Distributed Discovery of Functional Dependencies

Hemant Saxena
University of Waterloo
Waterloo, Canada
h2saxena@uwaterloo.ca

Abstract—We address the problem of discovering func-
tional dependencies from distributed big data. Existing (non-
distributed) algorithms such as FastFDs focus on minimizing
computation. However, distributed algorithms must also opti-
mize data communication costs, especially in shared-nothing
settings. We propose a distributed version of FastFDs that is
communication-efficient and we experimentally show significant
performance improvements over a straightforward distributed
implementation.

Index Terms—data profiling, functional dependencies, dis-
tributed algorithms

I. INTRODUCTION

Functional Dependencies (FDs) are critical in many data
management tasks including schema design, data cleaning and
query optimization. Despite their importance, dependencies
are not always specified in practice, and even if they are,
they may change over time. Furthermore, dependencies that
hold on individual datasets may not hold after performing data
integration. As a result, there has been a great deal of research
on automated discovery of (functional and other) dependencies
from data; see, e.g., [1], [2] for recent surveys.

Existing work proposes methods for pruning the exponential
search space to minimize computation costs. However, in
modern big data infrastructure, data are naturally partitioned
(e.g., on HDFS [3]) and computation is parallelized (e.g.,
using Spark [4]) across multiple compute nodes. In these
environments, ensuring good performance requires minimizing
computation and data communication costs.

A naive solution to minimize communication costs during
FD discovery is to allow no data communication at all: each
node locally runs some existing algorithm to discover FDs
from the data it stores, and then we take the intersection of
the locally-discovered dependencies. To see why this approach
fails, consider a table with a schema (A, B) and assume the
table is partitioned across two nodes: the first node storing
tuples (a1,b1), (a1,b1), and the second node storing tuples
(a1,b2), (a1,b2). The FD A — B locally holds on both nodes
but it does not hold globally over the whole table. Discovering
dependencies from a sample has a similar problem: dependen-
cies that hold on a sample may not hold on the whole dataset.

In this paper, we consider the well-known FastFDs algo-
rithm for FD discovery [5]. We provide a straightforward
distributed implementation of FastFDs that uses the same
design principles as the original non-distributed version. We
then propose an improved distributed version with reduced

Lukasz Golab
University of Waterloo
Waterloo, Canada
lgolab@uwaterloo.ca

Ihab F. Ilyas
University of Waterloo
Waterloo, Canada
ilyas@uwaterloo.ca

communication overhead. Using real datasets, we demonstrate
that the improved version is significantly faster.

Prior Work: There has been recent work on parallelizing
dependency discovery across multiple threads, but it considers
a singe-node shared-everything architecture where commu-
nication costs are not a bottleneck [6]. There is also some
early work on distributed FD discovery. However, it suffers
from the same issues as the naive solution (i.e., it returns
locally-discovered FDs which may not hold globally) [7], or
it assumes that data are partitioned vertically and ensures
efficiency by limiting the search space to FDs with single
attributes [8].

II. PRELIMINARIES

Let R = {A1, Ao, ..., A} be a set of attributes describing
the schema of a relation R and let r be a finite instance of R
with n tuples.

Definition I: Functional dependency: Let X C R and
A € R. A functional dependency (FD) X — A holds on r
iff for every pair of tuples ¢;,¢; € r the following is true: if
ti[X] = tj[X], then ti[A] = tj[A]

An FD X — A is minimal if A is not functionally
dependent on any proper subset of X. In the remainder of this
paper, discovering dependencies refers to discovering minimal
dependencies.

Definition 2: Equivalence classes: The equivalence class of
atuple ¢ € r w.r.t. an attribute set X C R is denoted by [t]x =
{u € rlVA € X t[A] = u[A]}. The set mx = {[t]x|t € r}
contains the equivalence classes of r under X.

Note that wx is a partition of r such that each equivalence
class corresponds to a unique value of X. Let |7rx| be the
number of equivalence classes in 7x, i.e., the number of
distinct values of X.

Definition 3: Evidence sets: For any two tuples ¢; and ¢, in
r, their evidence set EV(t;,t;) is the set of attributes A € R
that have different values in ¢; and ;.

Definition 4: Communication and computation cost:
Suppose we have k workers or compute nodes. Let X; and
Y; be the amount of data sent to the it® worker and the
computation done by the i*" worker, respectively [9]. The
runtime of a distributed algorithm depends on the runtime
of the slowest worker. Thus, we will aim to minimize the
following quantities:

ol o | 3>
olo|c|s |
oo | |T

[=A R R E-NE- N

Fig. 1: Example relation instance

X = max X;

Y = max Y;
i1€[1,k]

i€[1,k]

The FastFDs algorithm for FD discovery: this algorithm
examines pairs of tuples to identify evidence sets (Definition
3) and violated dependencies; in the end, any dependencies
not found to be violated must hold. The time complexity of
FastFDs depends on the number of tuples, but not on the
number of columns, and therefore this algorithm works well
for small datasets with many columns.

Consider the example relation in Figure 1. It leads to the
following evidence sets from the six tuple pairs:

Ev(tl,tz) = {AB} EV(tz,t:;) = {AB7D}, EV(t17t4) = {A, BACD}ﬂ
EV(t1,t3) = {B. D}, EV(ts,t3) = {B.C,D}, EV(ts,1s) = {A,C, D}

After FastFDs generates evidence sets, for each possi-
ble right-hand-side attribute of an FD, it finds all the left-
hand-side attribute combinations that hold. Say A is the
right-hand side attribute currently under consideration. The
algorithm first removes A from the evidence sets, giving
{{B},{B,C,D},{B,D},{C,D}} in our example. Next,
FastFDs finds minimal covers of this set, i.e., minimal sets
of attributes that intersect with every evidence set. In this
example, we get BC and BD, and therefore we conclude
that BC' — A and BD — A.

FastFDs avoids generating evidence sets from all n(n—1)/2
pairs of tuples. Instead, it only considers pairs of tuples that
belong to the same equivalence class for at least one attribute.
For example, in Figure 1, tuples 1 and 4 are not in the
same equivalence class for any of the four attributes. In these
cases, a tuple pair has no attributes in common and therefore
the corresponding evidence set is all of R, which trivially
intersects with every possible cover.

III. ALGORITHMS

Figure 2(a) shows the pseudo-code of FastFDs. The algo-
rithm has three main steps: generate equivalence classes for
each attribute, generate evidence sets (from pairs of tuples
within the same equivalence class, as mentioned earlier), and
find minimal covers of the evidence sets. The first step is
implemented using the function genEQClass in lines 4-5.
In the second step, we iterate over the equivalence classes for
each attribute and compute a self-join within each equivalence
class (lines 10-11). This gives all the tuple pairs that share at
least one equivalence class. Line 12 generates the correspond-
ing evidence sets using the function gen 'V Set. Finally, we

sort the evidence sets by their cardinality and compute their
minimal covers (lines 7-8).

A. Straightforward Distributed Implementation

Figure 2(a) shows a distributed implementation of FastFDs
following the design principles of the original non-distributed
version. First, a map job generates the equivalence classes,
labelled gen EQclassHash in the top rectangle. It distributes
(re-partitions) the columns in R across the k& workers in round-
robin fashion. Then, each worker scans r and uses hashing to
compute equivalence classes for the columns assigned to it.

Next, generating evidence sets requires two jobs (illustrated
in the bottom rectangle). First, a map-reduce job implements a
self-join that joins pairs of tuples within the same equivalence
class 7. For example, returning to Figure 1, equivalence classes
for A generate tuple pairs (1,3) and (2,4); equivalence classes
for B generate (3,4), and so on. To implement this type of
self-join in a distributed fashion, we use the Dis-Dedup™
algorithm from [9]. This algorithm was originally proposed for
data deduplication, where a dataset is partitioned into blocks,
potentially by multiple partitioning functions, and tuple pairs
from the same block are checked for similarity. Observe that
our scenario is similar, in which a dataset is partitioned into
blocks via equivalence classes and FastFDs only needs to
compare tuple pairs from the same equivalence class (block).
Afterwards, a map job implements genE'V Set, in which each
worker computes evidence sets for the tuple pairs it created
during the self-join.

Finally, we sort the equivalence classes and compute min-
imal covers. We do these steps locally at the driver node
because FastFDs uses a depth-first-search strategy to compute
all minimal covers, which is inherently sequential [10], [11].

Cost analysis: We show in Theorem 1 the cost of generating
equivalence classes.

Theorem 1: With k workers, the costs of generating equiv-
alence classes, via hashing, for all m attributes with n tuples
isX=Y < 7~

Proof: Since each of the k£ workers is responsible for up to
7 columns, and since computing equivalence classes requires
a scan of (the n values of) the corresponding column, we get
X=Y < 7™]

We now examine the cost of generating evidence sets. If
the size of an equivalence class j is B,;, then the number
of comparisons done to generate evidence sets for all tuple
pairs from this equivalence class is B;(B; —1)/2 ~ B3 /2.
Assuming c is the total number of equivalence classes, the
total number of comparisons when generating evidence sets
is W = >7_, B7/2. Each tuple pair comparison takes m
amount of work, therefore the total work done is m * W.

Theorem 2: With k workers, the cost of generating
evidence sets where total work is m x W is X <
5m?maz(n/k,\/2W/k), and Y < 5mW/k.

Proof: According to [9], we have the following bounds
for Dis-Dedup™ with input of size |I|, b blocks in total from s
blocking functions and total work of W = Z?:l B?/2: X; <
S5sxmax(|I|/k, \/2W/k), and Y; < 5W/k. Using these above

1 Function fastFD (Relation r, Schema R) is

2| EQ={} | Re-partition
Ev={} |map||map| H.lmap

genEQclassHash

3
TR AR TR /
5 r H

EV) = generateEvidence(EQ)
1| EVy=sat(EV)
§ | FDs = setCover(EV))

=] =] . =]

|reduce| |reduce| |reduce|

W | forre£Qdo . Self-joinon n

‘n for (t; t;) € join(r,7) do] | map | | map | | map |
3 EVy = EV) U genEVSet(t;.t;) cee

H - genEVSet

(a) Straightforward distributed design

1 Function fastFD (Relation r, Schema R) is
2| EV={}

EV) = generateEvidence(r)

EV) = sort(EV;)

FDs = setCover(EV;)

=] =] =]

o o= w

|reduce| |reduce| |reduce|

Self-joinon r
[[=] .. []

o for) Cjo(rr)do
s | EV=EvU genEVSet(t;.1))

genEVSet

(b) Optimized distributed design

Fig. 2: Two distributed versions of the FastFDs algorithm

bounds in our case, we get: X < 5m?maz(n/k, /2W/k), and
Y < 5mW/k. Note that we have m “blocking functions” and
m amount of work is required to compare (all m attributes of)
each tuple pair. [|

B. Optimized Distributed Implementation

The Dis-Dedup™ algorithm is the current state-of-the-art,
but it still incurs a non-trivial communication and computation
cost. One problem is the redundant pair-wise tuple compar-
isons. Consider the equivalence classes 74 = {{1,3},{2,4}}
and 7o = {{1,2,3},{4}} from the example in Section II. In
the straightforward design, tuple 1 and tuple 3 are compared
twice because they co-occur in two partially overlapping
equivalence classes. It is possible to eliminate this problem,
but it would require an expensive comparison of all pairs
of equivalence classes in order to eliminate duplicate tuple
pairs. Also, increasing the number of attributes increases the
overlap of equivalence classes, thereby increasing the number
of redundant pair-wise tuple comparisons. This is also evident
from the m? factor in the bounds of the straightforward design.

The optimized design trades off communication for compu-
tation: instead of computing evidence sets from tuple pairs
that belong to the same equivalence class, we compute a
full self-join of the dataset and compute evidence sets from
all tuple pairs. This is accomplished by using a different
physical implementation of the genEQClass function. This
approach too performs some extra computation (of generating
evidence sets of tuple pairs that do not share any equivalence
classes) but, as we will show shortly, it significantly reduces
the communication cost.

As shown in Figure 2(b), the new design only requires one
map-reduce job to compute a full self-join of the original
dataset, followed by a map job to generate evidence sets from
all tuple pairs (changes are shown in blue). To implement
the self-join, we use a distributed self-join strategy called
the triangle distribution strategy [9], which was shown to be
optimal in terms of communication and computation costs.
We may generate more tuple pairs than needed, but the data

communication cost of the triangle distribution method is
lower than that of Dis-Dedup™.

Cost analysis: Applying the communication and compu-
tation bounds from [9], we get: X < nmy/2/k and Y
< mn?/2k. This is a significant improvement over the
straightforward design. Note that the communication bound
implies that the memory footprint of this design is sub-linear
with respect to the number of tuples and also decreases as k
increases.

IV. EXPERIMENTS

We now evaluate the straightforward and optimized versions
of distributed FastFDs on a 6-node Spark 2.1.0 cluster. Five
machines run Spark workers and one machine runs the Spark
driver. Each worker machine has 64GB of RAM and 12 CPU
cores, and runs Ubuntu 14.04.3 LTS. On each worker machine,
we spawn 11 Spark workers, each with 1 core and 5GB of
memory. The driver machine has 256GB of RAM and 64 CPU
cores, and runs Ubuntu 14.04.3 LTS. The Spark driver uses 1
core and 50GB of memory. We run Spark jobs in standalone
mode with a total of 55 executors.

We implemented the algorithms in Java using the Metanome
[12] implementation of FastFDs as a reference. For each tested
algorithm, we measure communication costs and runtime.

We use four datasets that were also used in recent work on
dependency discovery [13]: TPC-H lineitem with 16 columns
and ether 500,000 or 1 million rows, depending on the
experiment, homicide with 24 columns and 100,000 rows or
600,000 rows depending on the experiment, flight with 80
columns and 1,000 rows, and ncvoter with 60 columns and
10,000 rows.

We first compare the performance of the straightforward
implementation against the optimized implementation. For
this, we use the two datasets with the most rows, lineitem and
homicide, to clearly show the differences in communication
and computation costs. However, to ensure that the straight-
forward implementation terminates within a reasonable time,
we use the smaller versions of these datasets, with 500,000
and 100,000 rows, respectively.

lineitem 0.5Mx16 | Total time (secs) | Total shuffle (MB)
dist-fastFDs 5242 22.8
fastFDs* 2098 5.4

homicide 100Kx24 | Total time (secs) | Total shuffle (MB)
dist-fastFDs 1556 7.4
fastFDs* 106 0.9

TABLE I: Computation and communication costs of FastFDs
implementations

104 £ 4

Runtime secs
=)
%

102 |

workers
lineitem —¥—

Fig. 3: Scalability of FastFDs* with the number of workers

Table I shows the runtime and maximum data sent to any
worker for straightforward distributed FastFDs (dist-FastFDs;
Section III-A) and optimized distributed FastFDs (FastFDs*;
Section III-B). The optimized implementation is significantly
more efficient in terms of runtime and communication over-
head. In Section III, we pointed out that the computation and
communication cost of the straightforward design becomes
worse as the number of attributes increases. This is evident
from Table I, where the improvement on homicide is 14x and
on lineitem it is 2.5x.

Next, we evaluate the scalability of the optimized design.

Worker scalability: Figure 3 shows the scalability of
FastFDs* with the number of workers using the lineitem
dataset with 500,000 rows (other datasets showed similar
trends). The y-axis, showing time (in seconds), is logarithmic,
and the dashed curve represents linear scale-out. We conclude
that FastFDs* scales almost linearly.

Row scalability: Figure 4 shows the scalability of FastFDs*
with the number of rows using lineitem and homicide. We start
with the full datasets and then we keep removing 100,000
randomly-selected rows at a time. Again, the y-axis is loga-
rithmic, and we observe that runtime increases quadratically
with the number of rows. This is not surprising as FastFDs
needs to compare tuple pairs to generate evidence sets.

Column scalability: Finally, Figure 5 shows the scalability
of FastFDs* with the number of columns on flight and ncvoter.
We start with the full datasets and then we keep removing
ten randomly-selected columns at a time. Runtime does not
change for small numbers of columns, but begins to rise at
about 30-40 columns. Upon further inspection, we found that
the number of FDs in these datasets increases rapidly at that
point, meaning that computing the minimal covers, which is

Q
EN
T

%

Runtime secs
=)
%

=)
®

10! L L 1 L 1 1 L L L
0 100 200 300 400 500 600 700 800 900 1000

rows (thousands)
lineitem —¥— homicide —>%—

Fig. 4: Scalability of FastFDs* with the number of rows

70

60 -

Runtime secs

10 20 30 40 50 60 70 80

#cols
flight —X— ncvoter —>—

Fig. 5: Scalability of FastFDs* with the number of columns

done locally at the diver node, becomes the bottleneck.

REFERENCES

[1] Z. Abedjan, L. Golab, and F. Naumann, “Profiling relational data: a
survey,” The VLDB Journal, vol. 24, no. 4, pp. 557-581, Aug 2015.

[2] J. Liu, J. Li, C. Liu, and Y. Chen, “Discover dependencies from data—
a review,” IEEE Trans. on Knowl. and Data Eng., vol. 24, no. 2, pp.
251-264, Feb. 2012.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in MSST’10, 2010, pp. 1-10.

[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in HotCloud’10, pp. 10—
10.

[5] C. M. Wyss, C. Giannella, and E. L. Robertson, “Fastfds: A heuristic-
driven, depth-first algorithm for mining functional dependencies from
relation instances - extended abstract,” in DaWaK 2001, pp. 101-110.

[6] E. Garnaud, N. Hanusse, S. Maabout, and N. Novelli, “Parallel mining
of dependencies,” in HPCS, 2014, pp. 491-498.

[71 W. Li, Z. Li, Q. Chen, T. Jiang, and Z. Yin, “Discovering approximate
functional dependencies from distributed big data,” in APWeb, Lecture
Notes in Computer Science, vol 9932, 2016, pp. 289-301.

[81 W. Li, Z. Li, Q. Chen, T. Jiang, and H. Liu, “Discovering functional
dependencies in vertically distributed big data,” in WISE 2015, pp. 199—
207.

[9] X. Chu, L. F. Ilyas, and P. Koutris, “Distributed data deduplication,”

Proc. VLDB Endow., vol. 9, no. 11, pp. 864-875, Jul. 2016.

S. Makki and G. Havas, “Distributed algorithms for depth-first search,”

Information Processing Letters, vol. 60, no. 1, pp. 7 — 12, 1996.

J. H. Reif, “Depth-first search is inherently sequential,” Information

Processing Letters, vol. 20, no. 5, pp. 229 — 234, 1985.

“Metanome,” https://github.com/HPI-Information-Systems/

metanome-algorithms.

T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J.-P. Rudolph,

M. Schonberg, J. Zwiener, and F. Naumann, “Functional dependency

discovery: An experimental evaluation of seven algorithms,” Proc. VLDB

Endow., vol. 8, no. 10, pp. 1082-1093, Jun. 2015.

[10]
[11]
[12]

[13]

