Creative Telescoping via Abramov's Reduction

Hui Huang

KLMM, AMSS,
Chinese Academy of Sciences

RISC-Linz, Johannes Kepler University

Joint work with S. Chen, M. Kauers and Z. Li

Outline

- Rational summability
- Abramov's reduction for rational functions
- Telescoping via Abramov's reduction
- Hypergeometric case

Rational functions

Definition. A function $f(y)$ is rational over \mathbb{C} if

$$
f=\frac{P}{Q}
$$

with $P, Q \in \mathbb{C}[y]$ and $Q \neq 0$.

Rational functions

Definition. A function $f(y)$ is rational over \mathbb{C} if

$$
f=\frac{P}{Q}
$$

with $P, Q \in \mathbb{C}[y]$ and $Q \neq 0$.
Notations. For $f \in \mathbb{C}(y)$,

- $\operatorname{num}(f)$: the numerator of f.
- den (f) : the denominator of f.
- $S_{y}(f(y))=f(y+1)$ and $\Delta_{y}(f)=S_{y}(f)-f$.

Summability

Definition. $f \in \mathbb{C}(y)$ is said to be (rational) summable if

$$
f=\Delta_{y}(g) \text { for some } g \in \mathbb{C}(y) .
$$

Examples.

- All polynomials in $\mathbb{C}[y]$ are summable
- $1 / y$ is not summable

Shift-freeness

Definition. $p \in \mathbb{C}[y]$ is shift-free if

$$
\operatorname{gcd}\left(p, S_{y}^{\ell}(p)\right)=1 \quad \text { for all } \ell \in \mathbb{Z} \backslash\{0\}
$$

Fact. Given $r \in \mathbb{F}(y)$ with den (r) shift-free, then r is not summable.

Recall. $1 / y$ is not summable.

Abramov's reduction (1995)

Definition. $r \in \mathbb{C}(y)$ is call a residual form if

$$
\operatorname{deg}_{y}(\operatorname{num}(r))<\operatorname{deg}_{y}(\operatorname{den}(r)) \text { and } \operatorname{den}(r) \text { is shift-free. }
$$

Theorem. Let $f \in \mathbb{C}(y)$. Then $\exists g \in \mathbb{C}(y)$ and a residual form r s.t.

$$
f=\Delta_{y}(g)+r
$$

Moreover, f is summable $\Longleftrightarrow r=0$.
Remark. r is not unique.

Examples

1. $f \in \mathbb{C}[y]$.

- Reduction: $f=\Delta_{y}(g)+0$ with $\operatorname{deg}_{y}(g)=\operatorname{deg}_{y}(f)+1$.
- f is summable.

Examples

1. $f \in \mathbb{C}[y]$.

- Reduction: $f=\Delta_{y}(g)+0$ with $\operatorname{deg}_{y}(g)=\operatorname{deg}_{y}(f)+1$.
- f is summable.

2. $f=1 / y$.

- Reduction: $\frac{1}{y}=\Delta_{y}(0)+\frac{1}{y}$
- f is not summable.

Examples

1. $f \in \mathbb{C}[y]$.

- Reduction: $f=\Delta_{y}(g)+0$ with $\operatorname{deg}_{y}(g)=\operatorname{deg}_{y}(f)+1$.
- f is summable.

2. $f=1 / y$.

- Reduction: $\frac{1}{y}=\Delta_{y}(0)+\frac{1}{y}$
- f is not summable.
- $\frac{1}{y}=\frac{1}{y}-\frac{1}{y+1}+\frac{1}{y+1}=\Delta_{y}\left(-\frac{1}{y}\right)+\frac{1}{y+1}$

Examples

1. $f \in \mathbb{C}[y]$.

- Reduction: $f=\Delta_{y}(g)+0$ with $\operatorname{deg}_{y}(g)=\operatorname{deg}_{y}(f)+1$.
- f is summable.

2. $f=1 / y$.

- Reduction: $\frac{1}{y}=\Delta_{y}(0)+\frac{1}{y}$
- f is not summable.
- $\frac{1}{y}=\frac{1}{y}-\frac{1}{y+1}+\frac{1}{y+1}=\Delta_{y}\left(-\frac{1}{y}\right)+\frac{1}{y+1}$
- $\frac{1}{y}=\frac{1}{y}-\frac{1}{y-1}+\frac{1}{y-1}=\Delta_{y}\left(\frac{1}{y-1}\right)+\frac{1}{y-1}$

Sum of residual forms

Question. Let r, s be two residual forms. Is $r+s$ a residual form?

Sum of residual forms

Question. Let r, s be two residual forms. Is $r+s$ a residual form?
Example.

$$
\begin{gathered}
\frac{1}{y}+\frac{1}{y+1}=\frac{2 y+1}{y(y+1)} \text { is not a residual form. } \\
\frac{1}{y}+\frac{1}{y+1}=\frac{1}{y}+\left(\Delta_{y}\left(\frac{1}{y}\right)+\frac{1}{y}\right)=\Delta_{y}\left(\frac{1}{y}\right)+\frac{2}{y}
\end{gathered}
$$

and
$\frac{2}{y}$ is a residual form.

Sum of residual forms

Question. Let r, s be two residual forms. Is $r+s$ a residual form?
Example.

$$
\begin{gathered}
\frac{1}{y}+\frac{1}{y+1}=\frac{2 y+1}{y(y+1)} \text { is not a residual form. } \\
\frac{1}{y}+\frac{1}{y+1}=\frac{1}{y}+\left(\Delta_{y}\left(\frac{1}{y}\right)+\frac{1}{y}\right)=\Delta_{y}\left(\frac{1}{y}\right)+\frac{2}{y}
\end{gathered}
$$

and

$$
\frac{2}{y} \quad \text { is a residual form. }
$$

Theorem. Let $r, s \in \mathbb{C}(y)$ be two residual forms. Then $\exists g \in \mathbb{C}(y)$ and a residual form t with

$$
s=\Delta_{y}(g)+t \quad \text { and } \quad r+t \quad \text { is a residual form. }
$$

Bivariate rational functions

Let $\mathbb{C}(x, y)$ be the field of bivariate rational functions.

Telescoping problem. Given $f \in \mathbb{C}(x, y)$, find a nonzero operator $L\left(x, S_{x}\right) \in \mathbb{C}(x)\left\langle S_{x}\right\rangle$ s.t.

$$
L(f)=\Delta_{y}(g) \text { for some } g \in \mathbb{C}(x, y)
$$

Call

- L: a telescoper for f;
- g : the corresponding certificate.

Existence of telescopers

Definition. $p \in \mathbb{C}[x, y]$ is integer-linear if

$$
p=\prod_{i}\left(m_{i} x+n_{i} y+k_{i}\right)
$$

where $m_{i}, n_{i} \in \mathbb{Z}$ and $k_{i} \in \mathbb{C}$.

Existence of telescopers

Definition. $p \in \mathbb{C}[x, y]$ is integer-linear if

$$
p=\prod_{i}\left(m_{i} x+n_{i} y+k_{i}\right)
$$

where $m_{i}, n_{i} \in \mathbb{Z}$ and $k_{i} \in \mathbb{C}$.
Existence criterion (Wilf\&Zeilberger1992, Abramov2003).
Given $f \in \mathbb{C}(x, y)$. Let $r \in \mathbb{C}(x, y)$ be a residual form with

$$
f=\Delta_{y}(g)+r \text { for some } g \in \mathbb{C}(x, y)
$$

Then
f has a telescoper $\Longleftrightarrow \operatorname{den}(r)$ is integer-linear.

Creative Telescoping

Classical: Zeilberger's algorithm (1990)

- based on Gosper's algorithm (1978)
- telescopers and certs are computed simultaneously

Creative Telescoping

Classical: Zeilberger's algorithm (1990)

- based on Gosper's algorithm (1978)
- telescopers and certs are computed simultaneously

Example. Consider

$$
f=\frac{y^{10}}{x+y}
$$

- The minimal telescoper L for f is

$$
\begin{aligned}
L= & S_{x}-\frac{1}{x^{10}}\left(x^{10}+10 x^{9}+45 x^{8}+120 x^{7}+210 x^{6}\right. \\
& \left.+252 x^{5}+210 x^{4}+120 x^{3}+45 x^{2}+10 x+1\right)
\end{aligned}
$$

Certificate for the example

$$
\begin{aligned}
& G=\frac{1}{10}\left(-1 / 21 \frac{x^{3}\left(175 x^{7}+700 x^{6}+1234 x^{5}+1252 x^{4}+790 x^{3}+310 x^{2}+70 x+7\right)}{10 x^{9}+45 x^{8}+120 x^{7}+210 x^{6}+252 x^{5}+210 x^{4}+120 x^{3}+45 x^{2}+10 x+1}\right. \\
& -\frac{1}{42} \frac{x\left(1750 x^{7}+5950 x^{6}+9558 x^{5}+9186 x^{4}+5630 x^{3}+2180 x^{2}+490 x+49\right) y^{2}}{10 x^{9}+45 x^{8}+120 x^{7}+210 x^{6}+252 x^{5}+210 x^{4}+120 x^{3}+45 x^{2}+10 x+1} \\
& -\frac{1}{18} \frac{\left(990 x^{9}+3960 x^{8}+7890 x^{7}+10260 x^{6}+9654 x^{5}+6780 x^{4}+3490 x^{3}+1240 x^{2}+270 x+27\right) y^{3}}{10 x^{9}+45 x^{8}+120 x^{7}+210 x^{6}+252 x^{5}+210 x^{4}+120 x^{3}+45 x^{2}+10 x+1} \\
& +\frac{5}{36} \frac{x\left(792 x^{7}+2574 x^{6}+4020 x^{5}+3801 x^{4}+2310 x^{3}+891 x^{2}+200 x+20\right) y^{4}}{10 x^{9}+45 x^{8}+120 x^{7}+210 x^{6}+252 x^{5}+210 x^{4}+120 x^{3}+45 x^{2}+10 x+1} \\
& +\frac{1}{12} \frac{\left(1320 x^{9}+5280 x^{8}+11352 x^{7}+16566 x^{6}+17540 x^{5}+13535 x^{4}+7410 x^{3}+2721 x^{2}+600 x+60\right) y^{5}}{10 x^{9}+45 x^{8}+120 x^{7}+210 x^{6}+252 x^{5}+210 x^{4}+120 x^{3}+45 x^{2}+10 x+1} \\
& -\frac{1}{6} \frac{x\left(660 x^{7}+1980 x^{6}+2948 x^{5}+2717 x^{4}+1630 x^{3}+625 x^{2}+140 x+14\right) y^{6}}{10 x^{9}+45 x^{8}+120 x^{7}+210 x^{6}+252 x^{5}+210 x^{4}+120 x^{3}+45 x^{2}+10 x+1} \\
& -\frac{1}{42} \frac{\left(4620 x^{9}+18480 x^{8}+42900 x^{7}+68640 x^{6}+78188 x^{5}+63305 x^{4}+35630 x^{3}+13265 x^{2}+2940 x+294\right) y^{7}}{10 x^{9}+45 x^{8}+120 x^{7}+210 x^{6}+252 x^{5}+210 x^{4}+120 x^{3}+45 x^{2}+10 x+1} \\
& +\frac{5}{84} \frac{x\left(924 x^{7}+2310 x^{6}+3168 x^{5}+2805 x^{4}+1650 x^{3}+627 x^{2}+140 x+14\right) y^{8}}{10 x^{9}+45 x^{8}+120 x^{7}+210 x^{6}+252 x^{5}+210 x^{4}+120 x^{3}+45 x^{2}+10 x+1} \\
& +\frac{5}{36} \frac{\left(660 x^{9}+2640 x^{8}+6732 x^{7}+11550 x^{6}+13728 x^{5}+11385 x^{4}+6490 x^{3}+2431 x^{2}+540 x+54\right) y^{9}}{10 x^{9}+45 x^{8}+120 x^{7}+210 x^{6}+252 x^{5}+210 x^{4}+120 x^{3}+45 x^{2}+10 x+1} \\
& \left.-\frac{1}{9} \frac{\left(495 x^{9}+2145 x^{8}+5610 x^{7}+9702 x^{6}+11550 x^{5}+9570 x^{4}+5445 x^{3}+2035 x^{2}+451 x+45\right) y^{10}}{10 x^{9}+45 x^{8}+120 x^{7}+210 x^{6}+252 x^{5}+210 x^{4}+120 x^{3}+45 x^{2}+10 x+1}+y^{11}\right) \\
& \left(10 x^{9}+45 x^{8}+120 x^{7}+210 x^{6}+252 x^{5}+210 x^{4}+120 x^{3}+45 x^{2}+10 x+1\right)(x+y)^{-1}
\end{aligned}
$$

Creative telescoping (cont.)

New: Reduction-based telescoping (2015)

- a difference variant of Hermite telescoping (2010)
- separate the computation of telescopers from certs

Creative telescoping (cont.)

New: Reduction-based telescoping (2015)

- a difference variant of Hermite telescoping (2010)
- separate the computation of telescopers from certs

Notation. For $f, h \in \mathbb{C}(x, y)$, denote

$$
f \equiv_{y} h
$$

if $f-h$ is summable w.r.t. y.

Telescoping via reduction

Goal. Given $f \in \mathbb{C}(x, y)$, find a telescoper L for f w.r.t. y.

Telescoping via reduction

Goal. Given $f \in \mathbb{C}(x, y)$, find a telescoper L for f w.r.t. y. Ideas.

Telescoping via reduction

Goal. Given $f \in \mathbb{C}(x, y)$, find a telescoper L for f w.r.t. y. Ideas.

- Assume

$$
L=\sum_{j=0}^{\rho} c_{j} S_{x}^{j}
$$

with $\rho \in \mathbb{N}$ and $c_{j} \in \mathbb{C}(x)$, not all zero.

Telescoping via reduction

Goal. Given $f \in \mathbb{C}(x, y)$, find a telescoper L for f w.r.t. y. Ideas.

- Assume

$$
L=\sum_{j=0}^{\rho} c_{j} S_{x}^{j}
$$

with $\rho \in \mathbb{N}$ and $c_{j} \in \mathbb{C}(x)$, not all zero.

- Compute residual form r_{j} s.t.

$$
S_{x}^{j}(f) \equiv_{y} r_{j}
$$

Telescoping via reduction

Goal. Given $f \in \mathbb{C}(x, y)$, find a telescoper L for f w.r.t. y. Ideas.

- Assume

$$
L=\sum_{j=0}^{\rho} c_{j} S_{x}^{j}
$$

with $\rho \in \mathbb{N}$ and $c_{j} \in \mathbb{C}(x)$, not all zero.

- Compute residual form r_{j} s.t.

$$
S_{x}^{j}(f) \equiv_{y} r_{j}
$$

- Apply L to f :

$$
L(f)=\sum_{j=0}^{\rho} c_{j} S_{x}^{j}(f) \equiv_{y} \sum_{j=0}^{\rho} c_{j} r_{j}
$$

Key problem

Consider

$$
L(f) \equiv y \sum_{j=0}^{\rho} c_{j} r_{j}
$$

Is

Key problem

Consider

$$
L(f) \equiv y \sum_{j=0}^{\rho} c_{j} r_{j}
$$

Key problem

Consider

$$
L(f) \equiv_{y} \sum_{j=0}^{\rho} c_{j} r_{j}
$$

Key problem

Consider

$$
L(f) \equiv_{y} \sum_{j=0}^{\rho} c_{j} r_{j}
$$

Key problem

Consider

$$
L(f) \equiv y \sum_{j=0}^{\rho} c_{j} r_{j}
$$

Key problem

Consider

$$
L(f) \equiv_{y} \sum_{j=0}^{\rho} c_{j} r_{j}
$$

Idea. Choose appropriate r_{j} s.t. $\sum_{j=0}^{\rho} c_{j} r_{j}$ is a residual form.

Telescoping via reduction(cont.)

- Find residual forms r_{j}^{\prime} for $j=0, \ldots, \rho$ s.t.

$$
r_{j} \equiv_{y} r_{j}^{\prime} \text { and } \sum_{j=0}^{\rho} c_{j} r_{j}^{\prime} \text { is a residual form. }
$$

Telescoping via reduction(cont.)

- Find residual forms r_{j}^{\prime} for $j=0, \ldots, \rho$ s.t.

$$
r_{j} \equiv_{y} r_{j}^{\prime} \text { and } \sum_{j=0}^{\rho} c_{j} r_{j}^{\prime} \text { is a residual form. }
$$

- $L(f) \equiv_{y} \sum_{j=0}^{\rho} c_{j} r_{j} \equiv_{y} \sum_{j=0}^{\rho} c_{j} r_{j}^{\prime}$.

Telescoping via reduction(cont.)

- Find residual forms r_{j}^{\prime} for $j=0, \ldots, \rho$ s.t.

$$
r_{j} \equiv_{y} r_{j}^{\prime} \text { and } \sum_{j=0}^{\rho} c_{j} r_{j}^{\prime} \text { is a residual form. }
$$

- $L(f) \equiv_{y} \sum_{j=0}^{\rho} c_{j} r_{j} \equiv{ }_{y} \sum_{j=0}^{\rho} c_{j} r_{j}^{\prime}$.
- L is a telescoper for $f \Longleftrightarrow \sum_{j=0}^{\rho} c_{j} r_{j}^{\prime}=0$

Telescoping via reduction(cont.)

- Find residual forms r_{j}^{\prime} for $j=0, \ldots, \rho$ s.t.

$$
r_{j} \equiv_{y} r_{j}^{\prime} \text { and } \sum_{j=0}^{\rho} c_{j} r_{j}^{\prime} \text { is a residual form. }
$$

- $L(f) \equiv_{y} \sum_{j=0}^{\rho} c_{j} r_{j} \equiv{ }_{y} \sum_{j=0}^{\rho} c_{j} r_{j}^{\prime}$.
- L is a telescoper for $f \Longleftrightarrow \sum_{j=0}^{\rho} c_{j} r_{j}^{\prime}=0$
- A linear dependence among $\left\{r_{j}^{\prime}\right\}_{j=0}^{\rho}$ gives a telescoper.

Telescoping via reduction(cont.)

- Find residual forms r_{j}^{\prime} for $j=0, \ldots, \rho$ s.t.

$$
r_{j} \equiv_{y} r_{j}^{\prime} \text { and } \sum_{j=0}^{\rho} c_{j} r_{j}^{\prime} \text { is a residual form. }
$$

- $L(f) \equiv_{y} \sum_{j=0}^{\rho} c_{j} r_{j} \equiv_{y} \sum_{j=0}^{\rho} c_{j} r_{j}^{\prime}$.
- L is a telescoper for $f \Longleftrightarrow \sum_{j=0}^{\rho} c_{j} r_{j}^{\prime}=0$
- A linear dependence among $\left\{r_{j}^{\prime}\right\}_{j=0}^{\rho}$ gives a telescoper.

Remarks.

- The first linear depend. leads to the minimal telescoper.
- One can leave the certificate as an un-normalized sum.

Example

Consider

$$
f=\frac{y}{(x+y)^{2}}
$$

- Abramov's reduction: $f=\Delta_{y}(0)+\frac{y}{(x+y)^{2}}$

Example

Consider

$$
f=\frac{y}{(x+y)^{2}}
$$

- Abramov's reduction: $f=\Delta_{y}(0)+\frac{y}{(x+y)^{2}}$

$$
S_{x}(f)=\Delta_{y}(0)+\frac{y}{(x+y+1)^{2}}
$$

Example

Consider

$$
f=\frac{y}{(x+y)^{2}}
$$

- Abramov's reduction: $f=\Delta_{y}(0)+\frac{y}{(x+y)^{2}}$

$$
S_{x}(f)=\Delta_{y}(0)+\frac{y}{(x+y+1)^{2}}=\Delta_{y}\left(\frac{y-1}{(x+y)^{2}}\right)+\frac{y-1}{(x+y)^{2}}
$$

Example

Consider

$$
f=\frac{y}{(x+y)^{2}}
$$

- Abramov's reduction: $f=\Delta_{y}(0)+\frac{y}{(x+y)^{2}}$
- $S_{x}(f)=\Delta_{y}(0)+\frac{y}{(x+y+1)^{2}}=\Delta_{y}\left(\frac{y-1}{(x+y)^{2}}\right)+\frac{y-1}{(x+y)^{2}}$
$S_{x}^{2}(f)=\Delta_{y}\left(\frac{y-1}{(x+y+1)^{2}}\right)+\frac{y-1}{(x+y+1)^{2}}$

Example

Consider

$$
f=\frac{y}{(x+y)^{2}}
$$

- Abramov's reduction: $f=\Delta_{y}(0)+\frac{y}{(x+y)^{2}}$
- $S_{x}(f)=\Delta_{y}(0)+\frac{y}{(x+y+1)^{2}}=\Delta_{y}\left(\frac{y-1}{(x+y)^{2}}\right)+\frac{y-1}{(x+y)^{2}}$
- $S_{x}^{2}(f)=\Delta_{y}\left(\frac{y-1}{(x+y+1)^{2}}\right)+\frac{y-1}{(x+y+1)^{2}}$

$$
=\Delta_{y}\left(\frac{y-1}{(x+y+1)^{2}}+\frac{y-2}{(x+y)^{2}}\right)+\frac{y-2}{(x+y)^{2}}
$$

Example

Consider

$$
f=\frac{y}{(x+y)^{2}}
$$

- Abramov's reduction: $f=\Delta_{y}(0)+\frac{y}{(x+y)^{2}}$
- $S_{x}(f)=\Delta_{y}(0)+\frac{y}{(x+y+1)^{2}}=\Delta_{y}\left(\frac{y-1}{(x+y)^{2}}\right)+\frac{y-1}{(x+y)^{2}}$
- $S_{x}^{2}(f)=\Delta_{y}\left(\frac{y-1}{(x+y+1)^{2}}\right)+\frac{y-1}{(x+y+1)^{2}}$

$$
=\Delta_{y}\left(\frac{y-1}{(x+y+1)^{2}}+\frac{y-2}{(x+y)^{2}}\right)+\frac{y-2}{(x+y)^{2}}
$$

- $L=S_{x}^{2}-2 S_{x}+1$

Example

Consider

$$
f=\frac{y}{(x+y)^{2}}
$$

- Abramov's reduction: $f=\Delta_{y}(0)+\frac{y}{(x+y)^{2}}$
- $S_{x}(f)=\Delta_{y}(0)+\frac{y}{(x+y+1)^{2}}=\Delta_{y}\left(\frac{y-1}{(x+y)^{2}}\right)+\frac{y-1}{(x+y)^{2}}$
- $S_{x}^{2}(f)=\Delta_{y}\left(\frac{y-1}{(x+y+1)^{2}}\right)+\frac{y-1}{(x+y+1)^{2}}$

$$
=\Delta_{y}\left(\frac{y-1}{(x+y+1)^{2}}+\frac{y-2}{(x+y)^{2}}\right)+\frac{y-2}{(x+y)^{2}}
$$

- $L=S_{x}^{2}-2 S_{x}+1$
- $G=\frac{y-1}{(x+y+1)^{2}}+\frac{y-2}{(x+y)^{2}}-2 \frac{y-1}{(x+y)^{2}}=-\frac{x^{2}+4 x y+3 y^{2}+y}{(x+y)^{2}(x+1+y)^{2}}$

Timings (in seconds)

Let

$$
T=\frac{f(x, y)}{g_{1}(x+y) g_{2}(x+y)}
$$

with

- $g_{i}(z)=p_{i}(z) p_{i}(z+\lambda) p_{i}(z+\mu), \lambda, \mu \in \mathbb{N}$,
- $\operatorname{deg}\left(p_{1}\right)=\operatorname{deg}\left(p_{2}\right)=m$ and $\operatorname{deg}(f)=n$.

(m, n, λ, μ)	Zeilberger	TvR+cert	TvR	order
$(1,0,5,5)$	1.27	0.44	0.24	3
$(1,8,5,5)$	6.53	1.02	0.45	4
$(2,0,5,10)$	20.99	4.01	1.03	3
$(2,3,5,10)$	23.28	4.65	1.12	3
$(2,0,10,15)$	84.26	12.76	1.66	3
$(2,5,10,15)$	85.15	13.91	1.94	3
$(3,0,5,10)$	587.84	29.88	5.61	5

Hypergeometric terms

A nonzero term $T(x, y)$ is hypergeometric if

$$
\frac{S_{x}(T)}{T}, \frac{S_{y}(T)}{T} \in \mathbb{C}(x, y)
$$

Hypergeometric terms

A nonzero term $T(x, y)$ is hypergeometric if

$$
\frac{S_{x}(T)}{T}, \frac{S_{y}(T)}{T} \in \mathbb{C}(x, y) .
$$

Telescoping problem. Given a hypergeom. term $T(x, y)$, find a nonzero operator $L \in \mathbb{C}(x)\left\langle S_{x}\right\rangle$ s.t.
$L(T)=\Delta_{y}(G)$ for some hypergeom. term G.

Hypergeometric terms

A nonzero term $T(x, y)$ is hypergeometric if

$$
\frac{S_{x}(T)}{T}, \frac{S_{y}(T)}{T} \in \mathbb{C}(x, y)
$$

Telescoping problem. Given a hypergeom. term $T(x, y)$, find a nonzero operator $L \in \mathbb{C}(x)\left\langle S_{x}\right\rangle$ s.t.

$$
L(T)=\Delta_{y}(G) \text { for some hypergeom. term } G
$$

Remark. Our paper in Proc. ISSAC 2015:
A modified Abramov-Petkovšek reduction and creative telescoping for hypergeometric terms

Summary

Results.

- Telescoping via Abramov's reduction
- Generalization for hypergeometric terms

Future work.

- Creative telescoping for q-hypergeometric terms

