An Improved Abramov-Petkovšek Reduction for Hypergeometric Terms

Hui Huang
Key Laboratory of Mathematics Mechanization
AMSS, Chinese Academy of Sciences

Joint work with Shaoshi Chen and Ziming Li

Outline

- Hypergeometric summability
- Gosper algorithm
- Abramov-Petkovšek reduction
- Improved Abramov-Petkovšek reduction

Hypergeometric terms

Let C be a field of characteristic zero and x an indeterminate.
Definition. A term $T(x)$ is hypergeometric over $C(x)$ if its shift quotient $T(x+1) / T(x)$ is in $C(x)$.

Examples.
$r(x) \in C(x) \backslash\{0\}, c^{x}$ with $c \in C \backslash\{0\}, x$! and binomial coefficients, etc.

Hypergeometric terms

Let C be a field of characteristic zero and x an indeterminate.
Definition. A term $T(x)$ is hypergeometric over $C(x)$ if its shift quotient $T(x+1) / T(x)$ is in $C(x)$.

Examples.
$r(x) \in C(x) \backslash\{0\}, c^{x}$ with $c \in C \backslash\{0\}, x$! and binomial coefficients, etc.

Notation.

- For $r \in C(x), r_{d}$ and r_{n} denote the denominator and numerator of r, respectively.
- $\Delta(r(x))=r(x+1)-r(x)$.

Summability

A hypergeometric term $T(x)$ is said to be summable if there exists a hypergeometric term $G(x)$ s.t.

$$
T(x)=\Delta(G(x))
$$

Example.

- x ! is not summable
- $x \cdot x$! is summable

Summability

A hypergeometric term $T(x)$ is said to be summable if there exists a hypergeometric term $G(x)$ s.t.

$$
T(x)=\Delta(G(x))
$$

Example.

- x ! is not summable
- $x \cdot x$! is summable

Fact.

$$
T(x) \text { is summable }
$$

$$
\Uparrow
$$

$$
\frac{T(x+1)}{T(x)} z(x+1)-z(x)=1 \text { has a solution in } C(x)
$$

Gosper algorithm (1978)

Given a hypergeometric term $T(x)$, compute $a(x), b(x)$, $c(x) \in C[x]$ s.t.

$$
\frac{T(x+1)}{T(x)}=\frac{a(x)}{b(x)} \frac{c(x+1)}{c(x)}
$$

and $\operatorname{gcd}(a(x), b(x+\ell))=1$ for all $\ell \in \mathbb{N}$. Then
$T(x)$ is summable

$$
\begin{gathered}
\Uparrow \\
a(x) z(x+1)-b(x-1) z(x)=c(x)
\end{gathered}
$$

has a polynomial solution in $C[x]$,

Kernels and shells

Definition. A rational function $r \in C(x)$ is shift-reduced if

$$
\operatorname{gcd}\left(r_{n}, r_{d}(x+\ell)\right)=1 \quad \text { for all } \ell \in \mathbb{Z}
$$

For $r \in C(x), \exists K, S \in C(x)$ with K being shift-reduced s.t.

$$
r(x)=K(x) \cdot \frac{S(x+1)}{S(x)}
$$

Let $T(x)$ be a hypergeometric term with $r=T(x+1) / T(x)$. Call

- K: a kernel of T;
(S: the shell of T w.r.t. K.

Multiplicative decomposition.

$$
T(x)=S(x) \cdot H(x) \quad \text { with } H(x+1) / H(x)=K(x)
$$

Shift-freeness and strong co-primeness

A polynomial $a(x) \in C[x]$ is shift-free if

$$
\operatorname{gcd}(a(x), a(x+\ell))=1 \quad \text { for all } \ell \in \mathbb{Z} \backslash\{0\}
$$

Assume that $r \in C(x)$ is shift-reduced, an irreducible polynomial $q(x) \in C[x]$ is strongly co-prime with r if

- $q \nmid r_{d} r_{n}$,
- $q(x+m) \nmid r_{n}$ for all $m \in \mathbb{Z}^{+}$,
- $q(x-m) \nmid r_{d}$ for all $m \in \mathbb{Z}^{+}$.

A nonzero polynomial is strongly co-prime with r if all its irreducible factors are strongly co-prime with r.

Abramov-Petkovšek reduction (2001)

Let T be a hypergeometric term with a kernel K and shell S.
Set $H=T / S$.

- Decompose

$$
T=\Delta(f H)+\underbrace{\frac{w}{K_{d}} H}_{\text {possibly summable }}+\underbrace{\frac{a}{b} H}_{\text {not summable }},
$$

where $f \in C(x)$ and $w, a, b \in C[x]$ with $\operatorname{deg}(a)<\operatorname{deg}(b)$.

- Moreover, b is shift-free and strongly co-prime with K.

Abramov-Petkovšek reduction (2001)

Let T be a hypergeometric term with a kernel K and shell S.
Set $H=T / S$.

- Decompose

$$
T=\Delta(f H)+\underbrace{\frac{w}{K_{d}} H}_{\text {possibly summable }}+\underbrace{\frac{a}{b} H}_{\text {not summable }}
$$

where $f \in C(x)$ and $w, a, b \in C[x]$ with $\operatorname{deg}(a)<\operatorname{deg}(b)$.

- Moreover, b is shift-free and strongly co-prime with K.

Proposition. "possibly summable" is summable iff

$$
K_{n} z(x+1)-K_{d} z(x)=w
$$

has a polynomial solution in $C[x]$.

Key problem

Key problem

Can one reduce the possibly summable term

$$
\frac{w}{K_{d}} H
$$

further to
summable + non-summable ?

Key problem

Can one reduce the possibly summable term

$$
\frac{w}{K_{d}} H
$$

further to

$$
\text { summable }+ \text { non-summable ? }
$$

Idea:

- Abramov and Petkovšek (2001): reduce the leading term of w;
- Bostan et. al. (2013): Hermite reduction for hyperexp functs. (Polynomial reduction: reducing the number of terms.)

Polynomial reduction

Given $K \in C(x)$, define

$$
\begin{array}{rllc}
\phi_{K}: C[x] & \longrightarrow & C[x] \\
& \mapsto & \mapsto & K_{n} a(x+1)-K_{d} a(x) .
\end{array}
$$

Call ϕ_{K} the polynomial reduction map w.r.t. K.
Write

$$
C[x]=\operatorname{im}\left(\phi_{K}\right) \oplus \mathcal{N}_{K},
$$

where

$$
\mathcal{N}_{K}=\operatorname{span}_{C}\left\{x^{i} \mid i \neq \operatorname{deg}(a) \text { for all } a \in \operatorname{im}\left(\phi_{K}\right)\right\}
$$

Call \mathcal{N}_{K} the standard complement of $\operatorname{im}\left(\phi_{K}\right)$.

Properties

Lemma. Assume that K is shift-reduced and $K \neq 1$. Then

- im $\left(\phi_{K}\right)$ has a C-basis $\left\{\phi_{K}\left(x^{i}\right) \mid i \in \mathbb{N}\right\}$,
- $\operatorname{dim}_{C}\left(\mathcal{N}_{K}\right) \leq \max \left(\operatorname{deg}\left(K_{n}\right), \operatorname{deg}\left(K_{d}\right)\right)$.

Properties

Lemma. Assume that K is shift-reduced and $K \neq 1$. Then

- im $\left(\phi_{K}\right)$ has a C-basis $\left\{\phi_{K}\left(x^{i}\right) \mid i \in \mathbb{N}\right\}$,
- $\operatorname{dim}_{C}\left(\mathcal{N}_{K}\right) \leq \max \left(\operatorname{deg}\left(K_{n}\right), \operatorname{deg}\left(K_{d}\right)\right)$.

Polynomial reduction.
Decompose $w=p_{1}+p_{2}$ with $p_{1} \in \operatorname{im}\left(\phi_{K}\right)$ and $p_{2} \in \mathcal{N}_{K}$.

Properties

Lemma. Assume that K is shift-reduced and $K \neq 1$. Then

- im $\left(\phi_{K}\right)$ has a C-basis $\left\{\phi_{K}\left(x^{i}\right) \mid i \in \mathbb{N}\right\}$,
- $\operatorname{dim}_{C}\left(\mathcal{N}_{K}\right) \leq \max \left(\operatorname{deg}\left(K_{n}\right), \operatorname{deg}\left(K_{d}\right)\right)$.

Polynomial reduction.
Decompose $w=p_{1}+p_{2}$ with $p_{1} \in \operatorname{im}\left(\phi_{K}\right)$ and $p_{2} \in \mathcal{N}_{K}$.
Solution to the key problem.

$$
\underbrace{\frac{w}{K_{d}} H}_{\text {oly summable }}=\Delta\left(\phi_{K}^{-1}\left(p_{1}\right) H\right)+\underbrace{\frac{p_{2}}{K_{d}} H}_{\text {non-summable }} .
$$

Improved Abramov-Petkovšek reduction

Theorem. Let T be hypergeometric with a kernel K and shell S. Set $H=T / S$. Then one can decompose

$$
T=\underbrace{\Delta(g H)}_{\text {summable }}+\underbrace{\left(\frac{p}{K_{d}}+\frac{a}{b}\right) H,}_{\text {non-summable }}
$$

where

- $g \in C(x)$
- $p \in \mathcal{N}_{K}$
- $\operatorname{deg}(a)<\operatorname{deg}(b)$
- b is shift-free and strongly co-prime with K.

Moreover, assume that ($*$) holds. Then
T is summable $\Longleftrightarrow p=a=0$.

Uniqueness

Two decompositions

$$
\begin{aligned}
T & =\Delta(g H)+\left(\frac{p}{K_{d}}+\frac{a}{b}\right) H \\
& =\Delta\left(g^{\prime} H\right)+\left(\frac{p^{\prime}}{K_{d}}+\frac{a^{\prime}}{b^{\prime}}\right) H
\end{aligned}
$$

Then
$\{\text { irr. factors of } b\}^{1: 1} \sim\left\{\right.$ irr. factors of $\left.b^{\prime}\right\}$.

Examples

1. $T=x$!.

- $K=x+1$ and $S=1$.
- AP reduction: $T=0+H$ where $H=x!$.
- Polynomial reduction: $1 \in \mathcal{N}_{K} \Longrightarrow x$! is not summable.

2. $T=x \cdot x$!.

- $K=x+1$ and $S=x$.
- AP reduction: $T=0+x \cdot H$ where $H=x!$.
- Polynomial reduction: $x=\phi_{K}(1) \Longrightarrow x \cdot x!=\Delta(x!)$.

Timings (in seconds)

Examples in the following form:

$$
T:=\underbrace{\frac{a(x)}{p_{1}(x) p_{1}(x+\lambda) p_{1}(x+\mu) p_{2}(x) p_{2}(x+\lambda) p_{2}(x+\mu)}}_{\text {shell }} \prod_{i=1}^{x} r(i),
$$

where

- $\operatorname{deg}(a)=20$ and $\operatorname{deg}\left(p_{1}\right)=\operatorname{deg}\left(p_{2}\right)=10$,
- $\operatorname{deg}\left(r_{d}\right)=\operatorname{deg}\left(r_{n}\right)=2$,
- $\lambda, \mu \in \mathbb{Z}^{+}$and $\lambda<\mu$.

Results

Non-summable inputs: Gosper $<$ Improved AP $<$ AP.
Summable inputs: $\Delta(T)$.

(λ, μ)	Gosper in Maple	Improved AP	AP in Maple
$(10,15)$	4.009	13.089	73.133
$(10,20)$	7.488	13.058	103.694
$(10,25)$	12.09	15.163	176.297
$(10,30)$	18.439	15.148	323.702
$(10,40)$	50.107	15.272	540.497
$(10,50)$	121.182	20.015	984.148

- Improved AP < AP;
- Improved AP is faster than Gosper for large dispersions.

Summary

Result.

- An improved Abramov-Petkovšek reduction

Future work.

- Apply the improved AP reduction to compute minimal telescopers for hypergeometric terms.

Summary

Result.

- An improved Abramov-Petkovšek reduction

Future work.

- Apply the improved AP reduction to compute minimal telescopers for hypergeometric terms.

Thank you!

