
Distributed implementations of dependency discovery
algorithms

Hemant Saxena
University of Waterloo

h2saxena@uwaterloo.ca

Lukasz Golab
University of Waterloo

lgolab@uwaterloo.ca

Ihab F. Ilyas
University of Waterloo

ilyas@uwaterloo.ca

ABSTRACT
We analyze the problem of discovering dependencies from dis-
tributed big data. Existing (non-distributed) algorithms focus on
minimizing computation by pruning the search space of possible
dependencies. However, distributed algorithms must also optimize
communication costs, especially in shared-nothing settings, leading
to a more complex optimization space. To understand this space,
we introduce six primitives shared by existing dependency discov-
ery algorithms, corresponding to data processing steps separated
by communication barriers. Through case studies, we show how
the primitives allow us to analyze the design space and develop
communication-optimized implementations. Finally, we support
our analysis with an experimental evaluation on real datasets.

PVLDB Reference Format:
Hemant Saxena, Lukasz Golab, Ihab F. Ilyas. Distributed implementations
of dependency discovery algorithms. PVLDB, 12(11): 1624-1636, 2019.
DOI: https://doi.org/10.14778/3342263.3342638

1. INTRODUCTION
Column dependencies such as Unique Column Combinations

(UCCs), Functional Dependencies (FDs), Order Dependencies
(ODs) and Denial Constraints (DCs) are critical in many data man-
agement tasks including schema design, data cleaning, data analyt-
ics and query optimization. Despite their importance, dependencies
are not always specified in practice, and even if they are, they may
change over time. Furthermore, dependencies that hold on individ-
ual datasets may not hold after performing data integration. As a
result, there has been a great deal of research on automated discov-
ery of dependencies from data; see, e.g., [2, 11] for recent surveys.

Existing work on dependency discovery proposes methods for
pruning the exponential search space to minimize computation.
However, existing methods assume a centralized setting where the
data are stored locally. In contrast to centralized settings, in mod-
ern big data infrastructure, data are naturally partitioned (e.g., on
HDFS [18]) and computation is parallelized (e.g., using Spark [21])
across multiple compute nodes. In these cases, it is inefficient at
best and infeasible at worst to move the data to a centralized profil-
ing system, motivating the need for distributed profiling.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342638

In distributed environments, ensuring good performance requires
minimizing both computation and communication. A naı̈ve solu-
tion to minimize communication is to allow no data communica-
tion at all: each node locally discovers dependencies from the data
it stores, and then we take the intersection of the local dependen-
cies. To see why this approach fails, consider a table with a schema
(K,A,B) and assume the table is partitioned across two nodes:
the first node storing tuples (k1, a1, b1), (k2, a1, b1), and the sec-
ond node storing tuples (k3, a1, b2), (k4, a1, b2) . The FD A→ B
locally holds on both nodes but it does not hold globally over the
whole table. In our evaluation, we observed that his problem gets
worse quickly, even for as few as ten nodes, where the majority
of the dependencies discovered locally do not hold on the entire
dataset. Notably, discovering dependencies from a sample has a
similar problem.

Another possible solution is to parallelize existing non-
distributed dependency discovery algorithms in a straightforward
way. The problem with this approach is that existing algorithms
often generate large intermediate results to minimize computation,
leading to high communication overhead. Other problems include
parallelizing the computation and load balancing—issues that, nat-
urally, were not considered in centralized implementations.

We argue that to implement efficient distributed algorithms, an
end-user needs to (i) systematically analyze the space of possible
optimizations, i.e., identify the core data processing steps and op-
timize for both computation and communication when paralleliz-
ing these steps, and (ii) tune the physical implementations of these
steps, i.e., design a distribution strategy for a given workload and
the available resources. To help the end-user overcome these chal-
lenges, we decompose existing dependency discovery algorithms
into six logical primitives, corresponding to data processing steps
separated by communication barriers. The primitives allow us to
rewrite the algorithms, analyze the computation and communica-
tion costs of each step, and explore the space of distributed designs,
each with different performance characteristics.

From the end-user’s point of view, our primitive-oriented frame-
work decouples writing distributed versions of the algorithms from
tuning their physical implementations. We refer to the logical
rewrites using our primitives as logical discovery plans or LDPs,
and their physical implementations as physical discovery plans or
PDPs. We present case studies (Sections 4-6), showing how the
primitives allow us to explore the space of possible designs. For
each algorithm, we write two LDPs using our primitives. One LDP
follows the design principles of the original non-distributed imple-
mentations, and the other LDP modifies the original algorithm to
make it distribution-friendly. We then demonstrate that different
physical implementations of the primitives lead to different PDPs
for the same LDP.

Table 1: Tax data records

tid ID GD AC PH CT ST ZIP SAL TR STX
t1 1009 M 304 232-7667 Anthony WV 25813 5000 3 2000
t2 2136 M 719 154-4816 Denver CO 80290 60000 4.63 0
t3 0457 F 636 604-2692 Cyrene MO 64739 40000 6 0
t4 1942 F 501 378-7304 West Crossett AR 72045 85000 7.22 0
t5 2247 M 319 150-3642 Gifford IA 52404 15000 2.48 50
t6 6160 M 970 190-3324 Denver CO 80251 60000 4.63 0
t7 4312 F 501 154-4816 Kremlin AR 72045 70000 7 0
t8 3339 F 304 540-4707 Kyle WV 25813 10000 4 500

To summarize, our contributions are as follows.

1. We propose a generalized framework for analyzing depen-
dency discovery algorithms, which consists of six primitives
that serve as building blocks of existing algorithms.

2. Using case studies, we illustrate how the primitives allow us
to (i) decouple logical designs from physical implementa-
tions, and (ii) analyze the cost of data processing steps.

3. Using the proposed primitives, we implement and experi-
mentally evaluate different distributed versions of seven ex-
isting dependency discovery algorithms on real datasets.

Prior Work: There has been recent work on parallelizing depen-
dency discovery algorithms across multiple threads, but it considers
a single-node shared-everything architecture where communication
costs are not a bottleneck [7]. There is also some early work on
distributed FD discovery. However, it suffers from the same issues
as the naı̈ve solution we mentioned earlier (i.e., it returns locally-
discovered FDs which may not hold globally) [10], or it assumes
that data are partitioned vertically and ensures efficiency by lim-
iting the search space to FDs with single attributes [9]. Finally,
in our recent work [17], we proposed a distributed FastFDs im-
plementation, which is one of the designs we analyze and express
using primitives in this paper (corresponding to Section 5.2.1).

Roadmap: Section 2 explains existing dependency discovery
algorithms, Section 3 presents the primitives, Sections 4 through 6
present cases studies in which we analyze FD discovery algorithms
using the primitives, Section 7 presents experimental results, and
Section 8 concludes the paper.

2. PRELIMINARIES

2.1 Definitions
Let R = {A1, A2, ..., Am} be a set of m attributes of a relation

R and let r be a finite instance of R with n tuples.

DEFINITION 1. Minimal unique column combination: An at-
tribute combination X ⊆ R is a unique column combination
(UCC) if no two tuples in r can have the same values of X . X
is a minimal UCC if no proper subset of it is a UCC.

DEFINITION 2. Minimal functional dependency: Let X ⊂ R
and A ∈ R. A functional dependency (FD) X → A holds on
r iff for every pair of tuples ti, tj ∈ r the following is true: if
ti[X] = tj [X], then ti[A] = tj [A]. An FD X → A is minimal if
A is not functionally dependent on any proper subset of X .

DEFINITION 3. Minimal order dependency: Let X ⊂ R and
A ∈ R. An order dependency (OD) X 7−→ Y holds if sorting r by
X means that r is also sorted by Y . An OD X 7−→ A is minimal
if A is not order dependent on any proper subset of X .

DEFINITION 4. Denial constraint: A Denial constraint (DC)
ψ is a statement of the form ψ : ∀ti, tj ∈ r,¬(P1∧ ...∧Pk) where
Pi is of the form v1φv2 with v1, v2 ∈ tx[A], x ∈ {i, j}, A ∈ R
and φ ∈ {=, 6=, <,≤, >,≥}. The expression inside the brackets
is a conjunction of predicates, each containing two attributes from
R and an operator φ. An instance r satisfies ψ iff ψ is satisfied
for any two tuples ti, tj ∈ r.

EXAMPLE 2.1. Consider the tax dataset in Table 1. The set
{AC,PH} is a UCC. Two persons with same zip code live in
the same state, therefore the FD ZIP → ST holds. The sin-
gle tax exemption decreases as salary increases, therefore the OD
SAL 7−→ STX holds. If two persons live in the same state, the
one earning a lower salary has a lower tax rate, therefore the fol-
lowing DC holds: ∀ti, tj ∈ R, ¬(ti.ST = tj .ST ∧ ti.SAL <
tj .SAL ∧ ti.TR > tj .TR).

In the remainder of this paper, discovering dependencies refers
to discovering minimal dependencies. Also, we only consider exact
dependencies, i.e., those that hold with no exceptions.

DEFINITION 5. Equivalence classes: The equivalence class of
a tuple t ∈ r with respect to an attribute set X ⊆ R is denoted by
[t]X = {u ∈ r|∀A ∈ X t[A] = u[A]}. The set πX = {[t]X |t ∈
r} contains the equivalence classes of r under X.

Note that πX is a partition of r such that each equivalence class
corresponds to a unique value of X . Let |πX | be the number of
equivalence classes in πX , i.e., the number of distinct values of X .

DEFINITION 6. Evidence sets: For any two tuples ti and tj in
r, their evidence set EV (ti, tj) is the set of predicates satisfied by
them, drawn from some predicate space P .

Recall the predicate space considered by DCs from Definition 4,
namely those with two attributes from R and an operator from φ.
In Table 1, tuples t2 and t6 give EV (t2, t6) = {t2.ID 6= t6.ID,
t2.ID ≤ t6.ID, t2.ID < t6.ID, t2.GD = t6.GD, t2.CT =
t6.CT, t2.ST = t6.ST, ...}. For FDs and UCCs, it suffices to
consider a restricted space of predicates that identify which at-
tribute values are different. Here, EV (t2, t6) = {t2.ID 6= t6.ID,
t2.AC 6= t6.AC, t2.PH 6= t6.PH, t2.ZIP 6= t6.ZIP}. As
we will show in Section 2.2, some algorithms use evidence sets to
identify dependencies that do not hold.

DEFINITION 7. Partition refinement: Partition π refines par-
tition π′ if every equivalence class in π is a subset of some equiva-
lence class of π′.

Distributed methods: We assume a map-reduce style of com-
putation, where map jobs perform local computation, followed by a
data communication step and a reduce step to compute the final re-
sults in parallel. Intermediate results are stored on a distributed file
system such as HDFS, or maintained in memory, e.g., as Spark Re-
silient Distributed Datasets (RDD) [21]. Suppose we have k work-
ers or compute nodes. Let Xi and Yi be the amount of data sent
to the ith worker and the computation done by the ith worker, re-
spectively [5]. The runtime of a distributed algorithm depends on
the runtime of the slowest worker. Thus, we will compute the fol-
lowing quantities for each tested algorithm:

X = max
i∈[1,k]

Xi Y = max
i∈[1,k]

Yi

We compute these costs at the granularity of data values instead of
tuples or columns. This makes our analysis independent of the data
partitioning scheme (e.g., horizontal vs. vertical).

A B C D
a a a a
b b a a
a c a c
b c d e

(a) Relation instance (b) Attribute lattice

Figure 1: Example relation instance and attribute lattice

2.2 Algorithms
We classify dependency discovery algorithms into three cate-

gories: schema-driven, data-driven and hybrid.
Schema-driven algorithms traverse an attribute lattice, an ex-

ample of which is shown in Figure 1(b) for R = {A,B,C,D}.
The nodes in the ith lattice level, denoted Li, correspond to sets of
i attributes. Each node also stores the equivalence classes (Defini-
tion 5) corresponding to its attribute set. Edges between nodes are
based on a set containment relationship of their attribute sets. The
time complexity of schema-driven algorithms depends mainly on
the size of the lattice, but not on the number of tuples. Therefore,
these algorithms work well for large datasets with few columns.

Consider the TANE [8] algorithm for discovering FDs (FastOD
[19] is similar but it discovers ODs). For each lattice level, TANE
performs three tasks: generate next level, compute dependencies,
and prune. To generate the next level, TANE first creates new at-
tribute sets by combining pairs of attribute sets from the current
level; e.g., combining AB and AC gives ABC. This corresponds
to a self-join of the current level’s attribute combinations. Next,
new equivalence classes are created by intersecting pairs of equiv-
alence classes from the current level. For example, in Figure 1(a)
we have πA = {{1, 3}, {2, 4}, πB = {{1}, {2}, {3, 4}}, πC =
{{1, 2, 3}, {4}} and πD = {{1, 2}, {3}, {4}}. Intersecting πC

and πD gives π{C,D} = {{1, 2}, {3}, {4}}.
Once the attribute sets and equivalence classes for the next level

Ll have been generated, the compute dependency task discovers
FDs of the form X \ A → A for all X ∈ Ll and A ∈ X . To
determine if X \ A→ A, TANE checks if πX\A refines πA (Def-
inition 7). In Figure 1(a), D → C holds because πD refines πCD;
however, C → D does not hold because πC does not refine πCD .

Compute dependencies is more complex for ODs. For FDs, we
check if |πX\A| = |πX |. For UCCs, X is a UCC if |πX | = r, i.e.,
if all equivalence sets are singletons. On the other hand, for an OD
X 7−→ Y to hold, every set in πX\A must be a subset of some set
in πA and the elements must be ordered in the same way.

Finally, prune leverages the fact that only minimal dependencies
are of interest; for example, if A→ D holds then AB → D is not
minimal. If a node is pruned, then any nodes connected to it can
also be eliminated. For example, for FDs, a node labelled with an
attribute set X can be pruned if X is a key or X \ A → A was
found to hold. Returning to our example, CD is pruned because
D → C holds, and the following nodes are pruned because they
correspond to keys: AB, AD, BC, and BD.

Data-driven algorithms examine pairs of tuples to identify evi-
dence sets (Definition 6) and violated dependencies; in the end, any
dependencies not found to be violated must hold. The time com-
plexity of data-driven algorithms depends on the number of tuples,
but not on the number of columns. Therefore, these algorithms tend
to work well for small datasets with many columns.

Consider the FastFDs [20] algorithm for FD discovery Returning
to Figure 1(a), we get the following evidence sets (expressed as
attributes whose values are different) from the six tuple pairs:

EV (t1, t2) = {A,B}, EV (t2, t3) = {A,B,D}, EV (t1, t4) = {A,B,C,D},
EV (t1, t3) = {B,D}, EV (t2, t4) = {B,C,D}, EV (t3, t4) = {A,C,D}

After FastFDs generates evidence sets, for each possible right-
hand-side attribute of an FD, it finds all the left-hand-side attribute
combinations that hold. Say A is the right-hand side attribute cur-
rently under consideration. The algorithm first removesA from the
evidence sets, giving {{B}, {B,C,D}, {B,D}, {C,D}}. Next,
FastFDs finds minimal covers of this set, i.e., minimal sets of at-
tributes that intersect with every evidence set. In this example, we
get BC and BD, and therefore we conclude that BC → A and
BD → A. FastDC [6] works similarly to discover DCs.

FastFDs avoids considering all pairs of tuples when generating
evidence sets. Instead, it only considers pairs of tuples that belong
to the same equivalence class for at least one attribute. For example,
in Figure 1(a), tuples 1 and 4 are not in the same equivalence class
for any of the four attributes. In these cases, a tuple pair has no
attributes in common and therefore the corresponding evidence set
is all of R, which trivially intersects with every possible cover.

Hybrid algorithms switch back and forth between schema-
driven and data-driven phases; examples include HyFD [14] for
FDs, HyUCC [15] for UCCs and Hydra [4] for DCs. HyFD starts
with a data-driven phase, but it generates evidence sets only from a
sample of tuples. From these evidence sets, HyFD identifies poten-
tial FDs, which are those that have not been violated by the sampled
tuple pairs (but may be violated by some other tuple pairs). To rep-
resent these potential FDs, HyFD uses an FDTree data structure,
which is a prefix-tree, each of whose nodes corresponds to a set
of attributes. Next, to validate the potential FDs, HyFD switches
to a schema-driven phase, which traverses the FDTree level-wise,
similarly to how TANE traverses the attribute lattice level-wise. At
some point, HyFD may switch back to a data-driven phase and gen-
erate evidence sets from a different sample of tuples, and so on.
HyUCC and Hydra [4] are similar to HyFD but Hydra switches
only once from the data-driven phase to the schema-driven phase.

3. PRIMITIVES
Our approach to design efficient distributed methods for depen-

dency discovery is to identify the data processing steps and explore
their implementation options. We propose a framework consisting
of six primitives listed below. We identified the primitives by de-
composing existing algorithms into common data processing steps
whose distributed implementations are well-understood.

1. Generate equivalence classes (genEQClass(X, I)):
Given an attribute set X ⊆ R and some input data I , this
primitive computes πX , i.e., it partitions r according to X .
This is similar to the relational group-by operator and can be
implemented by sorting or hashing the data. This primitive
is used to verify if dependencies hold by schema-driven
algorithms and to decide which tuple pairs to examine by
data-driven algorithms.

2. Generate evidence set (genEV Set(ti, tj , P)): Given a
pair of tuples, ti and tj , this primitive generates the depen-
dencies (defined under a predicate space P) that are violated
by this tuple pair, i.e. the evidence set of (ti, tj). Recall from
Section 2 that DCs have the most general predicate space,
while FDs, ODs and UCCs have simpler predicate spaces.
This primitive is used in data-driven and hybrid algorithms.

3. Partition refinement (checkRefinement(X,Y, I)):
Given two attribute sets X,Y ⊆ R, and some input data

Table 2: Summary of primitives and their usage across algorithms

Primitive TANE FASTOD FastFDs FastDCs HyFD HyUCC Hydra
genEQClass(X, I) � � � � � �
genEV Set(ti, tj , P) � � � � �

checkRefinement(X,Y, I) � � � �
join(Si, Sj , p) � � � � � � �
setCover(S) � � � � �

sort(S,Comparator) � � � � � �

I , this primitive returns true if the partitioning of r under
X (πX) refines the partitioning of r under Y (πY) and
false otherwise. Schema-driven and hybrid algorithms use
this primitive. As discussed in Section 2.2, in UCC and
FD discovery, this primitive can return true or false by
comparing the counts of |πX | and |πY |, whereas in OD
discovery, it needs to check the ordering of tuples within
matching equivalence classes.

4. Join (join(Si, Sj , p)): This primitive joins two sets of el-
ements, Si and Sj , using p as the join predicate. Schema-
driven (and hybrid) algorithms use the join to generate at-
tribute sets for the next lattice level; here, it is a self-join of
the previous level’s attribute sets. Data-driven (and hybrid)
algorithms join pairs of tuples to generate evidence sets.

5. Cover (setCover(S)): Given a set of evidence sets S, this
primitive computes all minimal covers, and therefore the de-
pendencies that hold given S. Cover is used in all data-driven
and hybrid algorithms.

6. Sort (sort (S,Comparator)): This primitive sorts the set
S based on the provided comparator. FastOD sorts tuples
within equivalence classes and checks for proper ordering
during the partition refinement check. Data-driven algo-
rithms sort evidence sets based on their cardinality to speed
up the minimal cover operation. Hybrid algorithms use sort-
ing during sampling (of tuple pairs to generate evidence sets).

Table 2 highlights the expressiveness of the primitives and their
usage across seven popular and state-of-the-art dependency discov-
ery algorithms. We refer to logical rewrites of the algorithms using
the primitives as logical discovery plans (LDPs) and their physical
implementations as physical discovery plans (PDPs).

Design space: There are many possible physical implementa-
tions of our primitives, suggesting a space of possible optimiza-
tions. As in DBMSs, one important factor to consider is the size
of the input compared to the available memory, e.g., to determine
when to use a hash-join or a sort-merge-join. Similar choices ex-
ist in distributed frameworks such as Spark and Map-Reduce. In
Sections 4-6, we explore this optimization space with the help of
our primitives. We consider TANE as a schema-driven example,
FastFDs as a data-driven example and HyFD as a hybrid example
(however, our conclusions apply to other algorithms within these
three categories). For each case study, we show that different LDPs
exist and we show two (of the many possible) distributed PDPs
for each LDP, implemented in Spark. One PDP, which we call
large-memory plan or lmPDP, assumes that each worker’s memory
is large enough for all computations; the other, which we call small-
memory plan or smPDP, assumes that the data may spill to external
storage. We show that different PDPs have different performance
characteristics in terms of communication and computation costs,
but we defer the issue of automatically selecting the best PDP for a
given workload and system configuration to future work.

4. CASE STUDY 1: TANE
As explained in Section 2.2, for each lattice level, schema-driven

algorithms such as TANE compute dependencies holding in this
level, prune the search space based on the discovered dependen-
cies, and generate the next level. The execution plans presented
in this section can be extended to discover order dependencies
[19]. As discussed in Section 2.2, verifying ODs requires a re-
finement check and an ordering check. Thus, to implement the
checkRefinement primitive, complete equivalence classes must
be examined (not just the number of equivalence classes).

4.1 LDP 1: Original TANE
Figure 2(a) shows the first LDP written using our primitives,

which follows the design principles of the original TANE al-
gorithm: compute new equivalence classes by intersecting the
previous level’s equivalence classes. Thus, the input to the
genEQClass primitive in line 16 consists of a new attribute com-
bination X ∪ Y and the equivalence classes πX and πY from the
previous level. Furthermore, the lattice stores attribute combina-
tions and their associated equivalence classes (lines 3 and 17).

4.1.1 Large-memory PDP
Generating first level: In lines 2-3, we generate equivalence

classes for the first lattice level, i.e., single attributes. We do this by
distributing the columns inR across the k workers in a round-robin
fashion. Each worker scans the tuples in r and hashes their values
to compute equivalence classes for the columns assigned to it.

Computing dependencies: As discussed in Section 2.2, to check
if an FD X \ A → A holds, it suffices to verify that |πX\A| =
|πX |. Thus, we distribute the counts of the equivalence classes (i.e.
|πX |) in the current lattice levelLi (i.e., the dependencies to check)
across the k workers in a round-robin fashion, and we broadcast the
counts for attribute combinations in Li−1 to each worker.

Pruning: The driver machine then receives the discovered depen-
dencies from the workers and applies pruning rules to the current
lattice level. Lattice nodes that have not been pruned are used to
generate the next level.

Generating next level: This requires a (self-)join to produce new
attribute combinations and their equivalence classes. We imple-
ment the join as a map-reduce job, in which each worker creates a
subset of nodes in the next lattice level. We use a distributed self-
join strategy called the triangle distribution strategy [5], which was
shown to be optimal in terms of communication and computation
costs. The idea is to arrange the k workers in a triangle whose two
sides have length l such that k = l(l + 1)/2. Each tuple is sent
to workers in a random row and a random column of the triangle
(
√
2k workers in total), and each worker computes a join of the

tuple pairs it has received (up to n2/2k pairs).
Next, a map job generates new equivalence classes, in which

each worker creates equivalence classes for the nodes it has gen-
erated during the join. New equivalence classes are created by in-
tersecting pairs of equivalence classes from the previous level. For
example, if a worker receives equivalence classes for AB and AC

1 Function TANE (Relation r, SchemaR) is
2 forA ∈ R do
3 L1 = L1 ∪ {(A, genEQClass(A, r))}
4 l = 1
5 while Ll 6= φ do
6 computeDependencies(Ll)
7 prune(Ll)
8 generateNextLevel(Ll)
9 l++

10 Function computeDependencies (Level Ll) is
11 forX ∈ Ll do
12 forA ∈ X do
13 checkRefinement(X/A,X , (|πX/A|, |πX |))

14 Function generateNextLevel (Level Ll) is
15 for (X,πX , Y, πY) ∈ join(Ll, Ll) do
16 πX∪Y = genEQClass(X ∪ Y , (πX , πY))
17 Ll+1 = Ll+1 ∪ {(X ∪Y , πX∪Y)}

(a) Logical discovery plan 1

1 Function TANE (Relation r, SchemaR) is
2 forA ∈ R do
3 L1 = L1 ∪ {(A, |genEQClass(A, r)|)}
4 l = 1
5 while Ll 6= φ do
6 computeDependencies(Ll)
7 prune(Ll)
8 generateNextLevel(Ll)
9 l++

10 Function computeDependencies (Level Ll) is
11 forX ∈ Ll do
12 forA ∈ X do
13 checkRefinement(X/A,X , (|πX/A|, |πX |))

14 Function generateNextLevel (Level Ll) is
15 for (X,πX , Y, πY) ∈ join(Ll, Ll) do
16 πX∪Y = genEQClass(X ∪ Y , r)
17 Ll+1 = Ll+1 ∪ {(X ∪Y , |πX∪Y |)}

(b) Logical discovery plan 2

Figure 2: TANE algorithm

during the join, it can create equivalence classes for ABC. The
new equivalence classes are written to the distributed filesystem.

Cost analysis: To generate equivalence classes in the first level,
the computation is linear in terms of the number of tuples (single
pass to hash the tuple values), and the columns are equally shared
among the workers. The cost of computing dependencies is negli-
gible since we only need to compare counts of equivalence classes
(line 13). To generate the next level of equivalence classes, the
cost of the triangle distribution strategy is Xi ≤ |I| ∗

√
2/k, and

Yi ≤ |I|(|I| − 1)/2k, where |I| is size of the input to the join [5],
which is a lattice level (Ll) in our case. Recall that each lattice
level has |Ll| column combinations along with their equivalence
classes of size up to n. Therefore, we get Xi ≤ |Ll|n

√
2/k, and

Yi ≤ 2n|Ll|(|Ll| − 1)/2k). Due to pruning, we compute equiva-
lence classes for |Ll+1| attribute combinations and not for all pairs
of attribute combinations resulting from the self-join. This approx-
imation gives: Yi ≤ 2n|Ll+1|/k. Aggregating the costs for up to
m levels in the lattice (i.e. for up to 2m column combinations in
the lattice), we get X ≤ 2mn

√
2/k, and Y ≤ 2m2n/k. The factor

of 2n in Y is because the intersection of two equivalence classes
requires a scan over each one, which is 2n in the worst case.

4.1.2 Small-memory PDP
Generating equivalence classes is memory-intensive due to the

size of the attribute lattice. In the small-memory PDP, we give an
alternative implementation of this task.

Generating first level: Our strategy in the lmPDP was to use
each worker to generate equivalence classes for multiple columns.
Here, we use multiple workers to generate one column’s equiva-
lence classes. We use Spark’s distributed groupBy operation, which
uses hashing or sorting depending on the size of the input. This has
two advantages: it reduces the memory load per worker and allows
Spark to take care of spilling the computation to disk.

Generating next level: The lmPDP requires O(n2m/
√
k) mem-

ory for the triangle distribution strategy [5], and the equivalence
classes assigned to a worker must fit in its memory. In smPDP, we
consider two cases: (1) not enough worker memory to use the trian-
gle distribution strategy, and (2) even less memory such that even
the equivalence classes do not fit. In case (1), we implement the
self-join using Spark’s cartesian product operation and let Spark
do the memory management. In case (2), each worker reads the

required equivalence classes πX and πY in chunks (small enough
to fit in memory) to create πX∪Y . While doing this, a worker needs
to make multiple passes over the input equivalence classes.

Cost analysis: To generate the first level of equivalence classes,
the input to each groupBy call is a column from R with n values.
In the worst case, the data can be skewed such that all n values
belong to the same group and are shuffled to a single worker, and
this can happen for each column. Since each worker does roughly
the same amount of computation in the map stage, we get X ≤ nm
and Y ≤ nm/k. The communication cost is greater than that for
lmPDP for generating the first level. To generate the next level,
the cost is higher than in the lmPDP. In case (1), Spark’s cartesian
product operation does more data shuffling than the triangle strat-
egy, because each tuple may be sent to multiple workers multiple
times. In case (2), the cost is even greater due to the need to make
multiple passes over the equivalence classes.

4.2 LDP2: Modified TANE
LDP1 computes new equivalence classes by intersecting pairs of

equivalence classes from the previous lattice level. This requires
materializing and communicating equivalence classes to workers,
which is expensive: the equivalence classes may be larger than
the input dataset. We now suggest an alternative LDP that com-
putes new equivalence classes directly from the data. Figure 2(b)
shows LDP2, with changes highlighted in red. The primitive
genEQClass now takes in a column combination and the tuples
in r (Line 3 and 16). Also, note the difference in line 3 and 17: a
lattice level now includes attribute combinations and the number of
the corresponding equivalence classes, not the equivalence classes
themselves. LDP2 is logically equivalent to LDP1 because the only
difference is in how we compute the equivalence classes.

4.2.1 Large-memory PDP
Generating equivalence classes for the first level and comput-

ing dependencies are the same as in LDP1 from Section 4.1.1. To
generate the next level, we again use the triangle strategy to im-
plement the self-join, which divides new attribute combinations
among workers. Equivalence classes are not materialized with
the corresponding attribute combinations, but we need to store the
number of equivalence classes for each attribute combination to

compute checkRefinement. Workers compute the equivalence
classes assigned to them directly from the data (using hashing).

Cost analysis: The cost to generate the first lattice level and
compute dependencies is the same as in Section 4.1.1. The cost
of the self-join is negligible because it only involves attribute com-
binations and not the equivalence classes. Therefore it does not
depend on the number of tuples n. To generate equivalence classes
for a new lattice level, each worker is responsible for roughly the
same number of attribute combinations (i.e. |Ll+1|/k), and using
hashing it requires a single pass over all the data values (i.e., nm
values). Therefore, for each level Y≤ nm|Ll+1|/k, and X≤ nm.
Doing this for up to m lattice levels (which can have up to 2m col-
umn combinations) gives: Y≤ nm2m/k, and X≤ nm∗m. When
compared to lmPDP in Section 4.1.1, the communication cost of
this plan is significantly lower because it avoids communicating
the previous level’s equivalence classes to the workers.

Furthermore, LDP2 creates opportunities for further reduction
of communication cost in the Spark framework. The Broadcast
mechanism in Spark allows data to be cached at the workers for the
lifetime of a job. Thus, if each worker’s memory is large enough
to store the input dataset, it only needs to be sent once and can be
reused for each lattice level. In our experimental evaluation (Sec-
tion 7), we exploit this optimization whenever possible.

4.2.2 Small-memory PDP
We borrow the strategy from Section 4.1.2: we use multiple

workers to generate equivalence classes for a particular attribute
combination using Spark’s groupBy. However, we only save the
number of equivalence classes, not the equivalence classes them-
selves, which are computed directly from the input dataset.

Cost analysis: Generating the first level is the same as in Section
4.1.2, and the cost of the self-join and computing dependencies is
the same as in Section 4.2.1. To generate equivalence classes for a
particular lattice level, the number of calls made to groupBy is the
same as the number of nodes in the lattice (up to 2m). In the worst
case, each call re-partitions the data. Hence, the cost of this smPDP
is higher than the cost of the lmPDP (Section 4.2.1) because it re-
quires more data shuffling. However, this smPDP has a lower cost
than the smPDP in Section 4.1.2 because it avoids the expensive
cartesian operation to create new equivalence classes.

5. CASE STUDY 2: FASTFDS
As explained in Section 2.2, the general strategy of data-driven

algorithms is to generate evidence sets and find minimal covers.
We note that the plans shown in this section can also be applied
to the FastDCs algorithm [6] for discovering DCs, where a richer
predicate space is used by genEV Set.

5.1 LDP1: Original FastFDs
Figure 3(a) shows the first LDP that follows the main idea of

original FastFDs algorithm [20], which is to compare tuple pairs
that belong to the same equivalence class for at least one attribute.
Lines 8-9 compute the equivalence classes for all attributes in R.
Then, lines 10-12 perform a join operation on each equivalence
class to compare tuples and generate evidence sets. The predicate
space used by genEV Set consists of just inequalities (line 12),
which is sufficient for FDs. Finally, we sort the evidence sets by
their cardinality and compute their minimal covers (lines 4-5).

5.1.1 Large-memory PDP
Implementing lines 8-9 is similar to generating the first level of

equivalence classes in TANE (Section 4.1.1): by distributing the

1 Function fastFD (Relation r, SchemaR) is
2 EVI = {}
3 generateEvidence(r,R)
4 EVI = sort(EVI)
5 FDs = setCover(EVI)

6 Function generateEvidence (Relation r, SchemaR) is
7 EQ = {}
8 forA ∈R do
9 EQ =EQ ∪ genEQClass(A, r)

10 for π ∈ EQ do
11 for (ti, tj) ∈ join(π,π) do
12 EVI =EVI ∪ genEVSet(ti,tj , {6=})

(a) Logical discovery plan 1

1 Function fastFD (Relation r, SchemaR) is
2 EVI = {}
3 generateEvidence(r)
4 EVI = sort(EVI)
5 FDs = setCover(EVI)

6 Function generateEvidence (Relation r) is
7 for (ti, tj) ∈ join(r,r) do
8 EVI =EVI ∪ genEVSet(ti,tj , {6=})

(b) Logical discovery plan 2

Figure 3: FastFDs algorithm

columns among workers in a round-robin fashion, with each worker
generating equivalence classes for multiple columns using hashing.

Generating evidence sets (lines 10-12) requires two jobs. First,
a map-reduce job implements a self-join that joins pairs of tuples
within the same equivalence class. Returning to Figure 1(a), equiv-
alence classes for A generate tuple pairs (1,3) and (2,4); equiva-
lence classes for B generate (3,4), and so on. To implement this
in a distributed fashion, we use the Dis-Dedup+ algorithm from
[5]. This algorithm was proposed for data deduplication, where
a dataset is partitioned into blocks, potentially by multiple parti-
tioning functions, and tuple pairs from the same block are checked
for similarity. Our scenario is similar: a dataset is partitioned into
blocks via equivalence classes and FastFDs only needs to compare
tuple pairs from the same equivalence class (block). Next, a map
job generates evidence sets, in which each worker computes evi-
dence sets for the tuple pairs it created during the self-join.

Finally, we sort the equivalence classes and compute minimal
covers. We do these steps locally at the driver node because
FastFDs uses a depth-first-search strategy to compute minimal cov-
ers, which is inherently sequential [12, 16].

Cost analysis: Generating equivalence classes is the same as in
TANE in Section 4.1.1. Next, we examine the cost of generating
evidence sets. If the size of an equivalence class j is Bj , then the
number of comparisons to generate evidence sets for all tuple pairs
from this equivalence class isBj(Bj−1)/2 ≈ B2

j /2. Assuming c
is the total number of equivalence classes, the total number of com-
parisons when generating evidence sets isW =

∑c
j=1B

2
j /2. Each

tuple pair comparison takes m amount of work, therefore the total
work done ism∗W . With this, we can directly use the cost analysis
of Dis-Dedup+ from [5] (i.e., with input of size |I|, b blocks in to-
tal from s blocking functions and total work of W =

∑b
i=1B

2
i /2:

Xi ≤ 5s ∗max(|I|/k,
√

2W/k), and Yi ≤ 5W/k), which gives
us X ≤ 5m2max(n/k,

√
2W/k), and Y ≤ 5mW/k. Note that

we havem “blocking functions” andm amount of work is required
to compare (all m attributes of) each tuple pair.

5.1.2 Small-memory PDP
To generate equivalence classes (lines 8-9 in Figure 3(a)), we

again use multiple workers per attribute using Sparks groupBy, as
in Section 4.1.2 for TANE. To generate evidence sets (lines 10-12),
we use Spark’s cartesian product operation, but we need to filter
out redundant pairs. In this case, Spark internally does the memory
management, spilling to disk if required. Note that the cartesian
operation will be called once for each equivalence class.

Cost analysis: Generating equivalence classes is same as in Sec-
tion 4.1.2. The cost of generating evidence sets is equal to the
cost of each cartesian operation times the number of equivalence
classes. Recall that each equivalence class may have up to n tuples
and the cartesian operation may send all tuples to all the workers
in the worst case. This gives a much higher communication cost
compared to the lmPDP (Section 5.1.1).

5.2 LDP2: Modified FastFDs
Dis-Dedup+ is the current state-of-the-art, but it still incurs a

non-trivial communication and computation cost. One problem is
the redundant pair-wise tuple comparisons. Consider the equiva-
lence classes πA = {{1, 3}, {2, 4}} and πC = {{1, 2, 3}, {4}}
from the example in Section 2.2. In LDP1, tuples 1 and 3 are
compared twice because they co-occur in two partially overlapping
equivalence classes. Also, increasing the number of attributes in-
creases the overlap of equivalence classes, thereby increasing the
number of redundant pair-wise tuple comparisons. This is also evi-
dent from the m2 factor in the cost analysis of Dis-Dedup+ in Sec-
tion 5.1.1. It is possible to eliminate this problem, but it would re-
quire an expensive comparison of all pairs of tuples in order to elim-
inate duplicate tuple pairs. In LDP2, we explore this idea, which
trades off communication for computation. Figure 3(b) shows the
pseudocode for LDP2, with changes highlighted in red: in line 7,
we perform a self join on the complete relation r. LDP2 is logi-
cally equivalent to LDP1 because it generates all the evidence sets
that LDP1 generates, plus evidence sets containing all the attributes
in R, which do not affect the minimal covers (recall Section 2.2).

5.2.1 Large-memory PDP
We again use the triangle join strategy to implement the join in

line 7. This requires a map-reduce job to compute a full self-join
of r and a map job to generate evidence sets from all tuple pairs.

Cost analysis: Applying the cost analysis for the triangle join
strategy, we get: X ≤ nm

√
2/k and Y ≤ mn2/2k. This is an

improvement over lmPDP in Section 5.1.1, specially when m is
large, which is a typical use case for FastFDs.

5.2.2 Small-memory PDP
The triangle join strategy in the lmPDP has a memory footprint

ofO(nm/
√
k) per worker. When each worker’s memory is smaller

than that, we off-load the join implementation to Spark’s cartesian
operation (we filter out redundant tuple pairs), and let Spark do the
memory management.

Cost analysis: [5] showed that the triangle strategy is optimal
in terms of communication cost when implementing the self-join.
Therefore, the cost of implementing the self-join using the carte-
sian operation cannot be lower. However, compared to the smPDP
in Section 5.1.2, this implementation can perform better whenm is
large because each tuple is compared exactly once.

6. CASE STUDY 3: HYFD
As outlined in Section 2.2, HyFD alternates between data-driven

and schema-driven phases. We note that HyUCC [15] and Hydra

[4] can also be implemented using the plans described in this sec-
tion, with some modifications: HyUCC uses different pruning rules
for UCCs, whereas Hydra discovers DCs and hence uses a richer
predicate space. Unlike HyFD, Hydra switches from the data-
driven phase to the schema-driven phase only once, after the rate
of generating DC violations drops below a user-supplied threshold.

6.1 LDP1: Original HyFD
Figure 4(a) shows the LDP of HyFD based on the original al-

gorithm [14]. As in FastFDs, it begins by generating equivalence
classes for all the attributes in R (lines 6-7). Then in the data-
driven phase, similar to FastFDs, it generates tuple pairs and the
corresponding evidence sets. Compared to FastFDs, the difference
is that not all tuple pairs are generated. Instead, HyFD picks one at-
tribute A at a time and uses its equivalence classes to decide which
tuple pairs should generate new evidence sets. To decide which at-
tribute to use, the algorithm maintains a ranking of the attributes
based on how many FDs have been violated according to their evi-
dence sets. This process is called focused sampling (line 12).

Next, two tuples, ti and tj , within the same equivalence class are
compared only if j−i = window, where j and i are their positions
in the equivalence class, and window is a threshold, with different
attributes having different values of window. This corresponds to
a join with awindow predicate in line 15. Whenever an attribute is
selected in the data-driven phase, itswindow value is incremented,
which leads to new tuple pairs being generated.

The data-driven phase stops when new evidence sets
fail to identify new FD violations (encapsulated in the
continueDataDriven check in line 17). The evidence sets
collected so far (line 16) are used to generate FDs that have not yet
been violated via set cover (lines 20-21), which are then inserted
into the FDTree.

The schema-driven phase traverses the FDTree level-wise; the
getLevel function in lines 23 and 32 retrieves all attribute sets
from a given level. For each attribute set, HyFD checks which FDs
hold via checkRefinement (Line 29). The original HyFD im-
plementation computes equivalence classes directly from the data
(Line 26), and not by intersecting the previous level’s equivalence
classes. This corresponds to our LDP2 for TANE (Section 4.2).
HyFD returns to the data-driven phase if the schema-driven phase
spends too much time on a particular FDTree level (encapsulated
in the continueSchemaDriven function in line 30).

6.1.1 Large-memory PDP
We implement lines 6-7 in the same way we generated first-level

equivalence classes in TANE in Section 4.1.1. Next, we use the
following strategy to generate evidence sets in lines 14-16. If the
selected attribute A (in line 12) has c equivalence classes, then
we equally distribute these c equivalence classes across k work-
ers. As in [5], we use a load balancing heuristic that arranges the
equivalence classes in increasing order of their sizes, and divides
them into g = c/k groups, each group with k equivalence classes.
Next, one equivalence class from each group is sent to a worker in
round-robin fashion, such that each worker receives g equivalence
classes. Each worker then uses the window parameter to decide
which tuple pairs to generate. Finally, a map job generates evidence
sets from the tuple pairs. Generating new equivalence classes and
checking refinement are same as in TANE (Section 4.2.2).

Cost analysis: The cost of generating equivalence classes is the
same as in Section 4.1.1. Each worker receives g = c/k equiva-
lence classes. For each equivalence class, each worker does |Bi| ∗
m work to compare tuples, where Bi is the ith equivalence class.
Therefore, the maximum work done by any worker is

∑i=g
i=1 |Bi|m

(a) Logical discovery plan 1 (b) Logical discovery plan 2

Figure 4: HyFD algorithm

which is upper bounded by |Bmax|mc/k, where Bmax is the
largest equivalence class. This gives X ≤ cm|Bmax|/k and Y
≤ cm|Bmax|/k as the cost of generating evidence sets in one iter-
ation of the loop in lines 13-19 in the data-driven phase.

In the worst case, if HyFD discovers all the FDs using the data-
driven phase, then the data-drive phase can be performed up to n
times (the size of the largest equivalence class for a given attribute
can be n, and therefore the window threshold can be incremented
up to n times). The cost of generating equivalence classes and
checking refinement in the schema-driven phase is the same as in
TANE in Section 4.2.1.

6.1.2 Small-memory PDP
In the lmPDP, we assigned multiple equivalence classes (c/k of

them) to each worker. In the smPDP, we reduce the memory foot-
print of each worker by assigning each equivalence class to multi-
ple workers. We use multiple workers to perform the join in line
15 and then equally distribute the generated pairs across workers to
generate evidence sets. We implement the join using Spark’s join
operation and the window parameter controls which keys to join.
We borrow the implementation of generating equivalence classes
(lines 6-7 and 25-26) from TANE, as described in Section 4.2.2

Cost analysis: The communication cost of this implementation
is higher than that of lmPDP, simply because multiple rounds of
data shuffle (one for each equivalence class) are needed to generate
tuple pairs. Additionally, the cost of generating equivalence classes
in this PDP is higher than the cost in lmPDP in Section 6.1.1. We
know this from the cost analysis of TANE in Section 4.2.2.

6.2 LDP2: Modified HyFD
A drawback of LDP1 is its high communication cost during the

data-driven phase, which is amplified if the data-driven phase is

repeated multiple times. Also, as in FastFDs, there could be redun-
dant evidence sets due to overlapping equivalence classes.

In LDP2 (Figure 4(b)), we use the learnings from FastFDs: in-
stead of computing evidence sets from tuple pairs that belong to the
same equivalence class, we generate tuple pairs directly from the
data. This means that focused sampling no longer applies as we are
sampling tuples directly from the data and not from the equivalence
classes over specific attributes. We use random sampling without
replacement, as explained below, which is easier to parallelize. As
before, changes are highlighted in red. In line 5, we randomly parti-
tion the dataset into k groups, and in line 6, we generate all possible
pairs of groups, including pairs of the same group. Then, the data-
driven phase uses pairs of groups instead of equivalence classes.
In particular, line 12 samples k pairs of groups without replace-
ment, and lines 13-14 join each pair of groups to generate tuples
pairs and the corresponding evidence sets. Note that LDP2 is logi-
cally equivalent to LDP1. The schema-driven phases are the same
and the data-driven phases are equivalent, as per our discussion of
FastFDs LDP2 in Section 5. Furthermore, while LDP2 uses ran-
dom sampling instead of focused sampling, it has been shown in
[14] that the choice of sampling strategy in the data-driven phase
does not affect the correctness of the schema-driven phase.

6.2.1 Large-memory PDP
Random partitioning of the data in line 5 is implemented using a

simple map-reduce job: mappers assign partition IDs to tuples and
reducers group tuples belonging to the same partition ID. Then,
another map-reduce job implements the join in Line 6 which gen-
erates pairs of groups.

In line 12, we sample k pairs of groups without replacement
which are distributed across k workers. Therefore, each worker
is responsible for generating evidence sets from one pair of groups.

The implementation of equivalence class generation and checking
refinement is the same as in LDP1 in Section 6.1.1.

Cost analysis: With k workers, the cost of generating evidence
sets in each iteration of the data-driven phase is: X ≤ 2nm/k and
Y ≤ mn2/k2. This is because two groups of size mn/k each are
sent to every worker and every worker generates all the tuple pairs,
i.e., mn2/k2 computation. The data-driven phase runs up to (k +
1)/2 times. To see this, note that every group must be joined with
every other group, including itself, which gives k(k+ 1)/2 group-
wise comparisons. With k workers in parallel, each working on one
group-pair, the k(k + 1)/2 comparisons can be done in (k + 1)/2
data-driven rounds. This gives X ≤ (2nm/k) ∗ (k + 1)/2 ≈ nm,
which is the size of the data. Compared to the lmPDP in Section
6.1.1, this implementation performs more computation but much
less data communication. The cost of the schema-driven phase is
the same as in TANE in Section 4.2.1. The random partitioning
step in line 5 and the join in line 6 use tuple identifiers and do not
involve significant computation (only a linear scan of tuple IDs), so
their cost is negligible compared to the other operations.

In this LDP (and its lmPDP and smPDP), we use a cost-based
approach to decide when to switch between the phases. That is,
we switch to the other phase if the communication cost plus the
computation cost of proceeding with the current phase exceeds the
cost of operating in the other phase. The switching conditions
are encapsulated in the continueDataDriven (line 15) and the
continueSchemaDriven (line 27).

6.2.2 Small-memory PDP
The data-driven phase of lmPDP assumes that two groups of size

nm/k each fit in each worker’s memory to generate evidence sets.
However, we can reduce the size of each group by creating more
groups in line 5. The drawback is that we will perform fewer com-
parisons in each round of the data-driven phase, hence possibly
generating fewer evidence sets. The implementation of generating
equivalence classes (lines 6-7 and 25-26) is borrowed from TANE,
as described in Section 4.2.2.

Cost analysis: The cost of generating evidence sets in each iter-
ation of the data-driven phase reduces in proportion to the number
of groups generated in line 5. However, the data-driven phase can
run more times as compared to the lmPDP (Section 6.2.1). For
example, if we generate 2k groups instead of k groups (as in Sec-
tion 6.2.1), then the data-driven phase can run up to (2k+1) times,
doubling the communication cost compared to that in Section 6.2.1.
Additionally, the cost of generating equivalence classes in this PDP
is higher than the cost in Section 6.2.1. We know this from the cost
analysis for TANE in Section 4.2.2.

7. EXPERIMENTS
We now present our empirical evaluation. In Section 7.2 we

show that the large memory PDPs of the modified logical plans
(LDP2s) are more computation and communication efficient than
the large memory PDPs of LPD1s. In Section 7.3, we show that
our smPDPs can discover dependencies when worker memory is
small compared to the data size, but their runtimes are significantly
higher. We then demonstrate that our implementations scale well
with the number of worker machines, rows, and columns (Sec-
tion 7.4). In Section 7.5 we evaluate large and small memory plans
under different cluster settings. In Section 7.6 we evaluate the
distributed implementations against single-node implementations.
Finally, we examine the relative performance of various algorithms
on different datasets (Section 7.7).

Table 3: Comparison of logical and physical plans

LDP1 LDP2

TA
N

E

lm
PD

P - Materializes equivalence
classes (EQCs) in both PDPs
- Uses memory intensive triangle
distribution strategy for join

- Computes EQCs directly from data
- Computes multiple EQCs at each
worker, hence memory intensive

sm
PD

P

- Uses cartesian operation
for join

- Computes each EQC using
multiple workers

Fa
st

FD
s

lm
PD

P - Can perform redundant tuple
comparisons
- Each worker works on multiple
EQCs, hence memory intensive

- Uses self-join to compare tuples
exactly once
- Uses triangle distribution [5]

sm
PD

P

- Multiple workers work on
each EQC

- Implements self-join via
cartesian operation

H
yF

D

lm
PD

P - Data-driven (DD) phase same
as LDP1 lmPDP in FastFDs
- Schema-driven (SD) phase
same as LDP2 lmPDP in TANE

- Performs self-join split
across multiple runs of this phase
- SD phase same as LDP2 lmPDP
in TANE

sm
PD

P - DD phase same as
LDP1 smPDP in FastFDs
- SD phase same as LDP2
smPDP in TANE

- Compares fewer tuples in each
DD phase to reduce memory
- SD phase same as LDP2 smPDP
in TANE

7.1 Experimental Setup
We performed the experiments on a 6-node Spark 2.1.0 cluster.

Five machines run Spark workers and one machine runs the Spark
driver. Each worker machine has 64GB of RAM and 12 CPU cores
and runs Ubuntu 14.04.3 LTS. On each worker machine, we spawn
11 Spark workers, each with 1 core and 5GB of memory. The driver
machine has 256GB of RAM and 64 CPU cores, and also runs
Ubuntu 14.04.3 LTS. The Spark driver uses one core and 50GB of
memory. We run Spark jobs in standalone mode with a total of 55
executors (11 workers times 5 worker nodes).

All algorithms are implemented in Java. We obtained the source
code for TANE, FastFDs, HyFD, Hydra, and HyUCC from the
Metanome GitHub page [1]. We obtained the source code for
FastDCs and FastODs from the respective authors. We use simi-
lar datasets as those used in recent work on dependency discovery
[13]. Their properties are summarized in Table 7. For reproducibil-
ity, all the algorithms, testing scripts and links to the datasets are
publicly available on our GitHub page1.

In Table 3, we summarize our physical and logical plans to help
understand the results in this section. As a general guideline: (1)
smPDPs are suitable when workers have small memory, but these
plans reduce memory footprint at the cost of communication (X);
(2) LDP2s are faster than LDP1s.

7.2 Comparison of LPD1s and LPD2s
We use two datasets to compare the two LDPs studied in Sec-

tions 4-6: one with a large number of rows (lineitem) and one with
a large number of columns (homicide). To ensure that the LDP1
implementations finish within a reasonable time, we delete a frac-
tion of rows from these datasets. For lineitem, we use 0.5 million
rows, and for homicide, we use 100,000 rows. We focus on large
memory PDPs for this comparison because analysis has shown that
the runtime in the small memory regime is significantly higher (also
shown empirically in Section 7.3). Therefore, for both LDPs, we
use the lmPDP as described in Sections 4-6. For each tested algo-
rithm, we measure data shuffle amount in MBs, and we instrument
the code to separately report computation time and time spent dur-
ing communication (which we assume to be the total time minus
the computation time).
1https://github.com/hemant271990/distributed-dependency-
discovery

Table 4: Runtimes of smPDPs compared to lmPDPs (for LDP2)

lineitem 6Mx16 TANE FastFDs HyFD
lmPDP 1.9 hrs ≈3 days 3.9 hrs
smPDP 3.9 hrs ≈106 days 8.5 hrs

TANE: Figures 5(a-b) show the communication runtime (“X
time”), the computation runtime (“Y time”), and the maximum data
sent to any worker (“X size”) for TANE LDP1 (Section 4.1) and
LDP2 (Section 4.2). LDP1 exceeded the time limit of 24 hours
(denoted “TLE”) on the homicide dataset and was nearly an order
of magnitude slower on the lineitem dataset. These speedups are in
agreement with the cost analysis in Section 4.1 and 4.2. For LDP2,
we cache the dataset at the workers (using Spark’s Broadcast mech-
anism) to avoid re-reading it when computing equivalence classes
for the next level. This explains why the communication size and
time are lower in LDP2.

FastFDs: Figures 5(c-d) show the runtime and maximum data
sent to any worker for FastFDs LDP1 (Section 5.1) and LDP2
(Section 5.2). Again, LDP2 is significantly more time and
communication-efficient. In the cost analysis in Section 5, we
pointed out that the computation and communication cost of the
LDP1 becomes worse as the number of attributes increases. This is
evident from Figure 5(c-d), where the improvement on homicide is
14x and on lineitem it is 2.5x.

HyFD: Figures 5(e-f) show the runtime and maximum data sent
to any worker for HyFD LDP1 (Section 6.1) and LDP2 (Sec-
tion 6.2). As discussed in Section 6, the data-driven phase can lead
to a high volume of data shuffle if the dataset has many columns.
This explains why LDP1 performs poorly on homicide which has
24 columns. We observed that due to the large schema of homi-
cide, LDP2 spent most of the time in the data-driven phase. On
lineitem, the algorithm spent more time in the schema-driven phase
because of the smaller schema. On the other hand, LDP1 did a few
rounds of sampling, and due to the focused sampling strategy, it
was able to discover a significant number of non-FDs. This sig-
nificantly pruned the search space of the schema-driven phase, al-
lowing LDP1 to be as fast as LDP2. However, LDP2 still performs
less data shuffling than LDP1 because the data are cached in the
workers’ memory, and therefore we only need to send it once at the
beginning of the data-driven phase.

7.3 Comparison of smPDPs
In this experiment, we reduce each worker’s memory from 5GB

to 1GB. This is small enough that for our largest dataset, lineitem,
its equivalence classes do not fit in a worker’s memory. We use the
smPDPs, which are designed for this scenario. We use LDP2 for
each algorithm because in the previous experiment (Section 7.2)
we saw that LDP1 has a higher runtime, which gets worse in the
small memory regime.

Table 4 shows the runtimes for TANE, FastFDs and HyFD. The
runtime of the smPDPs is almost twice as high as the correspond-
ing lmPDPs for TANE and HyFD. For FastFDs, we extrapolate the
runtimes by running it on datasets with 100K, 300K, 500K, and
700K rows because FastFDs has quadratic complexity in number
of rows, and lineitem has 6 million rows. The smPDP of FastFDs
is an order of magnitude slower than the lmPDP.

7.4 Scalability
We now show scalability in terms of the number of workers,

the number of rows, and the number of columns. In addition to
TANE, FastFDs and HyFD, we test FastODs, FastDCs, Hydra and

0	

100	

200	

300	

400	

0	

200	

400	

600	

800	

time	 shuffle	 time	 shuffle	

LDP1	 LDP2	

M
B	

tim
e	
(s
ec
s)
	

Y	time	 X	time	 X	size	(MB)	

(a) TANE lineitem

0	

0.5	

1	

1.5	

2	

2.5	

0	

5000	

10000	

15000	

20000	

25000	

30000	

time	 shuffle	 time	 shuffle	

LDP1	 LDP2	

M
B	

tim
e	
(s
ec
s)
	

Y	time	 X	time	 X	size	(MB)	

TLE	

(b) TANE homicide

0	

5	

10	

15	

20	

25	

0	

1000	

2000	

3000	

4000	

5000	

6000	

time	 shuffle	 time	 shuffle	

LDP1	 LDP2	

M
B
	

	t
im

e	
(s
ec
s)
	

Y	time	 X	time	 X	size	(MB)	

(c) FastFDs lineitem

0	

2	

4	

6	

8	

0	

500	

1000	

1500	

2000	

time	 shuffle	 time	 shuffle	

LDP1	 LDP2	

M
B	

tim
e	
(s
ec
s)
	

Y	time	 X	time	 X	size	(MB)	

(d) FastFDs homicide

0	

20	

40	

60	

80	

0	

50	

100	

150	

200	

250	

time	 shuffle	 time	 shuffle	

LDP1	 LDP2	

M
B	

tim
e	
(s
ec
s)
	

Y	time	 X	time	 X	size	(MB)	

(e) HyFD lineitem

0	

500	

1000	

1500	

2000	

2500	

3000	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

time	 shuffle	 time	 shuffle	

LDP1	 LDP2	

M
B	

tim
e	
(s
ec
s)
	

Y	time	 X	time	 X	size	(MB)	

(f) HyFD homicide

Figure 5: Comparison of communication and computation cost of
LDP1 and LDP2 of TANE, FastFDs, and HyFD

102

103

104

 5 10 15 20 25 30 35 40 45 50 55

R
u

n
tim

e
 s

e
cs

workers
TANE

FastFDs
HyFD

HyUCC
FastODs
FastDCs

Hydra

(a) large-memory plans (lmPDPs)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 5 10 15 20 25 30 35 40 45 50 55
R

u
n

tim
e

 s
e

cs
workers

TANE FastFDs HyFD

(b) small-memory plans (smPDPs)

Figure 6: Scalability with the number of workers of LDP2 plans

HyUCC. We use lmPDP and LDP2 to make sure all algorithms
terminate in reasonable time. For DC discovery, it has been re-
ported in previous work that FastDCs is significantly slower than
Hydra [4], so we restrict FastDCs to discover DCs with at most 5
predicates. Note that our distributed implementations perform DC
discovery from evidence sets centrally at the driver (by finding a
minimal set cover). Therefore, this restriction has the same impact
on the distributed and non-distributed implementations.

7.4.1 Worker Scalability
We first demonstrate nearly linear scalability with the number of

workers. We vary the number of Spark workers from 6 to 55. Fig-
ure 6(a) shows the results for large memory plans of the LDP2s. We
use the lineitem dataset with 0.5 million rows for TANE, FastFDs,
HyFD, HyUCC, and Hydra and with only 100k rows for FastOD,
and FastDCs (because of their high sensitivity to the number of tu-
ples, as will be shown in Section 7.4.2). Note that the y axis is
logarithmic and the dashed line shows linear scaling for reference.
FastFDs and FastDCs are impacted more by the number of workers

101

102

103

104

105

 100 200 300 400 500 600 700 800 900 1000
100

101

102

103

104

105

106
R

un
tim

e
se

cs

D
ep

en
de

nc
ie

s
[#

]

lineitem rows (thousands)
TANE

FastFDs
HyFD

HyUCC
FastOD
FastDC

Hydra
#UCCs

#FDs
#ODs

Figure 7: Scalability (of lmPDP of LDP2) with the number of rows
(in thousands) for lineitem

100

101

102

103

104

105

 10 20 30 40 50 60
100

101

102

103

104

105

106

R
un

tim
e

se
cs

D
ep

en
de

nc
ie

s
[#

]

ncvoter cols
TANE

FastFDs
HyFD

HyUCC
FastOD
FastDC

Hydra
#UCCs

#FDs
#ODs

Figure 8: Scalability (of lmPDP of LDP2) with the number of
columns for ncvoter

because their complexity is quadratic in the size of the input. TANE
outperforms FastFDs because the dataset has a small schema, and
HyFD closely follows TANE because HyFD spent most of the time
in the schema-driven phase. Scale-out of FastODs is similar to
TANE, and scale-out of HyUCC and Hydra is similar to HyFD.
Recall that FastODs and FastDCs are running on a smaller dataset,
so their runtimes are relatively low.

Figure 6(b) shows that the small memory plans also show nearly
linear scalability with the number of workers. For this experiment,
we again reduced the memory of each worker to 1GB and tested
the scalability on the largest dataset, i.e. lineitem (we ran FastFDs
only on 100K rows because of its sensitivity to number of rows).
We do not report the smPDP runtimes of OD and DC discovery
algorithms because they exceeded the time limit and did not scale
well to large data sets.

7.4.2 Row Scalability
Next, we test scalability with the number of rows. We use the

lineitem dataset and test all seven algorithms: TANE, FastFDs,
HyFD, HyUCC, FastOD, FastDCs, and Hydra. Results are shown
in Figure 7 (with logarithmic y-axes), including algorithm runtimes
and the number of dependencies that were discovered.

TANE and FastOD behave similarly and their runtime grows al-
most linearly with the number of rows. FastOD is similar to TANE
but partition refinement for order dependency discovery is more ex-
pensive, resulting in much longer runtimes for FastOD compared to
TANE. HyFD and HyUCC behave similarly and they closely fol-

low the scalability of TANE; they both spend most of the time in the
schema-driven phase due to smaller schema of lineitem. HyUCC is
similar to HyFD, as described in Section 6.2.

FastFDs and FastDCs perform similarly and their runtime grows
almost quadratically with the number of rows. However, for
lineitem, there are 64 predicates that define the space of DCs. Thus,
the minimal set cover operation in FastDCs [6] is significantly more
expensive. As expected, the performance of Hydra is significantly
better than FastDCs, even when we restrict FastDCs to DCs with
at most 5 predicates. We also tested row scalability using homicide
and observed similar trends.

7.4.3 Column Scalability
We now evaluate scalability with the number of columns. We

use the ncvoter dataset, which has a sufficient number of columns
and 10,000 rows. We restrict FastDCs, Hydra and FastOD to fewer
columns because of their high sensitivity to the schema size. Re-
sults are shown in Figure 8, including algorithm runtimes and the
numbers of various dependencies that were discovered. Again, the
y-axis is logarithmic. As expected, TANE and FastODs runtimes
increase exponentially with the number of columns because these
algorithms are schema-driven. FastDCs and Hydra runtimes in-
crease exponentially because the predicates space of DCs increases
significantly with the number of columns. The runtime of FastFDs
stays almost linear with the number of columns, and it performs
best among the FD discovery algorithms. HyFD performs similar
to FastFDs due to the low cost of the data-driven phase. However,
HyFD still needs to switch to the schema-driven phase and hence it
does not perform as well as FastFDs. The behaviour of HyUCC is
similar to HyFD. Recall that we restrict FastDCs to discover DCs
only with up to 5 predicates, so its runtimes are lower than those
of Hydra. We also tested column scalability using the flight dataset
and observed similar trends.

7.5 Experiments with different cluster settings
We now test the smPDPs and lmPDPs (of LDP2) under different

cluster settings. For a fixed cluster memory of 55GB, we consider
different numbers of workers and worker memory as shown in Ta-
ble 5. We observe that for memory-intensive algorithms such as
TANE and HyFD, the lmPDPs suffer when worker memory is low
(due to thrashing) and eventually run out of memory when more
workers are used with smaller memory. Therefore, running smPDP
is advisable when cluster memory is small. On the other hand,
FastFDs is more computation-intensive, and therefore it is always
advisable to use more workers and the lmPDP (the smPDP is sig-
nificantly slower because of the cartesian operation in Spark).

Table 5: Runtimes under different cluster settings

Cluster setting lineitem 6Mx16 lineitem 0.5Mx16
Plans # workers worker-memory TANE HyFD FastFDs

smPDP 55 1GB 3.9 hrs 8.5 hrs 17.4 hrs
lmPDP 28 1.9GB OOM OOM 1.1 hrs
lmPDP 15 3.6GB 5.7 hrs 10.6 hrs 2.0 hrs
lmPDP 10 5.5GB 4.2 hrs 9.6 hrs 2.9 hrs

We also test the smPDP and lmPDP plans under different worker
memory settings (1GB, 2GB, and 4GB), keeping the number of
workers fixed at 55. The goal of this experiment is to determine if
more memory helps. We observe that as long as there is enough
memory for the dataset and for the intermediate results, increasing
memory does not impact the runtime. In fact, when there are many
small jobs (as in the smPDPs), over-provisioning can be harmful
because Spark’s garbage collection runs more frequently.

0	

2000	

4000	

6000	

8000	

500,000	 1,000,000	 2,000,000	 3,000,000	

	t
im

e
	(
se
cs
)	

#rows	

single	node	 6	workers	 28	workers	 55	workers	

(a) TANE on lineitem

0	

200	

400	

600	

800	

1000	

10,000	 25,000	 50,000	 75,000	 100,000	

ti
m
e
	(
se
cs
)	

#rows	

single	node	 6	workers	 28	workers	 55	workers	

(b) FastFDs on homicide

Figure 9: Single-node vs distributed performance

7.6 Distributed vs. Single-Node Runtimes
We now compare the performance of single-node (or non-

distributed) implementations against the distributed implementa-
tions (lmPDP LDP2). We run the single machine implementations
on one machine from our cluster (12 CPU cores and 64GB RAM).
We run the distributed implementations on 55 workers with 5GB
memory each. We use lineitem and homicide datasets.

Table 6 shows that TANE single-node ran out of memory on
lineitem with 6M rows whereas the distributed version finished in
about 2 hours. Both single-node and distributed versions exceeded
the time limit of 24 hours for homicide because of the large schema.
Figure 9(a) further shows the runtimes for different sizes of the
lineitem dataset, where the single-node implementation ran out of
memory at about 3M rows, and the distributed implementation took
less time than the single-node implementation, even with only six
workers (having 5GB of memory each). We also tested our LDP2
(which is more computation intensive) of TANE on a single node,
and found that it performed about 5x slower than the original im-
plementation using the lineitem dataset with 500K rows.

FastFDs benefits from the parallelism of the distributed imple-
mentations. The single-node implementation exceeded the time
limit of 24 hours for all datasets except homicide 100K rows (Table
6), whereas the distributed version finished in much less time for
all but the lineitem 6M rows dataset. Figure 9(b) further shows the
runtimes for different sizes of the homicide dataset and different
numbers of workers. Even with only six workers, the distributed
algorithm’s runtime is significantly lower than the single-node run-
time. We also tested our LDP2 on a single node and found that it
performed 5x faster than the original single-node implementation
using the homicide dataset with 100K rows.

HyFD2 is the most memory and computation efficient single-
node algorithm, and outperforms the distributed version as long as
the dataset fits on a single machine (Table 6). When we reduced
the single machine memory to 8GB, the lineitem dataset did not
fit in memory; however, smPDP terminated in about 8 hours when
executed on a Spark cluster with five machines (with 55 workers)
restricted to 8 GB RAM each (40GB total, 0.7GB per worker).

Table 6: Runtimes (in seconds) of single-node and distributed im-
plementations

Single node Distributed LDP2 lmPDP
Dataset (#rows) TANE FastFDs HyFD HyFD 12 threads TANE FastFDs HyFD
lineitem (500K) 413 TLE 124 43 100 1617 197
homicide (100K) OOM 71581 115 74 25832 114 179

lineitem (6M) OOM TLE 3396 1124 6854 TLE 14311
homicide (0.6M) TLE TLE 745 683 TLE 3152 3113

2HyFD is the only existing algorithm that has a multi-threaded im-
plementation in Metanome. We run it on 12 threads, which equals
the number of physical cores on our machine.

7.7 Experiments on Different Datasets
Finally, we evaluate (lmPDP implementations of LDP2s of)

TANE, FastFDs and HyFD on several datasets with at least 14
and up to 109 columns. We omit FastDCs, Hydra and FastOD
because these algorithms do not perform well on datasets with a
large number of columns. Results are shown in Table 7. Adult is
the smallest dataset, and all three algorithms finished in a reason-
able time. lineitem has a large number of rows (6 million), mean-
ing that FastFDs struggles but TANE and HyFD perform better.
However, HyFD takes longer than TANE because, as mentioned
before, HyFD incurs the overhead of creating partitions and it does
not prune keys. homicide and ncvoter are examples where HyFD
switches between the two phases and discovers FDs the fastest. For
ncvoter, FastFD ran out of memory at the driver because the search
space for minimal set covers grew large. For fd-reduced, TANE
performs best because almost all of the discovered FDs are present
in the third level of the lattice; this is observed in HyFD [14] as
well. For the flight dataset, HyFD spent most of the time in the
data-driven phase, but it still had to validate millions of FDs in the
schema-driven phase, and hence it could not beat FastFDs.

Recent work [13, 14] has compared FD discovery algorithms on
similar datasets and concluded that schema-driven algorithms are
suitable for datasets with many rows and data-driven algorithms
are suitable for the datasets with many columns. Hybrid algo-
rithms perform best by spending most of their time in either the
data-driven phase or the schema-driven phase, depending on their
relative cost. We observed similar trends in the distributed versions
of these algorithms (and additionally explored scalability with the
number of workers).

Table 7: Runtimes on different datasets

Dataset # Columns # Rows # FDs TANE FastFDs HyFD
adult 14 32,560 78 50 secs 23 secs 101 secs

lineitem 16 6,000,000 4,145 1.9 hrs >48 hrs 3.9 hrs
homicide 24 600,000 637 38.1 hrs 53 mins 51 mins

fd-reduced 39 250,000 89,571 86 secs 648 secs 228 secs
ncvoter 60 1,000,000 2,638,634 >48 hrs MLE 43.2 hrs
flight 109 1,000 1,150,815 >24 hrs 99 secs 351 secs

8. CONCLUSIONS AND LIMITATIONS
In this paper, we took a first step towards understanding the prob-

lem of distributed dependency discovery. We proposed an analy-
sis framework consisting of six primitives that correspond to the
data processing steps of existing discovery algorithms for UCCs,
FDs, ODs and DCs. The primitives allowed us to analyze the al-
gorithms in terms of their communication and computation costs,
and enabled an exploration of the space of possible optimizations.
We demonstrated this exploration via case studies and an empiri-
cal evaluation. In particular, our experimental results showed that
the execution plans which revisit the design decisions made in the
original non-distributed algorithms outperform the straightforward
distributed plans.

Our primitives enabled an analysis of distributed implementa-
tions of dependency discovery algorithms. However, some of these
algorithms are inherently sequential and therefore do not benefit
from our framework. For example, the schema-driven DFD [3] al-
gorithm performs a random walk over the attribute lattice. DFD is
sequential since the random walk proceeds one node at a time rather
than one lattice level at a time. As a result, while DFD can be ex-
pressed using our primitives (as in TANE, it computes equivalence
classes and checks refinement for each candidate), the resulting im-
plementation does not scale out.

9. REFERENCES
[1] Metanome. https:

//github.com/HPI-Information-Systems/
metanome-algorithms.

[2] Z. Abedjan, L. Golab, and F. Naumann. Profiling relational
data: a survey. The VLDB Journal, 24(4):557–581, Aug
2015.

[3] Z. Abedjan, P. Schulze, and F. Naumann. DFD: Efficient
functional dependency discovery. In CIKM, pages 949–958,
New York, NY, USA, 2014. ACM.

[4] T. Bleifuß, S. Kruse, and F. Naumann. Efficient denial
constraint discovery with hydra. PVLDB, 11(3):311–323,
2017.

[5] X. Chu, I. F. Ilyas, and P. Koutris. Distributed data
deduplication. PVLDB, 9(11):864–875, 2016.

[6] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial
constraints. PVLDB, 6(13):1498–1509, 2013.

[7] E. Garnaud, N. Hanusse, S. Maabout, and N. Novelli.
Parallel mining of dependencies. In HPCS, pages 491–498,
2014.

[8] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen.
TANE: an efficient algorithm for discovering functional and
approximate dependencies. Comput. J., 42(2):100–111,
1999.

[9] W. Li, Z. Li, Q. Chen, T. Jiang, and H. Liu. Discovering
functional dependencies in vertically distributed big data. In
WISE 2015, pages 199–207.

[10] W. Li, Z. Li, Q. Chen, T. Jiang, and Z. Yin. Discovering
approximate functional dependencies from distributed big
data. In F. Li, K. Shim, K. Zheng, and G. Liu, editors, Web
Technologies and Applications, pages 289–301, Cham, 2016.
Springer International Publishing.

[11] J. Liu, J. Li, C. Liu, and Y. Chen. Discover dependencies
from data—a review. IEEE Trans. on Knowl. and Data Eng.,
24(2):251–264, Feb. 2012.

[12] S. Makki and G. Havas. Distributed algorithms for depth-first
search. Information Processing Letters, 60(1):7 – 12, 1996.

[13] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J.-P.
Rudolph, M. Schönberg, J. Zwiener, and F. Naumann.
Functional dependency discovery: An experimental
evaluation of seven algorithms. PVLDB, 8(10):1082–1093,
2015.

[14] T. Papenbrock and F. Naumann. A hybrid approach to
functional dependency discovery. In SIGMOD, pages
821–833, 2016.

[15] T. Papenbrock and F. Naumann. A hybrid approach for
efficient unique column combination discovery. In BTW,
pages 195–204. Gesellschaft fr Informatik, Bonn, 2017.

[16] J. H. Reif. Depth-first search is inherently sequential.
Information Processing Letters, 20(5):229 – 234, 1985.

[17] H. Saxena, L. Golab, and I. F. Ilyas. Distributed discovery of
functional dependencies. In ICDE, pages 1590–1593, April
2019.

[18] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
hadoop distributed file system. In MSST’10, pages 1–10.
IEEE Computer Society, 2010.

[19] J. Szlichta, P. Godfrey, L. Golab, M. Kargar, and
D. Srivastava. Effective and complete discovery of order
dependencies via set-based axiomatization. PVLDB,
10(7):721–732, 2017.

[20] C. M. Wyss, C. Giannella, and E. L. Robertson. Fastfds: A

heuristic-driven, depth-first algorithm for mining functional
dependencies from relation instances - extended abstract. In
DaWaK 2001, pages 101–110.

[21] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In
HotCloud, 2010.

