
A Cloud-native Architecture for Replicated Data Services

Hemant Saxena
University of Waterloo

hemant.saxena@uwaterloo.ca

Jeffrey Pound
SAP Labs, Waterloo, Canada

jeffrey.pound@sap.com

Abstract
Many services replicate data for fault-tolerant storage of the
data and high-availability of the service. When deployed in
the cloud, the replication performed by these services provides
the desired high-availability but does not provide significant
additional fault-tolerance for the data. This is because cloud
deployments use fault-tolerance storage services instead of the
simple local disks that many replicated data services were de-
signed to use. Because the cloud storage services already pro-
vide fault-tolerance for the data, the extra replicas create un-
necessary cost in running the service. However, replication is
still needed for high-availability of the service itself.

In this paper, we explore types of replicated data services
and how they can be mapped onto various classes of cloud
storage. We then propose a general architectural pattern that
can be used to: (1) limit additional storage resulting in mone-
tary cost saving, (2) while keeping the same performance for
the service, and (3) maintaining the same high-availability of
the services and the durability guarantees for the data. We
prototype our architecture in two popular open-source repli-
cated data services, Apache Kafka and Apache Cassandra, and
show that with relatively little modification these systems can
be deployed for a fraction of the storage cost without affect-
ing the availability guarantees, durability guarantees, or per-
formance.

1 Introduction
Infrastructure-as-a-Service providers (or, cloud providers)
have become the defacto standard for deploying services of all
kinds. Migrating services to the cloud can come with varying
degrees of difficulty, depending on the nature of the service.
In many cases, a service engineered for bare metal servers can
simply be run in the cloud without modification. This is true of
services that are stateless or services that primarily serve static
state (e.g., a web server). However services which manage
state pose a more difficult challenge, particularly those which
replicate state for fault-tolerance and high-availability.

In this paper we focus on an important class of data man-
agement systems, we refer to as replicated data services.
These systems include a variety of back-end services used to
build various applications and services that power the digi-

tal world; including replicated relational databases (e.g., Post-
greSQL/XC), scalable key-value stores (e.g., Cassandra [31]),
and ingest pipelines (e.g., Kafka [31]). All of these services
were originally engineered for on-premise deployments and
share a common property of their monolithic architecture: they
all manage their own disk. In particular, they manage their own
copy of some shared state.

It is certainly possible to deploy an existing replicated ser-
vice to the cloud without changes to the service itself. Cloud
providers have gone to great lengths to make this an easy task.
Storage services can be exposed as block devices or network
attached file systems, giving the abstraction of the local disk
our services were designed to manage. However, if we an-
alyze the end-to-end architecture of this type of deployment
there are two significant problems.

Redundant replication of storage: Cloud storage ser-
vices provide fault-tolerance and high-availability using their
own internal data replication. Replicated services also repli-
cate data to provide the same properties. This additional ap-
plication level replication provided by the replicated service
has very little advantage over what the cloud storage already
provides. For example, consider running multiple copies of a
service within a single availability zones (AZ) to tolerate host
failure or network partitions. If the storage service is avail-
able to all hosts within the AZ, then storing multiple copies of
data within that storage service does not increase data avail-
ability. Furthermore, the storage systems themselves already
guarantee durability of stored data under various types of fail-
ure scenarios. In some cases, the application level replication
is still needed. For example, if a storage service is not available
across multiple availability zones (AZ) within a geographic re-
gion, then application level replication is required to preserve
data availability under AZ failure. However, if a storage ser-
vice is available in all availability zones, then storing multiple
copies of data within that storage service again becomes re-
dundant.

Storage service characteristics: Cloud provided storage
services have significantly different performance characteris-
tics compared to each other and the on-premise physical disks.
For example, storage I/O latency for on-premise deployment
(using local disk) is orders of magnitude lower than the I/O
latency when using cloud storage service. Data centric ser-
vices, like RDBMSs and scalable key-value stores, have gone

1



to great lengths to optimize I/O performance on local disks.
Furthermore, different storage services have different avail-
ability properties. Some are only available to a single host at
a time (e.g., AWS EBS [1]), some can be shared among hosts
within a single availability zone or data centre (e.g., Google
Cloud Filestore [22]), and others can be shared among hosts
across availability zones in a geographic region (e.g., AWS
EFS [2]). These availability properties can influence the ar-
chitecture of a cloud-native replicated data service design, and
can influence requirements on when data needs to be replicated
in order to achieve particular fault-tolerance guarantees. Each
cloud storage service presents a new class of storage device
with its own unique performance and availability characteris-
tics.

Addressing these problems poses some difficult challenges.
To overcome the redundant replication problem, we need to
reconsider the storage architecture of our replicated services in
order to provide service availability without unnecessary data
replication. While reconsidering the storage architecture, we
must also consider the different performance characteristics of
cloud storage services to best exploit their properties.

Contributions: In this paper, we provide a general classi-
fication of the replication approaches used by a selection of
popular replicated services, and analyze how the approaches
fit the characteristics of the various types of storage services
provided by the major cloud providers. We then describe how
a well-known architectural pattern originally designed for effi-
ciently handling mixed read/update workloads, the main-delta
model [29], can be adapted to various classes of replicated
services to solve the redundant replication problem when en-
gineering these services for cloud deployment. We refer to
the new architecture of these services as cloud-native repli-
cated services. The main-delta architecture naturally lends it-
self to the decoupled compute and storage model available in
the cloud. Furthermore, this design allows us to tune the size
of I/Os by adapting the policy a cloud-native replicated ser-
vice uses to merge its deltas. This allows us to simultaneously
address the performance problem of using cloud storage ser-
vices.

We support our analytical solution by implementing the de-
sign in two popular replicated services, falling into two very
different categories of replication type. Apache Kafka (Sec-
tion 3.2) and Apache Cassandra (Section 3.3). We find that
the implementation overhead to adapt these existing mono-
lithic architectures to our proposed cloud-native design is very
small, requiring only a few hundred lines of Java code modifi-
cations.

2 Problem & Solution Overview

2.1 Problem of redundant replication
Replicated data services provide application level replication
of data for high read throughput, fault-tolerance, and high-

availability. On the other hand, cloud storage provides storage
level replication of the data for the same reasons. When repli-
cated services are deployed on the cloud the data replication
quadruples due to the two independent levels of replication
that become the part of the whole system. We call this as the
problem of redundant replication. Figure 1 shows this prob-
lem more clearly for a generic replicated data service deployed
on the cloud. Here we show an example where both the appli-
cation level replication, and storage level replication factor is
three. This means that each of the three application nodes is
backed by a cloud storage which is internally backed by three
replicas of storage node, resulting into total of nine replicas of
the data (key-value (a, 1) as an example data).

To solve the problem, we propose a solution that ensures
only one replica of the data is stored on the cloud storage,
while maintaining the high-availability guarantees of the sys-
tems. Note that, our assumption is that this single replica is
highly-available and durable as per the guarantees of the cloud
service provider and hence is not a single point of failure.
At the heart of our solution is the main-delta architecture for
data representation, therefore before describing our solution
we provide some background about this data model.

Main-Delta architecture overview: As the name suggests,
the architecture has two partitions where data is stored: a main
and a delta. The main data partition is static and read only,
hence it is generally read-optimized. Whereas the delta par-
tition is write-optimized, and allows for insert and read oper-
ations. Data in the main is physically modified by creating a
new main. A new main is created by merging outstanding delta
operations. The merging of the delta is done periodically.

2.2 Solution: Cloud-native architecture

In our solution, the main partition is stored on persistent cloud
storage, and the delta partition is stored locally within the ap-
plication, either in-memory or on-disk. We allow the delta par-
tition to be replicated at the application level whereas the main
partition is replicated only once at the application level. This is
outlined in the Figure 2 where triangles inside the nodes N0,
N1, ... Nk represent the deltas. All the nodes in the replica-
set accessing the same main partition stored on cloud storage
(which is internally replicated). The deltas from one or more
replica nodes are merged with the main periodically. This de-
sign exploits the fault-tolerance properties of cloud storage
services and aims to minimize unnecessary data redundancy,
as such we call this architecture a cloud-native architecture
for replicated data services.

Modelling the replicated services as main-delta systems is
fortunately straightforward. While not explicitly designed this
way, many existing replicated data services already have this
model internally, for example Kafka and Cassandra. Generally
speaking we treat their in-memory data buffers as deltas and
on-disk files as main. The challenge is in how the deltas should
be merged with the main. This is highly dependent on the

2



Figure 1: Present day architecture of replicated services on
cloud.

replication semantics and the failure guarantees of a particular
system. We discuss this in detail in Section 3.

Figure 2: Cloud-native architecture of replicated services on
cloud.

3 Cloud-native architecture
There are a number of potential solutions to the problem of
redundant replication when running replicated services in the
cloud. We generally cannot control replication in the cloud
storage service, as these services are controlled by the cloud
provider. However, we can change how we do application-
level replication.

One simple approach is to remove application-level replica-
tion. Since the storage service already provides fault-tolerance
via replication, there is no need for the application to repli-
cate for fault-tolerance. The drawback of this approach is that
it results in the loss of availability of the service. If the sin-
gle running instance is unreachable, e.g., due to process crash,
machine failure, or network partition, then the entire service is
unavailable.

An alternative solution is to have multiple copies of the ser-
vice share a single primary copy of the data on the cloud stor-
age service. For example in Figure 2 imagine nodes N0, N1,

and N2 writing to the same storage instance. This way avail-
ability is maintained by having multiple instances of the ser-
vices running without actually using application-level replica-
tion. There are two drawbacks to this approach. The first is
that all writes to the system need to be persisted to the cloud
storage service to ensure no data is lost if a service fails. For
systems like Kafka and Cassandra that buffer writes in mem-
ory and flush them to storage in batches this introduces sig-
nificant latency. The second drawback is for services which
are engineered as shared-nothing architectures and that have
multi-writer designs (e.g. Cassandra). These services would
require concurrent writes to shared data, which would require
re-engineering the storage of the system to coordinate concur-
rent updates to the shared storage. This introduces contention
in the system.

3.1 Cloud-native architecture

We observe that main-delta systems have a desirable prop-
erty that can be exploited in cloud deployments: they have
a large read-only main data segment, which is periodically re-
built to incorporate a batch of deltas in a process called the
delta merge. Because the data in main is read-only, it would
be possible for multiple instances of a replicated service to
share a single main, without introducing the same contention
described above with multiple instances sharing a single pri-
mary copy of the data. Only the occasional delta-merge pro-
cess would need to be coordinated. Deltas on the other hand,
are kept relatively small by the recurring delta merges, and
are expunged after the merge takes place. Each replica can
maintain its own delta, using the application-level replication
algorithm. Delta could be kept on a local disk, in a private area
of the cloud storage service, or in-memory depending on the
environment and durability guarantees of the system.

Deciding which node within a replica-set merges the delta to
main depends on the replication policy used by the application.
Therefore, before providing the details about the delta-merge
strategy, it is important to understand the replication strategies
used in practice.

Application-level replication strategies: We classify these
into three categories based on the strategies seen in practice.

• Single-writer/single-reader: this has a single master node
in a replica-set, and all the read and write operations are han-
dled by the master node. The role of replicas in this strategy
is only to provide fault-tolerance and high-availability. For
example, Kafka [28].

• Single-writer/multi-reader: the writes are handled by a
single master but the reads can be handled by any replica
node. The role of replicas here is to provide fault-tolerance,
high-availability, and read scale-out. Examples are Mon-
goDB [12], Redis [38], PostgreSQL, MemSQL [34], Aurora
[41], and Pnuts [13].

3



• Multi-writer/multi-reader: reads and writes can be ser-
viced by multiple nodes in a replica-set. The role of repli-
cas here is to provide fault-tolerance, high-availability, and
read and write scale-out. In some multi-writer/multi-reader
systems, quorums of nodes are used to accept writes, which
means that not all replicas in a replica-set are exact replicas
of each other. Examples are Cassandra [31], CouchDB [15],
PostgresXC, Dynamo [17], Spanner [14].

Depending on the replication strategy, the delta-merge strat-
egy could be as simple as master node always merging the
delta, as in the case of Kafka and for other single-writer/single-
reader systems (in Section 3.2), or a more complex one, in-
volving deltas of all replica nodes, as we will see in the case
study of Cassandra or any other multi-writer/multi-reader sys-
tem (in Section 3.3).

In addition to the delta-merge strategy, different replication
strategies also determine which type of cloud storage can be
used when using main-delta architecture for replicated ser-
vices. Cloud storage can be classified into the following three
categories:

• Network attached block devices: This storage is similar
to an on-premise disk; the storage is bound or attached to a
single compute instance. That means only one instance at a
time can mount the storage for reading and writing. Exam-
ples are Amazon’s Elastic Block Store (EBS) [1], Google
Cloud’s Persistent disk [21], and Disk Storage [5] offered
by Azure.

• NFS shared storage: This storage is similar to a Net-
work Files System (NFS) shared across multiple compute
instances. Any number of compute instances can mount
the storage, hence allowing multiple instances to simulta-
neously read and write the data. Examples are Amazon’s
Elastic File System (EFS) [2] , Google Filestore [22], and
Azure Files [6].

• Object Stores: This type of storage allows reading and
writing named objects. This storage does not allow for in-
place updates, data can be deleted and inserted again with
new values. Examples are Amazon S3 [3], Google Cloud
Storage Buckets [21], and Azure Blob Storage [4] offered
by Azure.

For single-writer/single-reader replication the delta can be
merged only by the master node and the reads are also served
by the master node. Therefore, any cloud storage which al-
lows for one or more compute nodes to read and write data
is suitable. That is, all of the above types of storage can be
used. For the single-writer/multi-reader replication the delta
is merged only by master but the reads are served by all the
replica nodes, therefore each node should have read access to
the main. Hence, only NFS shared storage and Object Stores
can be used to store the main. Similarly for multi-writer/multi-
reader replication, the delta from all the nodes needs to be

merged, and each node serves the reads. Therefore, all nodes
need read and write access to the storage. Hence, only NFS
shared storage and Object Stores can be used to store the main.

In the remainder of the section we show that the delta-
merge architecture is general enough to be adopted for dif-
ferent replication strategies. The three replication strategies
discussed above captures the spectrum of possible replication
strategies that exist in replicated systems. For the proof of
concept we implemented the main-delta architecture in two
of the well known systems: Kafka [28] which follows the
single-writer/single-reader replication strategy, and Cassandra
[31] which follows the multi-writer/multi-reader with quorum
writes replication strategy.

3.2 Case Study: Cloud-native Kafka

Main-delta in Kafka: Kafka internally implements an ap-
pend only data model. Updates are treated as new values and
appended to the existing data. Compaction runs in the back-
ground and deletes older versions of the same data. To support
the append only architecture Kafka has in-memory buffers to
which new values are appended, and these buffers are flushed
to the persistent storage regularly where it is merged with the
rest of the data. The append only architecture lends itself
naturally to the main-delta architecture, where the in-memory
buffers are equivalent to the deltas and the data stored on per-
sistent storage is equivalent to the main.

Delta-merge: For every data partition, there is a fixed set
of Kafka brokers, called replica-sets, owning the replicas of
the partition. For every replica-set only a single copy of the
main is stored on persistent storage, but every broker in the
replica set maintains its own delta. The multiple copies of the
delta are kept synchronized by Kafka’s synchronous replica-
tion protocol. The delta-merge strategy naturally follows from
the fact that there is a single master broker per replica-set (i.e.
single-writer/single-reader replication strategy). We employ
the master replica to perform the delta-merge (flush the log
tail) and read the main (persisted log) to/from persistent stor-
age, and block all the other brokers from accessing the storage.
This ensures that only the master broker’s delta is merged to
the main. To decide when the in-memory buffer should be
flushed to main we explicitly manage the in-memory buffers.
In our implementation we maintain fixed size Byte Buffers
in memory as deltas. Once a buffer is full it is flushed by a
background thread to the file located on a persistent storage.
We maintain two buffers such that when one buffer is being
flushed, the other buffer is available for writes.

Failure guarantees: In the case of master failure, the write
permissions to the persistent storage (and also the permission
to merge delta) are transferred to the newly elected master bro-
ker. The new broker can also read the existing log from storage
to answer read requests. The guarantees provided by Kafka at
the time of master node failure depends on the replication pol-
icy configured for Kafka. Replication in Kafka can be config-

4



ured to either synchronous or asynchronous replication. Our
modifications towards main-delta architecture allows for same
replication policies to hold, because the deltas still get updates
according to the specified replication policy. Once the delta is
merged it is persisted on a fault tolerance storage and all the
guarantees of the storage service applies. At master failure, the
new master election algorithm is dependent on the consistency
of the replica brokers, hence the algorithm’s behaviour stays
unchanged.

3.3 Case Study: Cassandra

Main-delta in Cassandra: Cassandra, in contrast to Kafka is
a peer-to-peer system, with no notion of master or slaves. Cas-
sandra supports quorum reads and quorum writes, where n (i.e.
quorum count) out of the k (number of replicas) nodes must
respond to the read of write request. Each Cassandra node
write data to an in-memory data structure called memtable,
which are regularly flushed to the disk, and merged with on-
disk structure called sstable. Similar to Kafka, Cassandra does
not support in-place updates.

The memtable and sstable structures of Cassandra [31] nat-
urally lends itself to the main-delta architecture. In-memory
memtables are logically equal to the deltas, and on-disk multi-
ple sstables together form the main. However, what is required
is to ensure that only single copy of main exists for every parti-
tion. Each node has its own set of memtables and sstables, i.e.
data in memtable or sstable can exist k times. Ensuring that a
single copy of the main exists for each partition is not straight-
forward in systems like Cassandra, where the replication pol-
icy is driven by quorum writes. In general, ensuring single
main is not trivial for any multi-writer/multi-reader system.
In Cassandra’s architecture, every node is assumed to have
its own local persistent storage. To implement the main-delta
architecture within Cassandra we first need to decouple the
storage from its processing engine. We move from per-node-
storage to per-replica-set-storage, where for every replica-set
there is a single persistent storage. This allows for maintaining
a single copy of the main. Deltas are still maintained within ev-
ery node individually, that means structure of memtables stays
unchanged in Cassandra.

Delta-merge: Due to the lack of single master node in the
replica set it is hard to assign the responsibility of delta-merge
to a single node. We need to pick a strategy that combines
deltas from all the replica nodes before merging them to the
main. For this, we allow each node to independently flush its
delta to the cloud storage whenever their delta is full, and a
background compaction task can merge the multiple copies of
flushed deltas into a single combined delta and then append it
to the main. We tried a few other strategies for delta-merge
but they had drawbacks such as high network cost of trans-
ferring the deltas, or high memory footprint on a single node,
or high number of storage I/Os. The drawbacks of our strat-
egy are that: a) for a short period, i.e. until the compaction

(a) (b)

Figure 3: a) Comparison of the producer throughput of kafka
and md-kafka. b) Throughput comparison of cassandra and
md-cassandra.

job merges the combined deltas to the main, there will exist
k copies of the most recently flushed memtables, b) the cloud
storage must support multiple writers. However, both these
drawbacks don’t impact the performance.

Failure guarantees: Our modifications in Cassandra are
mainly focused on when should compaction job be triggered,
which is a background process that is already part of Cas-
sandra. This keeps rest of the architecture including failure
handling unchanged. Therefore, the failure guarantees of the
could-native Cassandra are same as original Cassandra.

4 Experimental Evaluation
We provide a preliminary evaluation of our cloud-native ar-
chitecture implemented for Kafka [28], and Cassandra [31].
Our main goal is to show that we can use our architecture in
practice and avoid redundant storage while maintaining same
performance or improving it for certain storage types. We used
Amazon Web Services (AWS) for the experiments. The nodes
of Kafka and Cassandra cluster were hosted on EC2 instances,
and we ran experiments on two types of storage: EBS [1], and
EFS [2]. To generate workloads we used Kafka’s and Cassan-
dra’s respective performance tool available with their source
code [26, 10]. In the experiments, implementations with no
modifications are labelled as kafka and cassandra, and imple-
mentations based on main-delta are labelled as md-kafka, and
md-cassandra.

Figure 3(a) shows the comparison of the throughput
(records written per second) of two Kafka versions. The
throughput of md-kafka is similar to the original Kafka in the
case of EBS storage. In the case of EFS storage we achieve
much higher throughput using our design (close to 2x) because
the delta architecture inherently batches the write operations to
the storage.

In figure 3(b) we show the throughput comparison for Cas-
sandra. As mentioned in Sec 3.3, the modified Cassandra
(md-cassandra) requires storage type that allow for multi-
writer/multi-reader systems, therefore we only use EFS stor-
age for md-cassandra, labelled as md-cassandra-efs. How-
ever, original Cassandra can still use EBS storage where each
Cassandra node has a dedicated EBS volume. In figure 3(b) we

5



show that the throughput of md-cassandra-efs is comparable
to original Cassandra using EBS storage (cassandra-ebs) and
original Cassandra using EFS storage (cassandra-efs), across
three types of workloads: read only, write only, and mixed
workload. The read throughput however, is slightly worse
likely due to contention on the single main file.

5 Conclusion and Discussion

In this paper we showed that existing replicated data services
designed for on-premise infrastructure, when deployed on the
cloud, end up with redundant replicas of the storage without
providing significant additional fault-tolerance. We present a
main-delta based cloud-native architecture for replicated data
services which solves the problem of redundant replicas, al-
lowing application owners to pay for k (application’s repli-
cation factor) times less for storage while maintaining same
performance, fault-tolerance, and availability. As a proof-of-
concept, we implemented our solution in two popular repli-
cated services, Apache Kafka and Apache Cassandra, and
demonstrated that our approach is general, and could be ap-
plied to various types of replicated data services.

Discussion: While engineering cloud native systems from
the ground up is an active and important line of research,
the question of how to migrate existing on-premise architec-
tures to the cloud is both a pragmatic and urgent problem for
many people. We raise the following points for discussion.
First, what are the key architectural properties required to mi-
grate existing replicated services, designed with on-premise
storage in mind, to the cloud? In this paper, we take first
step towards answering this question, and propose a novel
re-use of main-delta architecture to minimally redesign exist-
ing replicated services. Note that, we avoid exploring com-
pletely new cloud-native architecture, which has already been
done by many cloud providers. Systems like Amazon Aurora
[41], Amazon Redshift [23], Google’s BigQuery [39, 33], and
Snowflake [16], are some examples, which have been designed
with decoupled compute and storage from the start.

Second, how can replicated services benefit from the cloud
storage, which is fault-tolerant and highly available? In this
work, we see these characteristics of the cloud storage as
an opportunity to save on the storage cost for the replicated
services, when deployed on the cloud. In a related work,
SHADOW [27], the shared fault-tolerant storage has been ex-
ploited for high availability. SHADOW system stored the
log on this shared fault-tolerant storage and allowed the ac-
tive server to write transactions to the log and the hot standby
server to read the log and make updates to the database.

Third, what are the practical limitations of our approach
of using main-delta architecture to make existing replicated
services (designed for on-premise storage) more suitable for
cloud? We believe that the general methodology of retain-
ing application-level protocols to sync in-memory state, com-

bined with decoupled fault-tolerant storage provides a foun-
dation that can be used to migrate on-premise architectures to
cloud native storage. The core challenge is in coordinating the
delta-merge phase, in which the main memory state is flushed
to disk. We have provided insight into this problem by explor-
ing different classes of replicated systems, and by prototyping
the approach in the two very different architectures found in
Apache Kafka and Apache Cassandra.

References
[1] Amazon elastic block store. https://aws.amazon.com/

ebs/.

[2] Amazon elastic file system. https://aws.amazon.com/
efs/.

[3] Amazon s3. https://aws.amazon.com/s3/.

[4] Azure blob storage. https://azure.microsoft.com/
en-ca/services/storage/blobs/.

[5] Azure disk storage. https://azure.microsoft.com/
en-ca/services/storage/disks/.

[6] Azure files. https://azure.microsoft.com/en-ca/
services/storage/files/.

[7] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Lar-
son, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore:
Providing scalable, highly available storage for interactive ser-
vices. In Proceedings of the Conference on Innovative Data
system Research (CIDR), pages 223–234, 2011.

[8] P. A. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan, G. Kaki-
vaya, D. B. Lomet, R. Manne, L. Novik, and T. Talius. Adapt-
ing microsoft sql server for cloud computing. In Proceedings
of the 2011 IEEE 27th International Conference on Data Engi-
neering, ICDE ’11, pages 1255–1263, Washington, DC, USA,
2011. IEEE Computer Society.

[9] Cassandra read repair. https://docs.datastax.com/
en/cassandra/3.0/cassandra/operations/
opsRepairNodesReadRepair.html.

[10] The cassandra-stress tool. https://
docs.datastax.com/en/archived/cassandra/
2.1/cassandra/tools/toolsCStress t.html.

[11] W. Chen, M. Otsuki, P. Descovich, S. Arumuggharaj, T. Kubo,
and Y. Bi. High availability and disaster recovery options for
DB2 on linux, unix, and windows. Tech. Rep. IBM Redbook
SG24-7363-01, 2009.

[12] K. Chodorow and M. Dirolf. MongoDB: The Definitive Guide.
O’Reilly Media, Inc., 1st edition, 2010.

[13] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yer-
neni. Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB
Endow., 1(2):1277–1288, Aug. 2008.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,

6



M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 251–264, Berkeley, CA, USA,
2012. USENIX Association.

[15] CouchDB. http://couchdb.apache.org/.

[16] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang,
A. W. Lee, A. Motivala, A. Q. Munir, S. Pelley, P. Povinec,
G. Rahn, S. Triantafyllis, and P. Unterbrunner. The snowflake
elastic data warehouse. In Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD ’16,
pages 215–226, New York, NY, USA, 2016. ACM.

[17] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: Amazon’s highly available key-value store. In
Proceedings of Twenty-first ACM SIGOPS Symposium on Oper-
ating Systems Principles, SOSP ’07, pages 205–220, New York,
NY, USA, 2007. ACM.

[18] A. El-Shimi, R. Kalach, A. Kumar, A. Oltean, J. Li, and S. Sen-
gupta. Primary data deduplication-large scale study and sys-
tem design. In Proceedings of the 2012 USENIX Conference on
Annual Technical Conference, USENIX ATC’12, pages 26–26,
Berkeley, CA, USA, 2012. USENIX Association.

[19] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and
J. Dees. The SAP HANA database – an architecture overview.
IEEE Data Eng. Bull., 35(1):28–33, 2012.

[20] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, Y. Zhang, and
Y. Tan. Design tradeoffs for data deduplication performance in
backup workloads. In 13th USENIX Conference on File and
Storage Technologies (FAST 15), pages 331–344, Santa Clara,
CA, 2015. USENIX Association.

[21] Google cloud persistent disk. https://
cloud.google.com/compute/docs/disks.

[22] Google cloud filestore. https://cloud.google.com/
filestore/.

[23] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani,
and V. Srinivasan. Amazon redshift and the case for simpler
data warehouses. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’15, pages 1917–1923, New York, NY, USA, 2015. ACM.

[24] M. Hart and S. Jesse. Oracle Database 10G High Availability
with RAC, Flashback &Amp; Data Guard. McGraw-Hill, Inc.,
New York, NY, USA, 1 edition, 2004.

[25] Transparent application scaling with IBM DB2 purescale. IBM
white paper, 2009.

[26] Kafka performance tool. https://github.com/
apache/kafka/tree/trunk/core/src/main/
scala/kafka/tools.

[27] J. Kim, K. Salem, K. Daudjee, A. Aboulnaga, and X. Pan.
Database high availability using shadow systems. In Proceed-
ings of the Sixth ACM Symposium on Cloud Computing, SoCC
’15, pages 209–221, New York, NY, USA, 2015. ACM.

[28] J. Kreps. Kafka : a distributed messaging system for log pro-
cessing. 2011.

[29] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb,
J. Chhugani, H. Plattner, P. Dubey, and A. Zeier. Fast updates
on read-optimized databases using multi-core cpus. Proc. VLDB
Endow., 5(1):61–72, Sept. 2011.

[30] J. L. Tuttle. Microsoft sql server alwayson solutions guide for
high availability and disaster recovery. Microsoft white paper,
2012.

[31] A. Lakshman and P. Malik. Cassandra: A decentralized struc-
tured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40,
Apr. 2010.

[32] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, May 1998.

[33] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of
web-scale datasets. Proc. VLDB Endow., 3(1-2):330–339, Sept.
2010.

[34] Memsql. https://docs.memsql.com/operational-
manual/v6.7/using-replication/.

[35] Nonstop sql: A distributed, high-performance, high-availability
implementation of sql. In D. Gawlick, M. Haynie, and
A. Reuter, editors, High Performance Transaction Systems,
pages 60–104, Berlin, Heidelberg, 1989. Springer Berlin Hei-
delberg.

[36] Oracle real application clusters 11g release 2. Oracle white pa-
per, 2010.

[37] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redun-
dant arrays of inexpensive disks (raid). In Proceedings of the
1988 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’88, pages 109–116, New York, NY, USA,
1988. ACM.

[38] Redis. https://redis.io/.

[39] K. Sato. An inside look at google bigquery. 2012.

[40] S. B. Vaghani. Virtual machine file system. SIGOPS Oper. Syst.
Rev., 44(4):57–70, Dec. 2010.

[41] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta,
R. Mittal, S. Krishnamurthy, S. Maurice, T. Kharatishvili, and
X. Bao. Amazon aurora: Design considerations for high
throughput cloud-native relational databases. In Proceedings
of the 2017 ACM International Conference on Management of
Data, SIGMOD ’17, pages 1041–1052, New York, NY, USA,
2017. ACM.

7


