
A semi-supervised framework of clustering
selection for de-duplication

Shrinu Kushagra, Hemant Saxena, Ihab F. Ilyas, Shai Ben-David
University of Waterloo

{skushagr,h2saxena,ilyas,shai}@uwaterloo.ca

Abstract—We view data de-duplication as a clustering prob-
lem. Recently, [1] introduced a framework called restricted
correlation clustering (RCC) to model de-duplication problems.
Given a set X , an unknown target clustering C∗ of X and a
class F of clusterings of X , the goal is to find a clustering
C from the set F which minimizes the correlation loss. The
clustering algorithm is allowed to interact with a domain expert
by asking whether a pair of records correspond to the same
entity or not. Main drawback of the algorithm developed by
[1] is that the pre-processing step had a time complexity of
Θ(|X|2) (where X is the input set). In this paper, we make
the following contributions. We develop a sampling procedure
(based on locality sensitive hashing) which requires a linear pre-
processing time O(|X|). We prove that our sampling procedure
can estimate the correlation loss of all clusterings in F using
only a small number of labelled examples. In fact, the number
of labelled examples is independent of |X| and depends only on
the complexity of the class F . Further we show that to sample
one pair, with high probability our procedure makes a constant
number of queries to the domain expert. We then perform an
extensive empirical evaluation of our approach which shows the
efficiency of our method.

Index Terms—De-duplication, clustering, semi-supervised, lo-
cality sensitive hashing, correlation clustering

I. INTRODUCTION

Modern businesses generate a tremendous amount of
datasets. These datasets are then used to make many critical
decisions. Therefore, ensuring the quality of these datasets
becomes extremely important. As the data accumulates from
multiple sources over time, many errors creep into the data.
For example, many records end up having duplicate entries.
Record de-duplication is a central task in managing large scale
databases. The goal is to detect records in a database that
correspond to the same real word entity.

The problem of data de-duplication can be viewed as a
clustering task. Here, the goal is to put records corresponding
to the same physical entity in the same cluster while separating
the records corresponding to different entities into different
clusters. Clustering for de-duplication has many characteristics
which are different from standard clustering problems. Many
popular clustering algorithms like k-means or k-median re-
ceive as input the value k, that is the number of clusters to
output. This information is unknown in de-duplication appli-
cations. In any dataset, the number of different-cluster pairs
(i.e. different entity pairs) is order of magnitude greater than
the number of positive or same-cluster pairs (i.e. same entity
pairs). Hence, common machine learning tools of classification

prediction (learning a binary classifier over the set of pairs of
instances) do not automatically transfer to this domain as the
dataset is heavily skewed towards the negative pairs.

The framework of correlation clustering is very natural for
modelling the problem of data de-duplication [2]. Here, de-
duplication is viewed as an optimization problem over graphs.
More formally, given a dataset X and a complete graph G
over the set. The edges of the graph are labelled 0 or 1. An
edge label of zero indicates that the corresponding vertices
have been deemed to be in different cluster while an edge
label of one indicates that the corresponding vertices should
be in the same cluster. The motivation for edge labelling is
the following. Often the practitioner can design a pairwise
similarity function over the pairs of points. The pairs whose
similarity is above a certain threshold are deemed as positive
(or same-cluster) and the remaining pairs are deemed to be
negative (or different-cluster). Sometimes, the similarity metric
is also learned from training data.

Given the graph, the goal of correlation clustering is to
find a clustering of the dataset which correlates ‘as much as
possible’ with the given edges. In other words, find a clustering
which minimizes the correlation loss w.r.t the given edges.
Correlation loss is defined as the sum of edges labeled zero
within a cluster plus the number of edges labeled one across
different clusters. However, solving this optimization problem
is NP-Hard [2].

Recently, [1] introduced the framework of restricted correla-
tion clustering (RCC) to model de-duplication problems. This
framework has two important differences from the standard
correlation clustering formulation. Firstly, the goal is to find a
clustering from a given class F of clusterings. In correlation
clustering, the optimization problem was to find a clustering
over the set of all possible clusterings of the dataset. In the
framework of RCC, the optimization problem is restricted over
a given class F of clusterings. Secondly, the goal of correlation
clustering was to find a clustering which correlates as much
as possible with the given edges. In this framework, the goal
is to find a clustering which correlates as much as possible
with the unknown target clustering. Formally, Given a set
X , an unknown target clustering C∗ of X and a class F of
clusterings of X , the goal is to find a clustering C from the
set F which minimizes the correlation loss w.r.t the unknown
target clustering; the sum of different-cluster edges (w.r.t C∗)
within a C-cluster plus the sum of same-cluster edges across
different C-clusters.

This framework is highly suitable for de-duplication ap-
plications. The target clustering C∗ should be understood
as the ground truth clustering. That is, C∗ is the clustering
where only records corresponding to same entity are in the
same cluster. The more interesting aspect of the framework is
introduction of the class F . For many real-world applications,
the optimal solution to the correlation clustering is the desired
solution. However, the negative NP-Hardness results make it in
feasible to find that solution. In such scenarios, a reasonable
objective could be the following. Run a variety of efficient
clustering algorithms available and obtain different clusterings
of the dataset. Then choose the clustering which is ‘closest to’
(defined formally in Section II) the ground truth clustering. In
Section III we provide more detailed examples and scenarios
where the framework of restricted correlation clustering could
be applicable.

The framework of RCC tries to find a clustering which is
closest to the ground truth clustering. In the absence of any
information about the ground truth, one can not hope to solve
the problem. The framework provides ‘indirect’ information
about the ground truth in the following two ways. Firstly, we
allow the algorithm to make same-cluster queries to an oracle.
The oracle should be understood as a human expert who
has knowledge about the ground truth clustering. Given two
records from a dataset the expert answers yes or no depending
upon whether the two records refer to the same entity or not.
Secondly, the user designed or learned similarity (or distance)
function provides indirect information about the ground truth.
Pairs of records whose distance is below a certain threshold
are likely to belong to the same cluster (correspond to the
same entity).

To solve the RCC problem, we adopt the following strategy.
We get a small set of labelled samples of pairs of points
with the help of our oracle. Our sampling procedure uses
two sub-procedures. One for sampling negative or different-
cluster pairs and one for positive or same-cluster pairs. We
then choose the clustering which makes the smallest number
of ‘mistakes’ on the sample. We show that this strategy is
theoretically sound. Our method only finds a clustering which
performs best on the sampled pairs of points. But we prove that
this sampling based approach is guaranteed to find a clustering
which is ‘close’ to the best clustering in F . Informally, the best
performer on the sample is guaranteed to be close to the best
true performer or the optimal solution of the RCC problem. A
more formal description of the results is deferred to Section
V.

Another important contribution of this work is the sampling
sub-procedure for positive pairs. In many datasets, the similar-
ity function is such that it supports locality sensitive hashing
(LSH). We use this fact to obtain a procedure which requires
only linear pre-processing time and can sample according to
the distribution P+ (the uniform distribution over the same-
cluster pairs). We also prove that the number of queries to
the same-cluster oracle (to sample one positive pair) is upper
bounded by a small constant and is independent of the size
of the dataset. We carry extensive experimental evaluation of

our framework on a diverse class of clustering algorithms and
across multiple real world datasets.

A. Related Work

The problem of evaluating clustering algorithms for the
de-duplication problem was considered by [3]. They carried
out extensive experimental evaluation of different graph-based
clustering algorithms on a simulated dataset of strings. They
showed that these algorithms perform “extremely well in terms
of both accuracy and scalability.” Our framework differs from
theirs in many crucial ways. To evaluate a clustering algorithm,
we do not need access to the complete ground truth clustering.
As we prove in Section V, we can find clustering closest to
the best clustering even when given access to a small number
of oracle answers. Our framework is generic and can work
for any class of clustering algorithms, be it graph-based (as
was considered by [3]) or hierarchical clustering or any other
de-duplication heuristic, we show this in Section VI.

Another class of work related to ours is related to the
problem of correlation clustering [2] and its many variants. For
example, [4] considered the problem of weighted correlation
clustering. In this framework, the edge labels are allowed to
be any real number in [0, 1] instead of just zero or one. They
showed that this problem is NP-Hard and gave a O(log |X|)
approximation algorithm for the same. Besides correlation
clustering, some application oriented works have also mod-
elled de-duplication as a clustering problem. For example,
[5] assumed that the set of duplicate records are transitive.
Finding the clustering of the given graph G is now equivalent
to computing the connected components of G.

Many application oriented works have also tried to address
the problem of data de-duplication. Many works have focused
on designing the right metric (or similarity measure) for the
given dataset. Once this measure is defined, pairs of points
whose distance are below a certain threshold (or whose simi-
larity is above a certain threhhold) are deemed to be duplicates
(or belonging to the same cluster). For example, to capture
duplicates in the data generated due to typographical errors
(like spelling mistakes), edit distance is used [6]. Jaro distance
[7] is another measure which tries to capture typographical
errors. Phonetic-based similarity measures tries to capture
words which are similar sounding. Other measures try to
capture the similarity in numerical data. A nice overview of
such techniques can be found in [8]. While hand-designing a
similarity measure for the given domain is quite popular. Some
works also try to learn this function from labelled examples.
For example, [9] and [10] use supervised learning techniques
(like SVM) to try to learn the weights in the distance function.

Another theme in our work is the notion of human su-
pervision for the clustering task. Many works have tried to
introduce the supervision into the clustering problem. For ex-
ample, [11], [12] and [13] introduced the concept of link/don’t
link constraints. Here, besides the usual input the clustering
algorithm also receives a set of pairs of points which should
belong to the same cluster and a set of pairs of points which
should not belong to the same cluster. The algorithm then finds

a clustering which respects these constraints. Continuing this
line of work, [14] introduced an interactive version of these
constraints called same-cluster queries. Here, the clustering
algorithm interacts with an oracle by asking whether two
points belong to the same or different cluster. The oracle
responds by answering ‘yes’ or ‘no’ depending on whether
the two points belonged to the same clustering according to
some ground truth clustering.

II. PRELIMINARIES

Given X , a clustering C of the set X partitions it into
k disjoint subsets or clusters. The clustering C can also
be viewed as a {0, 1}-function over the domain X [2] :=
{(x1, x2) : x1 6= x2}. Here, C(x1, x2) = 1 iff x1, x2 belong
to the same cluster according to C.

We allow a clustering algorithm to make queries to a human
oracle in the following way.

Definition 1 (Same-cluster oracle [14]). Given a set X and
an unknown target clustering C∗. A same-cluster C∗-oracle
receives a pair (x1, x2) ∈ X [2] as input and outputs 1 if and
only if x1, x2 belong to the same cluster according to C∗.

From the perspective of de-duplication, a same-cluster ora-
cle receives two records x1 and x2. The oracle returns 1 if x1
and x2 correspond to the same real-world entity. Otherwise,
the oracle responds 0.

Definition 2 (Correlation loss [2]). Given graph G = (X,E)
where X is the set of vertices (the given dataset to be
clustered) and E is the set of edges. The correlation loss of a
clustering C w.r.t the edges E is defined as

corrLE(C) = corrNE(C) + corrPE(C), where

corrNE(C) = |{(x, y) : C(x, y) = 1 and E(x, y) = 0}|,
corrPE(C) = |{(x, y) : C(x, y) = 0 and E(x, y) = 1}|

(1)

A weighted version of the loss function places weights of w1

and w2 on the two terms and is defined as

corrLw1,w2

E (C) = w1 corrNE(C) + w2 corrPE(C) (2)

The goal of correlation clustering is to find a clustering
which minimizes the (weighted) correlation loss. For our
purposes, it is more relevant to consider a loss function
which takes values in the range [0, 1]. Also, we consider the
correlation loss w.r.t a target clustering C∗ rather than the
edges E.

Definition 3 (Normalized correlation loss [1]). Given domain
X and a target clustering C∗. The loss of a clustering C w.r.t
the target C∗ is defined as

LC∗(C) = µ LP+(C) + (1− µ) LP−(C), where

LP+(C) = P
(x,y)∼P+

[
C(x, y) = 0],

LP−(C) = P
(x,y)∼P−

[
C(x, y) = 1] (3)

where P+ is the uniform distribution over X [2]
+ = {(x, y) :

C∗(x, y) = 1} and P− is the uniform distribution over X [2]
− =

{(x, y) : C∗(x, y) = 0}.

The normalized correlation loss measures two quantities for
the clustering C. The first is the fraction of the true positive
pairs that C gets wrong (or loss over the positive pairs). The
second is the fraction of true negative pairs that C gets wrong
(or the loss over the negative pairs). It then obtains a weighted
sum of the two losses.

Lets observe the relation between Defns. 2 and 3. Define
γ0 := P[C∗(x, y) = 1], that is the probability of true positive
(or same-cluster pairs) in the dataset. Using the notation of
Defn. 2, we see that corrPC∗(C) = γ0|X [2]|LP+(C) and
corrNC∗(C) = (1−γ0)|X [2]|LP−(C). Normalising by |X [2]|
and choosing µ = w2γ0

w1(1−γ0)+w2γ0
gives us the normalized

version of the loss function.

Definition 4 (Informative metric [1]). Given a metric space
(X, d), a target clustering C∗ and a parameter λ. We say that
the metric d is (α, β)-informative w.r.t C∗ and λ if

P
(x,y)∼U2

[
d(x, y) > λ | C∗(x, y) = 1

]
≤ α (4)

P
(x,y)∼U2

[
C∗(x, y) = 1 | d(x, y) ≤ λ

]
≥ β (5)

Here U2 is the uniform distribution over X [2].

In deduplication applications, often the distance function
is such that pairs with distance within a certain threshold
are likely to be in the same cluster. The definition of an
informative metric formalizes this intuition. It says that most
of the true positive pairs have a distance of atmost λ between
them. Also, amongst all pairs with distance ≤ λ, atleast a β
fraction of them belong to the same cluster.

Definition 5 (γ-skewed). Given X and a target clustering C∗.
We say that X is γ-skewed w.r.t C∗ if

P
(x,y)∼U2

[
C∗(x, y) = 1

]
≤ γ

In de-duplication applications, most of the pairs are negative
(or belong to different clusters). The above definition states
this property formally. We are now ready to introduce the
framework of restricted correlation clustering.

III. RESTRICTED CORRELATION CLUSTERING (RCC)

We know that finding the clustering which minimizes the
correlation loss is NP-Hard. Moreover, it is NP-Hard even
when we are allowed access to a same-cluster oracle [15].

Observe that the requirement of correlation clustering is
very demanding. The algorithm is required to find a clustering
over the set of all possible clusterings of the domain X . In
the restricted framework, we change the goalpost slightly. The
algorithm is now required to find a clustering C from a finite
class F (of clusterings of X).

Definition 6 (Restricted correlation clustering (RCC)). Given
a clustering instance (X, d), an unknown target clustering

C∗ and weighting parameter µ. Given a finite class F of
clusterings of the set X . Find C ∈ F such that

Ĉ = arg min
C∈F

LC∗(C) (6)

A. Relation to practical applications

Consider the following scenario from the practitioner’s point
of view. The practitioner wants to implement correlation clus-
tering. However, he/she knows that the problem is NP-Hard.
The practitioner has prior knowledge that one of the many
hierarchical clustering algorithms (like single-linkage or max-
linkage or average-linkage or complete-linkage) is suitable for
his/her dataset1. A hierarchical clustering algorithm outputs a
clustering tree. Every pruning of the tree is a clustering of
the original dataset. He/she would now like to know which
amongst these clustering algorithms is suitable for his task.
After having fixed the algorithm, the practitioner would then
like to know which amongst these many prunings he/she
should chose.

The framework of restricted correlation clustering is ap-
plicable in such scenarios. When F = {T} where T is
a hierarchical clustering of X , the goal of RCC is to find
the pruning from the tree T which has minimum normalized
correlation loss. When F = {T1, . . . , Ts} where each Ti is a
hierarchical clustering of X . Then the goal of RCC is to find
a pruning with minimum loss amongst the prunings of all the
s trees. Note that finding the pruning of the tree is the same
as choosing the stopping point criteria when running linkage-
based algorithms. Hence, the framework can help us choose
the right stopping point for a particular hierarchical clustering
algorithm.

If F = {C1, . . . , Cs} where each Ci is a clustering of the
set X then the goal is to find a clustering with minimum loss.
Note that F can be any of the examples as defined above or
a union of these or some other finite class.

B. Solution strategy

In the RCC framework, we wish to minimize the loss which
depends on the unknown target clustering C∗. However, in the
absence of any information about C∗, there is no hope to find
a clustering that minimizes LC∗ . Hence, to solve the RCC
problem we allow the clustering (or learning) algorithm to
make queries to a C∗-oracle.

Our goal is to calculate quantities LP+(C) and LP−(C)
(Defn. 3) for each of the clusterings C ∈ F and then choose
the clustering with minimum loss. To calculate both these
quantities exactly, for each pair of points in our dataset,
we would need to know whether they belong to the same-
cluster or different-cluster. In other words, we would need
access to the complete ground truth clustering C∗. Thus,
instead of calculating these two quantities exactly we want
to estimate them from a small sample, sampled according to
the distributions P+ and P−.

One strategy to estimate LP+(C) (and LP−) could be the
following. Sample a set S+ (and S−) of pairs using the

1A nice overview of hierarchical clustering techniques can be found in [16]

distribution P+ (and P−). Compute the fraction of mistakes
made by each clustering C on S+ (and S−). Using the standard
results from vc-dimension theory (Thm. 18), it is known that
using this procedure we can estimate LP+ for each of the
clusterings C ∈ F . Similarly, we could also estimate LP− .
Using the two estimates, we could then estimate the loss
LC∗ for each of the clusterings in our class and choose the
clustering which has the smallest loss.

The main problem in this approach is that the distributions
P+ and P− are unknown (as the target clustering C∗ is not
known). In Section IV, we discuss two approaches which
(approximately) sample according to these distributions. Then
in Section V, we show how these sampling procedures can be
used to estimate LC∗ for all the clusterings in our class F .

IV. SAMPLING FOR RESTRICTED CORRELATION
CLUSTERING

We first describe the procedure P0 which samples according
to P−. Then we describe the procedure P1 which samples
approximately according to the distribution P+. The procedure
P0 is the same as described in [1]. However, we state the
algorithm here for completeness.

Algorithm 1: Procedure P0 for negative pairs
Input: A set X and a C∗-oracle.
Output: (x, y) such that C∗(x, y) = 0

1 while TRUE do
2 Sample (x, y) using U2

3 if C∗(x, y) = 0 then
4 Output (x, y)
5 end
6 end

The procedure samples a pair uniformly at random. Then
using the oracle it checks if the sampled pair is negative and
terminates if such a pair is found. If not then the process is re-
peated again. It is an easy exercise (proof in appendix Lemma
16) to see that the procedure P0 samples a pair according to
the distribution P−. From the algorithm description it is clear
that to sample one negative pair we might need to make more
than one query to the C∗-oracle. However, since the number
of negative pairs is much greater than the number of positive
pairs (γ-skewed) the number of ‘wasted’ queries to the oracle
is small. The proof of this result is in the appendix (Lemma
17).

A. Sampling positive pairs

We now discuss our procedure P1 which approximates
the distribution P+. We show that the procedure samples
according to a distribution T which has the following property.
The loss LT (Defn. 3) and the loss LP+ for any clustering are
close to one another. Hence, estimating the loss of a clustering
w.r.t the distribution T also gives an estimate of the loss of
that clustering w.r.t P+. Now, we discuss the details of the
sampling procedure.

Our metric d is (α, β)-informative w.r.t the target clustering
C∗. That is, amongst all pairs with distance λ atleast
β-fraction are positive. The sampling strategy of [1] was
the following. Construct a set K = {(x, y) : d(x, y) ≤ λ}
and then sample uniformly from the set K till a positive
sample is found. Since most of the positive pairs have
distance ≤ λ, this sampling procedure approximates P+ (the
uniform distribution over the set of true positives). However,
constructing the set K requires Θ(|X|2) time. This makes
the sampling procedure impractical for many situations. In
this section, we will use techniques from locality sensitive
hashing (LSH) combined with rejective sampling to develop
a sampling procedure P1. We will show that P1 needs only
linear pre-processing time (to build the hash maps) and
outputs a positive pair sampled approximately according to
P+.

Locality Sensitive Hashing (LSH)
Before we describe our technique, we introduce some relevant
notation. A hash function h : X → N maps the set X onto
the set of natural numbers. Thus, a hashing function partitions
the input of size n into m ≤ n different buckets (or blocks)
B1, . . . , Bm where each Bi = {x : h(x) = bi} for some
bi. Given (X, d), a Locality Sensitive Hashing (LSH) scheme
w.r.t the distance metric d (or a similarity metric) aims to
partition X into buckets such that ‘similar’ items map to the
same bucket with high probability and ‘dissimilar’ items end
up in different buckets with high probability. For example,
MinHash scheme w.r.t Jaccard similarity measure [17], [18]
is a common LSH-based hashing scheme. Another example is
SimHash scheme w.r.t hamming similarity measure [19].

Definition 7 (LSH-based hashing algorithm). Given a set
(X, d) and parameter s. An LSH-based hashing algorithm
(or scheme) A outputs s different partitions P1, . . . , Ps of X .
Denote Pi = {Bi1, . . . , Bini}. We say that A is (ε, ε′)-tight
w.r.t d and λ, λ′ if

• If d(x, y) ≤ λ then P[b(x, y) = 1] > 1− ε
• If d(x, y) > λ′ then P[b(x, y) = 1] < ε′

where b(x, y) = 1 if and only if x, y are together in atleast
one of the blocks Bij .

Infact, we show that by choosing s (and other parameters)
appropriately, we can construct LSH schemes which are
(ε, ε′ = s ln(1 + ε))-tight w.r.t λ and λ′ = 2λ ln(1 + 1/ε).
Thus, for simplicity of notation, we say that A is ε-tight w.r.t
λ to mean that it is (ε, ε′)-tight w.r.t λ, λ′ as chosen above.

Throughout the remainder of this section, we will assume
that the hashing scheme satisfies ε-tightness. In the appendix,
we provide details about why this assumption is justified.
However, these results are orthogonal to the current discussion.
Hence, we omit it here and only include it in the appendix
(Thm. 15).

We now describe our sampling procedure. Let B :=
{P1, . . . , Ps} = {Bij : 1 ≤ i ≤ s, 1 ≤ j ≤ |Pi|} be
the set of blocks outputted by the hashing scheme and let

Q := {(x, y) ∈ Bij}. We first choose a block B ∈ B with
probability proportional to |B|2 (the number of pairs in the
block). Then we sample a pair uniformly at random from this
block B. Note that this strategy doesn’t give us a uniform
sample from Q. This is because a pair (x, y) may be present in
multiple blocks. To get the uniform sample, we reject the pair
with probability inversely proportional to a(x, y) (the number
of blocks in which x, y are together). This approach based
on rejection sampling ensures that we have a uniform sample
from Q.

Next, we check if the pair satisfies d(x, y) ≤ λ. Note that
the LSH-based scheme tries to put similar points in the same
bucket, hence the probability of success at this step is ‘high’.
Finally, we check if C∗(x, y) = 1. Our sampling procedure
P1 is described in Alg. 2.

Algorithm 2: Sampling procedure P1 for positive pairs
Input: A set X , a hashing algorithm A, a C∗-oracle

and parameter λ.
Output: (x, y) such that C∗(x, y) = 1

Pre-compute:
1 Use an LSH-based hashing scheme A to obtain

partitions {P1, . . . , Ps}.
2 B := {P1, . . . , Ps} = {Bij : 1 ≤ i ≤ s, 1 ≤ j ≤ |Pi|}.

Sampling:
1 while TRUE do
2 Sample a block B from B with probability

∝ |B|2.
3 Sample (x, y) uniformly at random from B2.
4 Let a(x, y) = {(x, y) ∈ B2 : B ∈ B}.
5 Sample u uniformly at random from [0, 1].
6 if u > 1

|a(x,y)| then
7 continue.
8 end
9 if d(x, y) ≤ λ and C∗(x, y) = 1 then

10 Output (x, y).
11 end
12 end

Thm. 8 shows that with high probability the procedure P1

samples a pair according to a distribution T which approxi-
mates P+.

Theorem 8. Given (X, d), a C∗-oracle and parameter λ. Let
d satisfy (α, β)-informative w.r.t C∗. Let the hashing algorithm
A satisfy ε-tightness w.r.t λ. Then with probability atleast 1−
exp(−2(ν(1−α)|X2

+|)2) (over the randomness in the hashing
algorithm), P1 samples pairs (x, y) according to distribution
T over X [2] such that for any labelling function C : X [2] →
{0, 1}, we have that

P
(x,y)∼P+

[
C(x, y) = 0]− α− ε− ν ≤ P

(x,y)∼T

[
C(x, y) = 0]

≤ (1 + 2ν)(1 + 2α) P
(x,y)∼P+

[
C(x, y) = 0]

To sample one same-cluster pair, we might need to make
more than one same-cluster query to the C∗-oracle. Lemma 9
shows that with high probability, the number of queries made
by P1 to sample one positive pair is upper bounded by a small
constant.

Lemma 9. Given set X , a C∗-oracle and parameter λ. Let d
be (α, β)-informative w.r.t λ and C∗. Let A satisfy ε-tightness
w.r.t λ. Let q be the number of same-cluster queries made by
P1. Then with probability atleast 1−exp(−ν2(1−α)2|X2

+|2)
(over the randomness in the hashing algorithm)

E[q] ≤ 1

β(1− ε− ν)

The pre-compute stage uses a hashing algorithm to obtain s
different partitions. From the discussion in the appendix (Thm.
14), we its easy to see that this runs in O(n) time. Next, we
analyse the time taken to sample one same-cluster pair. Thm.
10 shows that under reasonable assumptions, the time taken
is upper bounded by a constant with high probability.

Theorem 10. Given set X , a C∗-oracle and parameter λ.
Let d be (α, β)-informative w.r.t λ and C∗. Let A satisfy ε-
tightness w.r.t λ.

Define λ′ = 2λ log(1 + 1
ε) and ε′ = dlog(1

ε)e(1 + log(1
ε)).

Let K = {(x, y) : d(x, y) ≤ λ} is the set of all pairs of
points with distance ≤ λ. Similarly, define sets K1 = {(x, y) :
λ < d(x, y) ≤ λ′} and K2 = {(x, y) : d(x, y) > λ′}. Let
|K1| ≤ ρ1|K| and ε′|K2| ≤ ρ2|K|.

Let t be the time taken to sample one point. Then with prob-
ability atleast 1−exp

(
−ν2(1−ε)(1−α)|X2

+|
2

)
−exp

(
−ν2ρ2|K|

3

)
(over the randomness in the hashing algorithm), we have that

E[t] ≤ s2(1 +
1

η
)

where η := (1−ν)(1−ε)β
(1+ν)(1+ρ1+ρ2)

.

V. SAMPLE AND QUERY COMPLEXITY OF RCC

In the previous section we saw how to sample (approxi-
mately) according to the distributions P+ and P−. We sample
a ‘small’ set of true positive (or same-cluster) and true negative
(or different-cluster) pairs using our distributions. We then
choose the clustering Ĉ ∈ F with the minimum number
of mistakes on the sampled pairs. We prove that the true
normalized correlation loss LC∗(C) is close to the loss of
Ĉ∗ (the clustering with minimum loss in F). Thus, our
solution strategy shows that by only having a small amount of
information about C∗ (making a small number of queries) we
can find a clustering which is close (in terms of loss) to the
optimal clustering in F . We describe this procedure in Alg. 3.

Thm. 11 analyses the sample complexity of our approach.
That is, the number of labelled positive and negative pairs our
algorithm needs as input, so that the estimates of the loss based
on this sample are close to their true values. We show that as
long as the number of sampled pairs are in O(VC-Dim(F)

ε2) then
our algorithm finds a clustering Ĉ which is close to the best
clustering in F . Here, VC-Dim is a combinatorial property

Algorithm 3: Empirical Risk Minimization
Input: (X, d), a set of clusterings F , a C∗-oracle,

parameter λ and sizes m+ and m−.
Output: C ∈ F

1 Sample a sets S+ and S− of sizes m+ and m− using
procedures P1 and P0 respectively.

2 For every C ∈ F , compute

P̂ (C) =
|{(x, y) ∈ S+ : C(x, y) = 0}|

|S+|

N̂(C) =
|{(x, y) ∈ S− : C(x, y) = 0}|

|S−|

3 Define L̂C∗(C) = µP̂ (C) + (1− µ)N̂(C).
4 Output arg minC∈F L̂C∗(C)

which measures how ‘complex’ or rich the class of clusterings
is. Note that the number of samples needed is independent of
the size of the dataset X .

For common classes, like F = {T1, . . . , Ts} where each
Ti is a hierarchical clustering of X , [1] showed that the
VC-Dim(F) is in o(log s). Thus for such classes a small
number of samples suffice to find a clustering which is close
to the best clustering in F .

Theorem 11. Given metric space (X, d), a class of clusterings
F of X and a threshold parameter λ. Given ε, δ ∈ (0, 1)
and a C∗-oracle. Let d be (α, β)-informative w.r.t C∗ and λ
and let X satisfy γ-skewed property. Let A be the ERM-based
approach as described in Alg. 3 (where the LSH-based scheme
is ζ-tight) and Ĉ be the output of A. If

m−,m+ ≥ a
VC-Dim(F) + log(2

δ)

ε2
(7)

where a is a global constant then with probability atleast 1−
δ − exp

(−2ν2(1−α)2|X+
2 |

2

49

)
(over the randomness in A), we

have that

LC∗(Ĉ) ≤ min
C∈F

LC∗(C) + 3α+ ζ + ε+ ν

Proof. Let T0 be the distribution induced by P0 and T1 be
the distribution induced by P1. Using Thm. 18, we know that
if m+ > a

VC-Dim(F)+log(1
δ)

ε2 then with probability atleast 1−
δ − e−2ν2(1−α)2|X+

2 |
2

, we have that for all C

|P̂ (C)− P
(x,y)∼T1

[C(x, y) = 0]| ≤ ε

=⇒ P̂ (C) ≤ ε+ (1 + 2ν)(1 + 2α)LP+(C) and

LP+(C)− ε− α− ζ − ν ≤ P̂ (C) (8)

Note that we obtain upper and lower bounds for
P

(x,y)∼T1

[h(x, y) = 0] using Thm. 8. Similarly, if

m− > a
VC-Dim(F)+log(1

δ)

ε2 , then with probability atleast
1− δ, we have that for all h,

|N̂(C)− P
(x,y)∼T0

[C(x, y) = 1]| ≤ ε

=⇒ N̂(C) ≤ ε+ LP−(C) and LP−(C)− ε ≤ N̂(C) (9)

Combining Eqns. 8 and 9, we get that with probability atleast
1− 2δ − e−2ν2(1−α)2|X+

2 |
2

, we have that for all C ∈ F

L̂(C) ≤ µ[ε+ (1 + 2ν)(1 + 2α)LP+(C)]

+ (1− µ)(ε+ LP−(C))

≤ LC∗(C) + ε+ 2α+ 2ν + 4αν

And L̂(C) ≥ µ(LP+(h)− ε− α− ν − ζ) + (1− µ)(LP−(h)− ε)
≥ LC∗(C)− ε− α− ν − ζ

Now, let Ĉ be the output of A and let Ĉ∗ be
arg minC∈F LC∗(C). Then, we have that

LC∗(Ĉ) ≤ L̂(Ĉ) + α+ ε+ ν + ζ ≤ L̂(Ĉ∗) + α+ ε+ ν + ζ

≤ LC∗(Ĉ∗) + 2ε+ 3α+ 3ν + 4αν + ζ

Choosing ε = ε
2 and δ = δ

2 and ν = ν
7 throughout gives

the result of the theorem, and this completes the proof of the
theorem.

Finally, we analyse the query complexity of our approach.
That is the number of queries that our algorithm makes to the
C∗-oracle. Our algorithm makes queries during the sampling
procedure. We see that to sample m− negative and m+

positive pairs the number of queries is ‘close’ to m++m− with
very high probability. Thus, the number of ‘wasted’ queries is
small.

Theorem 12. [Query Complexity] Let the framework be as
in Thm. 11. With probability atleast 1 − exp

(
− ν2m−

4) −
exp

(
− ν2m+

4

)
−exp(−ν2(1−α)2|X 2

+|2) over the randomness
in the sampling procedure, the number of same-cluster queries
q made by A is

q ≤ (1 + ν)

(
m−

(1− γ)
+

m+

β(1− ζ − ν)

)
Proof. The number of queries made to sample the set Sg is
qg = mg . Let q+ denote the number queries to sample the
set S+. Using Lemma 9, we know that E[q+] ≤ 1

β(1−ζ−ν)
with probability atleast 1 − exp(−ν2(1 − α)2|X 2

+|2) over
the randomness in the hashing procedure. Given that the
expectation is bounded as above, using Thm. 19, we get that
q+ ≤ (1+ν)m+

β(1−ζ−ν) with probability atleast 1 − exp(−ν
2m+

4).
Similarly, combining Lemma 17 with Thm. 19, we get that
with probability atleast 1− exp(−ν

2m−
4), q− ≤ (1+ν)m−

(1−γ) .

VI. EVALUATION

We now present the evaluation of our framework on a
simulated and four real world datasets. In Section VI-B we

2Algorithm did not finish within a reasonable time limit because of the
high computational cost.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 100 200 300 400 500 600 700 800 900 1000

lo
ss

iterations
estimated true

(a) Single linkage

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400 500 600 700 800 900 1000

lo
ss

iterations
estimated true

(b) Complete linkage

Fig. 1: Simulated dataset: Loss reported for every iteration of
hierarchical clustering

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

lo
ss

iterations
estimated true

(a) Single linkage

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

lo
ss

iterations
estimated true

(b) Complete linkage

Fig. 2: Publications dataset: Loss reported for every iteration
of hierarchical clustering

show that our framework is generic and can be used to
choose amongst many of the classes of algorithms for de-
duplication. We also show that our framework can always
choose a clustering which is close to the best clustering
(algorithm) from a given class of clustering (algorithms) and
our estimated loss for each of the clustering is very close to
the true loss of these clustering algorithms. In Section VI-C
we show that our framework is robust to upto 10% of oracle
mistakes, which far exceeds the intended settings dealing with
human experts. Finally, in Section VI-D we show that in our
framework a relatively small number of samples are enough
to accurately estimate the loss of a clustering.

A. Evaluation setup

Algorithms In our evaluation we use four graph based
clustering algorithms: (1) Articulation point clustering (ArtPt)
[20], (2) Star clustering (Star) [21], (3) Approximate cor-
relation clustering (ApproxCorr) [2], (4) Markov clustering
(Markov) [22]. These graph based algorithms have been used
for de-duplication problems as shown in previous work [3].
Hierarchical clustering algorithms are very effective and have
been widely used to perform de-duplication. We consider 4 dif-
ferent linkage methods for hierarchical clustering: single link-
age (C1), complete linkage (C2), weighted linkage (C3), and
average linkage (C4). In addition to this we also implemented a
heuristic based de-duplication algorithm (Naı̈veDedup) where
any two data points are considered similar if their distance is
below a certain threshold. The output of this algorithm is pairs
of data points which are marked similar.

simulated publications products I products II restaurants
Clustering true loss estimated loss true loss estimated loss true loss estimated loss true loss estimated loss true loss estimated loss

ArtPt 0.091 0.105 0.023 0.005 0.206 0.170 0.153 0.160 0.094 0.110
Star 0.052 0.060 0.100 0.050 0.207 0.190 0.231 0.170 0.041 0.045

ApproxCorr NA2 NA 0.180 0.145 0.380 0.310 0.373 0.340 0.094 0.065
Markov 0.011 0.000 0.017 0.010 0.159 0.130 0.125 0.085 0.045 0.030

Naı̈veDedup 0.397 0.365 0.497 0.495 0.413 0.405 0.394 0.380 0.094 0.080
C1 (single) 0.019 0.025 0.016 0.018 0.150 0.110 0.131 0.120 0.022 0.015

C2 (complete) 0.005 0.005 0.009 0.009 0.150 0.130 0.135 0.065 0.034 0.040
C3 (weighted) 0.002 0.000 0.005 0.006 0.110 0.110 0.107 0.070 0.019 0.020
C4 (average) 0.001 0.000 0.007 0.017 0.120 0.100 0.099 0.060 0.019 0.020

Mean loss difference 0.016 0.014 0.027 0.035 0.010

TABLE I: True loss and the loss estimated by our framework.

25, 25 samples 100, 100 samples 500, 500 samples
Clustering true loss # queries estimated loss # queries estimated loss # queries estimated loss
C1 (single) 0.06107 51 0.06 204 0.025 1023 0.024

C2 (complete) 0.04177 50 0.02 210 0.005 1024 0.016
C3 (weighted) 0.03831 50 0.02 203 0.015 1027 0.016
C4 (average) 0.03489 52 0.02 207 0.020 1043 0.013

TABLE II: Simulated dataset: Impact of number of samples
on the loss of the clustering

25, 25 samples 100, 100 samples 500, 500 samples
Clustering true loss # queries estimated loss # queries estimated loss # queries estimated loss
C1 (single) 0.11075 51 0.08 208 0.055 1031 0.041

C2 (complete) 0.37172 50 0.34 204 0.315 1035 0.334
C3 (weighted) 0.29622 51 0.14 203 0.260 1037 0.239
C4 (average) 0.26877 50 0.20 204 0.195 1027 0.202

TABLE III: Publications dataset: Impact of number of samples
on the loss of the clustering

Datasets For our evaluation we use five datasets. First
dataset is a simulated dataset of ten thousand strings of length
20 where we simulate a clustering over the set of strings
and use it as our ground truth. We use Jaro distance [7] as
the distance metric for strings. To simulate a clustering we
generate some seed strings and then for each seed string we
generate multiple secondary strings by slightly editing the seed
string. Each cluster of strings resembles a single entity. Second
dataset is a real-world bibliographical information of scientific
publications [23]. The dataset has 1879 publication records
with duplicates. The ground truth of duplicates is available.
To perform clustering on this dataset we first tokenized each
publication record and extracted 3-grams from them. Then, on
3-grams we used Jaccard distance to define distance between
two records. Next two datasets are lists of E-commerce prod-
ucts: First dataset contains 1,363 products from Amazon, and
3,226 products from Google, and the ground truth has 1,300
matching products. Second dataset contains 1,082 products
from Abt, and 1,093 products from Buy, and the ground truth
has 1,098 matching products. Both these products datasets are
publicly available at [24]. The fifth dataset is a list of 864
restaurants from the Fodor’s and Zagat’s restaurant guides
that contains 112 duplicates. This dataset is also publicly
available at [25]. To perform clustering on the products and
restaurants datasets we normalized the records (product or
restaurant description) using standard techniques from natural
language processing, namely; denoising text, word tokeniza-
tion, normalization, and stemming and lemmatization. Given
a record, this process gives us a list of word tokens. For each
token, we first obtained a vector representation of the word
using Global Vectors for word representations (GloVe [26]).

 0

 0.05

 0.1

 0.15

 0.2

 0 5 10 15 20

m
ea

n
los

s d
iffe

re
nc

e

oracle mistakes percentage
simulated

publications
products I
products II

restaurants

Fig. 3: Impact of oracle mistakes

We averaged this representation across word tokens to obtain
the representation of a single record. We use cosine similarity
to define the distance between two records. For the simulated
and publications datasets, our distance metric was Jaccard and
hence we use the MinHash [17] as the hashing scheme. For
the rest of the datasets, we used SimHash [19] as the hashing
scheme. For all the datasets we use ground truth as the oracle
that can answer same-cluster queries. To calculate the true
loss of a clustering (i.e. LC∗(C)) we access all of the ground
truth. Our framework uses only a sample of the ground truth to
estimate the loss of a clustering. To judge the performance of
our framework we compare the estimated loss L̂C∗(C) against
the true loss.

B. Clustering selection

In this experiment we demonstrate that our framework
is generic and can be used to choose the best clustering
algorithm amongst any of the classes of algorithms for de-
duplication. We used our framework on all the algorithms
mentioned in Section VI-A. The results on five datasets are
summarized in Table I. For each dataset we report the loss
of the true-best clustering (LC∗(C)) and the estimated loss of
the best clustering selected by our framework L̂C∗(C). This
experiment highlights two main features of our framework:
(i) our framework can always choose a clustering close to
the best clustering algorithm from a given class of clustering
algorithms using only a small number of samples, which is
200 (100 positive samples, and 100 negative samples) for all
datasets and all the algorithms in Table I. (ii) Our estimated
loss for each clustering is very close to the true loss of these
clustering algorithms. At the bottom of the table we report
the mean loss difference between estimated loss and true loss
computed over all the algorithms.

We would also like to emphasize that in our framework
we sample only once for each dataset and use that sample to
estimate the loss of all the clusterings. In Figure 1 and 2 we
show that our sample can very closely estimate the loss of
every clustering generated at each iteration of the hierarchical
clustering. Similarly, for Table I we sampled only once for
each dataset and evaluated all the clusterings generated by
each algorithm. Note that, each of the graph based algorithms
have a hyper-parameter, i.e. the threshold on the edge weights.
Edges with weights above this threshold represent dissimilar
items and are pruned from the graph. For each of the graph
based clustering algorithm we applied our framework on
multiple values of the hyper-parameter and report only the
ones with least true loss. However, for every choice of the
hyper-parameter we observed that the estimated loss was very
close to the true loss.

C. Effect of oracle mistakes

In this experiment we show that our framework is effective
in real-world scenarios where the oracle may not be perfect
and can make mistakes. Whenever the oracle classifies a
similar pair as dissimilar or a dissimilar pair as similar we
count it as a mistake. In our datasets we artificially introduce
such mistakes and vary their ratio from from 0%, to 20%. In
Figure 3 we show that our framework can closely estimate the
clustering loss up to 10% of oracle mistakes, which, in real-
world far exceeds the intended settings dealing with human
experts. The Y-axis in Figure 3 reports the mean difference
between true loss and estimated loss over all the clusterings
selected in Table I.

D. Impact of sample size

In this experiment we show that even a small number of
samples are enough to estimate the true loss (LC∗(C)). We
consider four different clusterings, each one picked at random
from the four hierarchical clustering methods (C1 - C4). Table
II and III reports the loss for simulated and publications
dataset, respectively. For each dataset we increased the number
of positive and negative samples and measured the loss. The
table also shows the true loss of the clustering. It can be seen
that the estimated loss calculated by our framework is close
to the true loss even with 25 positive samples and 25 negative
samples. In addition to this, the loss does not change much by
increasing the number of samples. Which means that there is
no incentive to sample more. We also show that the number of
queries performed by our framework are close to the sample
size (as claimed in Thm. 12), which are orders of magnitude
less than O(|X|2). For example, in the simulated dataset and
single linkage clustering (C1) with 25 positive and 25 negative
samples our framework performed 51 queries, that means only
one query was wasted. Similarly, 4 queries were wasted for
100 positive and 100 negative samples, and so on.

VII. CONCLUSION

We considered the framework of restricted correlation clus-
tering to model the problem of detecting duplicate records in

a database. The goal of the restricted variant is to choose a
clustering from a given class of clusterings which minimizes
the correlation loss. The clustering algorithm is allowed to
interact with a domain expert by asking whether two points
belong to the same or different cluster. We analyzed the sample
and query complexity of finding the best clustering from the
class F . We showed that our novel hashing based sampling
procedure requires only O(VC-Dim(F)) labelled samples and
finds a clustering which is close to the best clustering in F .
The pre-processing time of our algorithm is linear in the size
of the dataset. Moreover, to sample one labelled example it
only makes a constant number of queries to the domain expert
(with high probability). We complement our theoretical results
with an extensive empirical evaluation on a diverse class of
clustering algorithms applied on multiple real-world datasets.

REFERENCES

[1] S. Kushagra, S. Ben-David, and I. Ilyas, “Semi-supervised clustering for
deduplication,” in AISTATS, 2019.

[2] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” Machine
Learning, vol. 56, no. 1-3, pp. 89–113, 2004.

[3] O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J. Miller, “Framework
for evaluating clustering algorithms in duplicate detection,” Proc. VLDB
Endow., vol. 2, no. 1, pp. 1282–1293, Aug. 2009. [Online]. Available:
https://doi.org/10.14778/1687627.1687771

[4] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica, “Correlation
clustering in general weighted graphs,” Theoretical Computer Science,
vol. 361, no. 2-3, pp. 172–187, 2006.

[5] M. A. Hernández and S. J. Stolfo, “The merge/purge problem for large
databases,” in ACM Sigmod Record, vol. 24, no. 2. ACM, 1995, pp.
127–138.

[6] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[7] M. A. Jaro, UNIMATCH, a Record Linkage System: Users Manual.
Bureau of the Census, 1980.

[8] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,” IEEE Transactions on knowledge and data
engineering, vol. 19, no. 1, pp. 1–16, 2007.

[9] M. Cochinwala, V. Kurien, G. Lalk, and D. Shasha, “Efficient data
reconciliation,” Information Sciences, vol. 137, no. 1-4, pp. 1–15, 2001.

[10] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S. Fienberg,
“Adaptive name matching in information integration,” IEEE Intelligent
Systems, vol. 18, no. 5, pp. 16–23, 2003.

[11] B. Kulis, S. Basu, I. Dhillon, and R. Mooney, “Semi-supervised graph
clustering: a kernel approach,” Machine learning, vol. 74, no. 1, pp.
1–22, 2009.

[12] S. Basu, M. Bilenko, and R. J. Mooney, “A probabilistic framework for
semi-supervised clustering,” in Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2004, pp. 59–68.

[13] S. Basu, A. Banerjee, and R. Mooney, “Semi-supervised clustering by
seeding,” in In Proceedings of 19th International Conference on Machine
Learning (ICML-2002. Citeseer, 2002.

[14] H. Ashtiani, S. Kushagra, and S. Ben-David, “Clustering with same-
cluster queries,” in Advances in neural information processing systems,
2016, pp. 3216–3224.

[15] N. Ailon, A. Bhattacharya, and R. Jaiswal, “Approximate correlation
clustering using same-cluster queries,” in Latin American Symposium
on Theoretical Informatics. Springer, 2018, pp. 14–27.

[16] O. Maimon and A. Browarnik, “Nhecd-nano health and environmental
commented database,” in Data mining and knowledge discovery hand-
book. Springer, 2009, pp. 1221–1241.

[17] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise independent permutations,” Journal of Computer and System
Sciences, vol. 60, no. 3, pp. 630–659, 2000.

[18] A. Z. Broder, “On the resemblance and containment of documents,” in
Compression and Complexity of Sequences 1997. Proceedings. IEEE,
1997, pp. 21–29.

[19] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing. ACM, 2002, pp. 380–388.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[21] J. Aslam, E. Pelekhov, and D. Rus, The Star Clustering Algorithm
for Information Organization. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 1–23. [Online]. Available: https://doi.org/10.
1007/3-540-28349-8 1

[22] S. van Dongen, “Graph clustering by flow simulation,” Ph.D. disserta-
tion, University of Utrecht, 2000.

[23] “Bibliography of scientific publications,” https://www13.hpi.
uni-potsdam.de/fileadmin/user upload/fachgebiete/naumann/projekte/
dude/CORA.xml.

[24] “E-commerce,” https://dbs.uni-leipzig.de/en/research/projects/object
matching/fever/benchmark datasets for entity resolution.

[25] “Fodor’s and zagat’s restaurant guides,” http://www.cs.utexas.edu/users/
ml/riddle/data.html.

[26] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in In EMNLP, 2014.

[27] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in Vldb, vol. 99, no. 6, 1999, pp. 518–529.

[28] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing. ACM, 1998, pp.
604–613.

[29] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learn-
ability and the vapnik-chervonenkis dimension,” Journal of the ACM
(JACM), vol. 36, no. 4, pp. 929–965, 1989.

[30] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[31] D. G. Brown, “How i wasted too long finding a concentration inequality
for sums of geometric variables,” Found at https://cs. uwaterloo. ca/˜
browndg/negbin. pdf, vol. 6, 2011.

APPENDIX

A. Locality Sensitive Hashing

The technique of locality sensitive hashing was introduced
by [27] to solve the problem of approximate nearest neighbour
search. The LSH-based hashing schemes try to put similar
points into the same bucket. Hence, to search for points which
are ‘similar’ to a given point x ∈ X , one only needs to
search within the same hash bucket instead of searching within
the whole set X . Next, we describe a generic hashing based
algorithm.

Definition 13 (LSH [19]). Given a set X and a similarity
function f : X ×X → [0, 1]. Given a class of hash functions
H = {h1, h2, . . .}. An LSH w.r.t X and f is a probability
distribution over H such that for each x, y ∈ X ,

P
h∈H

[h(x) = h(y)] = f(x, y)

Some common examples of an LSH schemes are minhash
scheme w.r.t jaccard similarity measure [17], [18], simhash
scheme w.r.t hamming similarity measure [19]. We describe a
generic locality sensitive hashing procedure in Alg. 4. Observe
that, Alg. 4 outputs s different partitions of X . Assume without
loss of generality, that a point x lies in the blocks B11 ∈
P1, B21 ∈ P2, . . . , Bs1 ∈ Ps. Now, to search for points y
which are similar to x, we only need to search within the
blocks Bi1. We say that these points lie in the same ‘bucket’
as x. We say that b(x, y) = 1 if and only if x and y lie together
in the same block in atleast one of the partitions.

Algorithm 4: A generic LSH based hashing algorithm
[19], [28]

Input: A set X , a similarity function f , a class of
hash functions H over X , integers r, s and a
perfect hash function p over the domain Nr.

Output: Partitions P1, . . . , Ps of the set X .

1 Let D be a distribution over H which satisfies Defn.
13 and let k = rs.

2 Sample hash functions h1, . . . , hk iid using D.
3 Group the hash functions into s bands. Each band

contains r hash functions.
4 For all x and 1 ≤ i ≤ s, let

gi(x) = (h(i−1)s+1(x), . . . , hir(x)). That is, gi(x)
represents the ith signature of x.

5 For all 1 ≤ i ≤ s, obtain partitions Pi of X . That is,
Pi = {Bi1, . . . , Bimi} where each
Bij = {x : p(gi(x)) = bij} for some bij .

6 Output {P1, . . . , Ps}.

Hence, to search for points which are similar to x, we need
to search over y such that b(x, y) = 1. Our sampling procedure
will sample pairs from the set Q := {(x, y) : b(x, y) = 1}
(details in the next section). Hence, a requirement from the
hashing scheme is that we should be able to construct the set
Q in linear time. Thm. 14 shows that this is indeed the case.

Theorem 14. Given X , a similarity function f , a class of
hash functions H , integers r, s and perfect hash function p.
Alg. 4 runs in O(|X|rsmaxij |Bij |).

Proof. Let n = |X|. Sampling k different hash function
takes rs time. Computing the signatures for all x takes nrs
time. Obtaining the different partition takes ns time. Now,
computing Rx for all x takes time t =

∑b
i=1

∑mj
j=1 |Bij |2.

Now, we know that for all i,
∑mj
j=1 |Bij | = n. Hence,∑mj

j=1 |Bij |2 ≤ maxj Bij
∑mj
j=1 |Bij | = nmaxj Bij . Hence,

t ≤ nsmaxij |Bij |.

We see that the running time is dependent upon the block
sizes. If the maximum block size is a constant then the hashing
scheme runs in linear time. Even when the block sizes are
bounded by log n, then the scheme runs in O(n log n). Next,
we show that a if d(x, y) ≤ λ then (x, y) ∈ Q with very
high probability. Also, if d(x, y) > O(2λ) then with high
probability (x, y) 6∈ Q.

Theorem 15. Given a set X , a distance function d : X×X →
[0, 1], a class of hash functions H , threshold parameter λ
and a parameter δ. Let the similarity function be f(x, y) :=
1−d(x, y) and let A be a generic LSH based algorithm (Alg.
4) which outputs partitions P1, . . . , Ps. Let b(x, y) = 1 iff x, y
are together in atleast one of these partitions. Choose r, s
such that 1

2λ < r < 1
− ln(1−λ) and s = d2.2 ln(1

δ)e. Define
δ′ := s ln(1 + δ). Then for (x, y) ∈ X 2

• If d(x, y) ≤ λ then Ph∈H [b(x, y) = 1] > 1− δ

• If d(x, y) > 2λ ln
(
1+ 1

δ

)
then Ph∈H [b(x, y) = 1] < δ′

Proof. Observe that

P[b(x, y) = 0] = P [∩s
i=1
gi(x) 6= gi(y)]

=
∏
i

(
1−

r∏
j=1

P[h(i−1)r+j(x) = h(i−1)r+j(y)]
)

=

s∏
i=1

(1−
r∏
j=1

f(x, y)) = (1− f(x, y)r)s

Consider the case when d(x, y) ≤ λ. From the choice of s, we
know that s ≥ 2.2 ln(1/δ) =⇒ s ≥ ln(1/δ)

1−ln(e−1) ⇐⇒ 1− 1
e ≤

δ1/s. From the choice of r, we know that r < 1
− ln(1−λ) ⇐⇒

r ln(1
1−λ) < 1 ⇐⇒ (1− λ)r > 1

e . Hence, then we have that
P[b(x, y) = 0] = (1− (1−d(x, y))r)s ≤ (1− (1−λ)r)s < δ.
This proves the first part of the theorem.

For the second part, consider the case when d(x, y) > λ′

where λ′ is such that ln(1 + 1/δ) = λ′

2λ .

1

2λ
< r ⇐⇒ ln(1 + 1/δ)

λ′
< r. Now, λ′ ≤ ln

(1

1− λ′
)

. Hence,

=⇒ ln(1 + 1/δ)

ln(1
1−λ′)

< r ⇐⇒ r ln(1− λ′) < ln(
δ

1 + δ
)

⇐⇒ 1− (1− λ′)r > e− ln(1+δ) = e−δ
′/s > (1− δ′)1/s

=⇒ P[b(x, y) = 0] > (1− (1− λ′)r)s > 1− δ′

Now, the only thing that remains to be shown is that we
can choose an integer r satisfying the conditions of the
theorem. Consider the function f(x) = − 1

2x −
1

ln(1−x) . Using
elementary analysis, we see that for x→ 0, f(x)→∞. Infact,
for x ≤ 0.32, f(x) > 1. Hence, for λ ≤ 0.32, r satisfying the
conditions of the theorem exists.

B. Proofs of theorems and lemmas

Lemma 16. Given X and a C∗-oracle. The procedure P0

samples a pair (x, y) according to the distribution P−.

Proof. The probability that a negative pair is sampled during
a trial is U2(X [2]−) =: q. Fix a negative pair (x, y) and let
U2(x, y) = p. Hence, the probability that the pair (x, y) is
sampled = p+(1− q)p+(1− q)2p+ . . . = p

∑∞
i=0(1− q)i =

p
q = U2(x,y)

U2(X[2]−)
= P−(x, y).

Lemma 17. Given set X and a C∗-oracle. Let X be γ-skewed.
Let q be the number of same-cluster queries made by P0 to
the C∗-oracle. Then, E[q] ≤ 1

1−γ .

Proof. Let p denote the probability that a negative pair is
sampled during an iteration. We know that p ≥ (1 − γ). Let
q be a random variable denoting the number of iterations (or
trials) before a negative pair is sampled. Then, q is a geometric
random variable. E[q] = 1

p ≤
1

1−γ .

Proof of Thm. 8
Let Q := {(x, y) : b(x, y) = 1} = {(x, y) ∈ B2 : B ∈ B}.
Let K = {(x, y) : d(x, y) ≤ λ}, let KQ = K ∩Q, let K+ :=

{(x, y) ∈ K : C∗(x, y) = 1} and finally let K+
Q = {(x, y) ∈

KQ : C∗(x, y) = 1}. Note that the choice of Q depends
upon the hashing algorithm A. However, after the pre-compute
stage, the set Q is fixed and the sampling procedure samples
from the set Q. Our procedure works in four steps.

S.1 P1 samples a point (x, y) from the set Q and induces a
distribution D1 on Q.

D1(x, y) =
∑

B∈a(x,y)

|B|2∑
B′∈B |B′|2

1

|B|2
=

|a(x, y)|∑
B′∈B |B′|2

S.2 Next, we reject the sampled point with some probability
thereby inducing another distribution D2 on Q. Now,
D2(x, y) satisfies the following recurrence

D2(x, y) = D1(x, y)
1

|a(x, y)|

+
(

1−
∑

(x′,y′)∈Q

D1(x′, y′)
1

|a(x′, y′)|

)
D2(x, y)

The recurrence basically says that the probability that
the pair (x, y) is sampled is equal to the probability
that it is sampled during the current round or nothing
is sampled during the current round and then (x, y) is
sampled. Simplifying the above equation, we get that

D2(x, y) =

1∑
B′∈B |B′|2∑

(x′,y′)∈Q
1∑

B′∈B |B′|2
=

1

|Q|

S.3 We reject the sampled point if (x, y) 6∈ KQ. In this step,
we induce a distribution D3 on KQ. It is easy to see that
D3(x, y) = 1

|KQ|
S.4 Next, we reject the sampled point if (x, y) 6∈ K+

Q . After
this step, we induce a distribution D4 on K+

Q . T (x, y) :=

D4(x, y) = 1
|K+
Q |

Another observation, which will be useful later in the
proof is that for any (x, y) ∈ K+, P[(x, y) 6∈ K+

Q] <
δ (Thm. 15). Hence, hoeffding’s inequality we get that,
P
[
|K+ \K+

Q | < (δ + ν)|K+|
]
≥ 1− exp(−2ν2|K+|2)

Next, we will show that the distribution T is an approximation
of P+. First, observe that X satisfies µ-nazdeek property.
Hence, we get that

1− α ≤ P[d(x, y) ≤ λ|C∗(x, y) = 1] =
|K+|
|X2

+|
(10)

Now, let h be any labelling function over X 2.

P
(x,y)∼T

[C(x, y) = 0] =
1

|K+
Q |

∑
(x,y)∈K+

Q

1[C(x,y)=0]

≤ 1

|K+
Q |

∑
(x,y)∈X+

2

1[C(x,y)=0]

Now, with probability atleast 1 − exp(−2ν2|K+|2) ≥ 1 −
exp(−2ν2(1−α)2|X2

+|2) over the randomness in A, we have

that |K+
Q | > (1 − ν − δ)|K+|. Substituting this in the above

equation gives

P
(x,y)∼T

[C(x, y) = 0] ≤ 1

(1− ν)(1− δ)|K+|
∑

(x,y)∈X2
+

1[C(x,y)=0]

≤
P

(x,y)∼P+
[C(x, y) = 0]

(1− ν − δ)(1− α)

Now for the other direction, we have that

P
(x,y)∼P+

[C(x, y) = 0] =
1

|X2
+|

∑
(x,y)∈X2

+

1[C(x,y)=0]

≤ 1

|K+
Q |

∑
(x,y)∈K+

Q

1[C(x,y)=0] +
|X2

+ \K+
Q |

|X2
+|

≤ P
(x,y)∼T

[C(x, y) = 0] +
|X2

+ \K+|
|X2

+|
+
|K+ \K+

Q |
|K+|

≤ P
(x,y)∼T

[C(x, y) = 0] + α+ ν + δ

Now choosing, δ = ε gives the result of the theorem.

Proof of Lemma 9 Let K,Q,K+,KQ and K+
Q be as defined

in the proof of Thm. 8. Also, let the distributions D1, D2, D3

and D4 be as defined in the same theorem. Also, from the
analysis in bullet S.4 in Thm. 8 with probability atleast 1 −
exp(−2ν2(1 − α)2|X2

+|2) we have that
|K+
Q |

|K+| ≥ (1 − ν − ε).
Now, we have that X satisfies β-balanced property. Hence,

β ≤ P[h∗(x, y) = 1|d(x, y) ≤ λ] =
|K+|
|K|

≤ |K
+|

|KQ|

Combining this we get that
|K+
Q |

|KQ| ≥
β|K+

Q |
|K+| ≥ (1 − ν − ε)β.

Thus, given that a same-cluster query is made, the probability
p that it succeeds is atleast (1− ν − ε)β.

Proof of Thm. 10 Using Thm. 14, we know that one iteration
of the pre-compute stage of P1 runs in O(nrsm(B)) =
O(n log

(
2
ε

) −1
log(1−λ)m(B)) = O(n). Next, we analyse the

time taken to sample one point.
Let Q,K+,K+

Q be as defined in the proof of Thm. 8. Let
δ = ε

2 . Using Thm. 15, we know that if (x, y) ∈ K then
P[(x, y) ∈ Q] > 1 − δ. Also, if (x, y) ∈ K2 then P[(x, y) ∈
Q] < δ′. For the purposes of analysing the time complexity
of the sampling procedure, we can think of P1 as consisting
of the following two steps.
T.1 P1 samples a pair (x, y) uniformly at random from Q.

Thus, the probability of success at this step is p1 =
1

a(x,y) ≥
1
s .

T.2 If the point also lies in K+, that is (x, y) ∈ K+ then
it outputs that point. Thus, probability of success at this

step is p2 := |K+∩Q|
|Q| =

|K+
Q |
|Q| . Consider the following

four sets, K+,K ′ := K \K+,K1 and K2.
Using multiplicative chernoff’s bounds, we get that
P[|K+

Q | > (1−ν)|K+|(1−δ)] ≥ 1−exp(−ν
2(1−δ)|K+|

2).

Similarly, we have that P[|K2 ∩ Q| < (1 + ν)|K|ρ2] ≥
1 − exp(−ν

2ρ2|K|
3). Also, note that P[|K ′ ∩ Q| < (1 +

ν)|K ′|] = 1 and P[|K1 ∩Q| < (1 + ν)|K1|] = 1. Using
these results, we have that P[|K+

Q | > (1−ν)|K+|(1−δ)
and |(K+

Q)c ∩ Q| < (1 + ν)(|K ′| + |K1| + |K|ρ2)] ≥
1− exp(−ν

2(1−δ)|K+|
2)− exp(−ν

2ρ2|K|
3)

P

[|K+
Q |

|(K+
Q)c ∩Q|

>
(1− ν)|K+|(1− δ)

(1 + ν)(|K ′|+ |K1|+ |K2|δ′)

]
≥ 1− exp

(−ν2(1− δ)|K+|
2

)
− exp

(−ν2δ′|K2|
3

)
From the assumptions in the theorem, we get that |K1| ≤
ρ1|K|. Now, |K ′| = |K| − |K+| ≤ (1 − β)|K|. Hence,

(1−ν)|K+|(1−δ)
(1+ν)(|K′|+|K1|+|K|ρ2) ≥

(1−ν)(1−δ)β
(1+ν)(1−β+ρ1+ρ2) . Define η :=

(1−ν)(1−δ)β
(1+ν)(1+ρ1+ρ2)

. Then we get that,

P

[|K+
Q |
|Q|

>
η

η + 1

]
≥ 1− exp

(−δ2|K+|
(1− δ)

)
− exp

(−δ2ρ2|K|
(1− δ)2

)
=: η′

Hence, we see that with probability atleast η′ over the
randomness in the hashing procedure p2 ≥ η.

Using all the above, we get that p ≥ η
(η+1)s . Recall that, p

is the probability that the current iteration terminates. Thus,
expected number of iterations to sample one point is ≤ s

η . Note
that the one iteration takes Θ(s) time (computing |a(x, y)|).
The expected time to sample one point is ≤ s2(1 + 1

η)

C. Technical lemmas and theorems

Theorem 18 (Fundamental theorem of learning [29]). Here,
we state the theorem as in the book [30]. Let H be a
class of functions h : X → {0, 1} of finite VC-Dimension,
that is VC-Dim(H) = d < ∞. Let D be a probability
distribution over X and h∗ be some unknown target function.
Given ε, δ ∈ (0, 1). Let errD be the {0, 1}-loss function
err : H → [0, 1]. That is errD(h) = P

x∈D
[h(x) 6= h∗(x)].

Sample a set S = {(x1, y1), . . . , (xm, ym)} according to
the distribution D. Define errS(h) =

∑m
i=1

1[h(xi)6=h∗(xi)]
m . If

m ≥ ad+log(1/δ)
ε2 , then with probability atleast 1− δ over the

choice of S, we have that for all h ∈ H

|errD(h)− errS(h)| ≤ ε

where a is an absolute global constant.

Theorem 19 (Concentration inequality for sum of geometric
random variables [31]). Let X = X1 + . . . + Xn be n geo-
metrically distributed random variables such that E[Xi] = µ.
Then

P[X > (1 + ν)nµ] ≤ exp

(
−ν2µn

2(1 + ν)

)

