i.e. the KPIOnto, relying on back-end services that rewrite
and resolve such requests as queries over the RDH.

Following the underlying model, a multidimensional query (MDQ) is posed
by specifying the following information:

– the name of the requested indicator (e.g., Costs DeliverPhase),
– for each compatible dimension, the specific level on which to aggregate (e.g.,

Cat for ProductDimension and Month for TimeDimension),
– an optional set of members on which to filter (e.g., {Armchair} for Cat and

{2013-01,...,2013-12} for Month),
– the name of the requested VE and the names of the requested enterprises

(e.g., ACME1 and ACME2),
– an optional flag specifying whether to obtain results for each enterprise sep-

arately or to aggregate them.

The output of a MDQ is rendered as a table containing all the results that are
available in (or that can be dynamically computed from) the Data Storage.

From an architectural point of view, as shown in Figure 2, the KPI Explorer
relies on a graphical user interface and on the following components:

a) KPIOnto endpoint, a service relying on Apache Jena8 to query the ontology
through the W3C Recommendation SPARQL language, in order to load from
the ontology all the information to fill the fields in the GUI;

8 http://jena.apache.org

http://jena.apache.org
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b) Semantic Data Handler, the main back-end functionality that manages the
execution of a multidimensional query on the Data Storage.

At first, (a) all the needed information about indicators and dimensions are
retrieved from the ontology, in order to setup the user interface. After the user
has composed a query, this is sent to the Semantic Data Handler (b), that man-
ages its rewriting in SQL and execution over the Data Storage. Once obtained
the results, the user can refine them by performing drill-down of either a level
or the indicator. While the former is a typical operator in data warehouses, the
latter enables a novel mode of exploring KPI data, allowing to re-execute the
same query over the dependencies of the original requested KPI, as shown in the
example in Subsection 4.2.

The following Subsections discuss in more details the Semantic Data Handler
service and the GUI, and provide some examples.

4.1 Semantic Data Handler

The Semantic Data Handler (SDH) is a back-end functionality deployed as a
web service within the PIKR, that handles multidimensional queries and em-
beds reasoning techniques for advanced search of KPI data. Starting from a
MDQ expressed with the KPIOnto terminology, the SDH proceeds with its in-
terpretation and checks its correctness, both syntactically (by verifying whether
it is well-structured and valid with respect to an XML Schema) and semantically
(e.g., by verifying if all terms are actually valid ontological concepts, or if every
specified member belongs to the correct level).

Through a query rewriting mechanism, the SDH produces a new query com-
pliant with the specific database management system9, that is then passed to
the RDH for retrieving actual data.

However, in the context of the BIVEE project we do not assume the Data
Storage to be complete. In fact, data are usually sparse because each enterprise
provides only a subset of all indicators, and for each indicator only few values
for every possible combination of members. Furthermore, there is no a priori
agreement on the aggregation level for every dimension: e.g., one enterprise can
provide data pre-aggregated on a monthly basis, while another on a quarterly
basis, preventing the comparison of their performances.

To solve this kind of heterogeneity, an advanced feature of the SDH, namely
completeness check, is devised to support the dynamic computation of those
values that are not materialized, by exploiting the semantic description of the
dimensions and the KPIs provided by KPIOnto. Such a functionality, for each
result item required by the user (i.e. for every combination of members in the re-
quest) that is not available in the Data Storage, recursively applies a set of rewrit-
ing rules based on Logic Programming. To this purpose, the content of KPIOnto
(indicator/dimension details and formulas) is translated as Prolog facts. Such
rules allow to automatically (1) calculate an indicator from its formula (if the

9 Currently the RDH relies on SQL and MySQL, but the approach is valid for any
alternative solution, like MDX queries on OLAP systems.
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formula is not defined, the Prolog reasoner tries to infer it by manipulating and
reverting already existing formulas), or (2) aggregate the value for a member of
a level from its lower-level members.

To give an example of the two rules, let us consider the following MDQ:

〈Costs DeliverPhase,{Cat,Quarter},{{Armchair},{2013-Q1}},{ACMEx ,ACMEy}〉.

If for ACMEy there is no value for the Cat Armchair and for the Quarter 2013-
Q1, the system tries to apply the rewriting rules. Through rule (1) by exploiting
the formula Costs DeliverPhase = Costs Ship+Costs Pack+Costs OrPre+
Costs Deliv, a new query is automatically generated for each dependency of the
KPI. In this case the new queries are:

〈 Costs Ship, {Cat,Quarter}, {{Armchair},{2013-Q1}},{ACMEy} 〉
〈 Costs Pack, {Cat,Quarter}, {{Armchair},{2013-Q1}},{ACMEy} 〉
〈 Costs OrPre, {Cat,Quarter}, {{Armchair},{2013-Q1}},{ACMEy} 〉
〈 Costs Deliv, {Cat,Quarter}, {{Armchair},{2013-Q1}},{ACMEy} 〉

If such queries are satisfiable, then the four values are retrieved and aggregated
by using the formula. The result is the value for Costs DeliverPhase requested
by the original query.

An alternative solution, according to rule (2), is to drill-downmember 2013-Q1
or member Armchair to their lower members10. This implies, for every member,
to create a new query and (if and once solved) to compute the required value
from those available by means of the aggregation function of the indicator (if
any). In the example, if the system drills-down 2013-Q1 to its components 2013-
01, 2013-02 and 2013-03, and if the aggregator for the KPI is “Sum”, then it
is possible to calculate the value as a summation of the results of the following
queries:

〈 Costs DeliverPhase, {Cat,Month}, {{Armchair},{2013-01}},{ACMEy} 〉
〈 Costs DeliverPhase, {Cat,Month}, {{Armchair},{2013-02}},{ACMEy} 〉
〈 Costs DeliverPhase, {Cat,Month}, {{Armchair},{2013-03}},{ACMEy} 〉

The result set obtained with the completeness check is always a superset of
what can be generated without. However, due to its computational complexity,
it is noteworthy that the running time of the completeness check procedure is
related to the size of KPIOnto and the Data Storage. We refer the interested
reader to [29] for a detailed discussion on the indicator drill-down rule.

4.2 User Interface

The front-end of the KPI Explorer enables users to graphically compose a MDQ
with the aim to analyse KPIs for one or more enterprises. To present the main

10 Relations among members that are used in this case are the partOf introduced in
Section 3.1.
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Fig. 3. KPI Explorer: composition of a query

Fig. 4. KPI Explorer: result table

features, let us consider the following case study, in which a user wants to anal-
yse the Costs DeliverPhase for enterprise ACME1 belonging to the Virtual
Enterprise V irEnt1.

As she specifies the required indicator within the search-box (see Figure 3),
the rest of the form is dynamically loaded, including the list of compatible di-
mensions. In the example, the user decides to analyse the KPI with respect to
ProductDimension and T imeDimension. For what concerns the former, she
selects Cat level and specifies Armchair as member on which to filter the re-
sults. As for the latter, she specifies the first six months in 2013. Unselected
dimensions are not part of the MDQ. After the execution of the query by the
SDH, results are represented in a table, as shown in Figure 4.

The user notices a drop in the costs during spring 2013. In order to under-
stand the reason behind this variability, she can refine the analysis by perform-
ing a drill-down of either a level or the KPI, by clicking on the “plus” symbol
next to each label. As for the former (e.g., Month), the GUI retrieves from
KPIOnto the lower level(s) (Week in this case), and performs a query at that
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Fig. 5. KPI Explorer: drill-down of Costs DeliverPhase

level. As regards the latter, the GUI calls the KPIOnto endpoint to retrieve
the formula for Costs DeliverPhase; then, for each of its components, a new
query is created and sent to the SDH. Results about this last case, as shown
in Figure 5, contribute to improve the user awareness about which specific sub-
indicator mostly affected the final cost. To further deepen the analysis, the user
performs a new drill-down on the sub-indicator Costs Pack, as shown in Fig-
ure 6(a). Empty cells in the results stand for unavailable data, that have not
been provided by the enterprise. For such a reason, the user executes again the
last query enabling the “completeness check” option. As shown in Figure 6(b),
for some of the previously empty cells now a value is shown (red boxes), in-
ferred by using the rewriting rule (1) introduced in Section 4.1. In detail, to
retrieve the value for Materials Pack referring to 2013-01, the reasoner exploits
the formula Costs Pack=Materials Pack+Others Pack+LabourCosts Pack
and solves it for Materials Pack. To make an other example, the value for
Others Pack referring to 2013-05 is obtained as follows: at first the equation
Costs DeliverPhase was solved for Costs Pack; then, the reasoner exploits the
formula for Costs Pack shown in the previous example.

As a second example, the user wants to compare performances about the same
KPI for ACME1 and ACME2 for the first two quarters of 2013 and for Arm-
chair category. However, the two enterprises provided different data with differ-
ent granularity. In fact, ACME1 provided measures of both Costs DeliverPhase
and all its components Costs Ship,Costs Pack, Costs OrPre and Costs Deliv.
On the other hand, ACME2 provided values for all of them, except for the
Costs DeliverPhase. Moreover, ACME1 measures values on a monthly basis,
while ACME2 on a quarterly basis. Since no direct comparison can be made
due to such heterogeneities, the user enables the “completeness check”. In such
a way, the SDH exploits the Prolog-based rewriting rules discussed above. In
more details, rule (1) is applied to calculate Costs DeliverPhase for ACME2
starting from its dependencies, while rule (2) is exploited to aggregate months
in quarters for ACME1. As a result, the user obtains the required KPI at the
given levels, as shown in Figure 7.



An Ontology-Based Data Exploration Tool for Key Performance Indicators 739

(a)

(b)

Fig. 6. KPI Explorer: drill-down of Costs Pack (a) without and (b) with completeness
check

Fig. 7. KPI Explorer: results for ACME1 and ACME2 with completeness check

5 Evaluation

The goal of this Section is to provide an evaluation of costs and benefits of the
proposed approach, respectively in terms of efficacy and response time.

As for the former, we evaluated how larger it is the number of indicators that
can be dynamically computed through the reasoning mechanism, with respect
to those directly available in the Data Storage. To evaluate how the result de-
pends on the size of the ontology, the experimentation was performed on a set
of synthetic ontologies with an increasing number of indicators, and then on the
real-world ontology used in the BIVEE project. Synthetic ontologies were au-
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tomatically generated by varying two parameters of the corresponding formula
graph: the number of operands per indicator (op), and the maximum number of
levels (lev). For sake of simplicity, all formulas for the indicators are defined as
summation of other randomly chosen indicators. For instance, a 1-level ontology
contains only one top indicator that is computed by summing op indicators; a
2-levels ontology is formed by one top level indicator, which is computed on op
indicators in the middle layer that, in turn, are computed on op low-level indica-

tors. The number of indicators in each ontology is given by

lev∑

i=0

opi =
1− oplev+1

1− op
,

ensuring that each indicator has exactly op number of operands. Table 5 reports
the list of generated ontologies with the number of indicators.

Table 2. Size of the generated ontologies: operands, levels and number of indicators

op 2 3 4 5 2 3 2 2

lev 2 2 2 2 3 3 4 5

#indicators 7 13 21 31 15 40 31 63

Let Fi be the set of all possible inferable formulas for the indicator i of the
given ontology O; the procedure followed in the experimentation is:

For k = 1 to 100
1. randomly define a subset S of indicators in O
2. for each indicator i ∈ O

check whether i is computable over S

An indicator i is computable over the set S if at least a formula f ∈ Fi exists
such that all operand of f are indicators in S, hence f can be computed by using
only available indicators. Given that results depend on the number of indicators
actually materialized, for each ontology the procedure is executed multiple times,
namely 100: each time a randomly selected subset of indicators in the ontology
is assumed to be actually available in the Data Storage.

In order to keep the complexity of the experimental procedure under control,
for each indicator, the maximum number of formulas the reasoner inferred was set
to 50. Figure 8 shows the rate of computable indicators (i.e. the ratio between the
number of computable indicators and the number of indicators in the ontology)
vs. the rate of available indicators in Data Storage (i.e. the ratio between the
number of available indicators in the Data Storage and the number of indicators
in the ontology). For each ontology we drew a different line in the figure. The
bisector (dotted line) represents the baseline, where the number of computable
indicators is equal to number of those available. In this case only indicators
that are actually available in the Data Storage can be computed, i.e. points
on the bisector represent the situation where no reasoning is performed. We’d
like to note that all results are above the bisector, demonstrating the efficacy
of the approach. When few indicators are available (i.e. the rate of available
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Fig. 8. Rate of computable indicators vs. rate of available indicators in Data Storage

Fig. 9. Rate of computable indicators vs. rate of available indicators in Data Storage,
for KPIOnto
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indicators is less than 0.15), the approach does not outperform the baseline,
hence the reasoning mechanism is ineffective. On the other side, with a rate of
available indicators higher than 0.65, we are able to compute more than the 80%
of indicators in the ontology. The same remarks can be made also for results
obtained over KPIOnto, the real-world ontology used in the BIVEE project, as
shown in Figure 9. This ontology takes into account 356 KPIs and its formula
graph is formed by a set of disconnected graphs, with different levels (from 1 to
5) and operands (from 2 to 4). On average, the graph has 3.14 levels and 2.67
operands per indicator.

Table 3 shows the average execution time of the reasoning mechanism for
inferring all formulas for an indicator. Experiments were carried on an Intel
i7 CPU 2.20GHz with 8GB memory, running Windows 7 64bit. For some of
the ontologies (e.g., lev=3 and op=4), it was not feasible to conduct the tests.
We’d like to note that the execution time does not increase with the number
of indicators, but it depends on the topology of the ontology, i.e. the way in
which the indicators are connected to each other. On average, the inference of
all formulas required less than 1.3s. As regards KPIOnto, the execution time
is on average around 6s. However, it is notewhorty that real scenarios do not
usually involve extracting the complete set of formulas for an indicator, reducing
in this way the overall execution time.

Table 3. Average execution times for inferring all formulas for an indicator (ms)

Lev
Op 2 3 4 5

2 69.43 211.69 651.87 2083.38

3 528.93 1699.63 3792.43 n/a

4 1294.05 n/a n/a n/a

Average 1291.43

KPIOnto 5968.14

6 Conclusion

In this paper, we presented a tool for exploration of data related to Key Per-
formance Indicators, provided by multiple enterprises collaborating in a shared
innovation project, in the context of a Virtual Enterprise. The tool relies on the
architecture of the BIVEE platform, and in particular on a semantic middleware
that includes both a domain ontology and a repository where heterogeneous data
are annotated and stored. Back-end functionalities of the tool ensure the rewrit-
ing of the user query, expressed in ontological terms, and its execution on the
Data Storage. Advanced functions enable automatic, dynamic and transparent
aggregation of KPIs at any level, and computation of KPI values through their
mathematical formulas, by exploiting information in the ontology. As for the
front-end, such an approach allows for a novel mode in data exploration, since
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users can expand a KPI into its more basic components, thus enabling the pos-
sibility to deepen the analysis by browsing the KPI hierarchy, in an effective
and efficient way, as shown by the encouraging outcome of the experimenta-
tion. Future work will focus on providing more detailed and formal descriptions
of the underlying reasoning functionalities, and on performing more compre-
hensive tests to evaluate the applicability of the proposed approach in real-life
scenarios.
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