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Abstract

We present two new algorithms for the computation of the q-integer linear decomposition of a
multivariate polynomial. Such a decomposition is essential for the treatment of q-hypergeometric
symbolic summation via creative telescoping and for describing the q-counterpart of Ore-Sato
theory. Both of our algorithms require only basic integer and polynomial arithmetic and work for
any unique factorization domain containing the ring of integers. Complete complexity analyses
are conducted for both our algorithms and two previous algorithms in the case of multivariate
integer polynomials, showing that our algorithms have better theoretical performances. A Maple
implementation is also included which suggests that our algorithms are much faster in practice
than previous algorithms.

Keywords: q-Analogue, Integer-linear polynomials, Polynomial decomposition,
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1. Introduction

Many objects in the ordinary shift world of symbolic summation find a natural counterpart
commonly called q-analogues. In a typical situation, these are just slight adaptations of the
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original objects but with involved variables promoted to exponents of an additional parameter q.
Techniques for handling the originals often carry over to their q-analogues with some subtle
modifications. One of the reasons for interest in q-analogues is that, due to the extra parame-
ter q, they have many counting interpretations which are useful in combinatorics and analysis.
One is referred to the classic books (Andrews, 1976, 1986) for the combinatorial and analytical
aspects of q-theory, as well as for some surprising applications elsewhere in mathematics (see
also (Bostan and Yurkevich, 2020)).

In this paper, we deal with the q-analogue of integer-linear decompositions of polynomials
and aim to provide an intensive treatment for its computation in analogy to (Giesbrecht et al.,
2019). Surprisingly, although this q-analogue is obtained by modeling its ordinary shift counter-
part, the primary technique used in (Giesbrecht et al., 2019) can not be easily adapted to compute
it due to different structures. A new alternative technique will be presented in this q-shift case.

In order to describe more details, we let D be a ring of characteristic zero and let R =

D[q, q−1] be its transcendental ring extension by the indeterminate q. For n discrete indeter-
minates k1, . . . , kn distinct from q, we know that qk1 , . . . , qkn are transcendental over R. We
can then consider polynomials in qk1 , . . . , qkn over R, all of which form a well-defined ring
denoted by R[qk1 , . . . , qkn ]. We say an irreducible polynomial p ∈ R[qk1 , . . . , qkn ] is q-integer
linear over R if there exists a univariate polynomial P ∈ R[y] and two integer-linear polynomials∑n

i=1 αiki,
∑n

i=1 λiki ∈ Z[k1, . . . , kn] such that

p(qk1 , . . . , qkn ) = q
∑n

i=1 αiki P(q
∑n

i=1 λiki ).

In order to avoid superscripts, we will write the indeterminates qk1 , . . . , qkn as the variables
x1, . . . , xn in the sequel of the paper. Then the above definition can be rephrased as follows.
An irreducible polynomial p ∈ R[x1, . . . , xn] is called q-integer linear over R if there exists a
univariate polynomial P ∈ R[y] and integers α1, . . . , αn, λ1, . . . , λn such that

p(x1, . . . , xn) = xα1
1 · · · xαn

n P(xλ1
1 · · · xλn

n ). (1.1)

Note that the indeterminate q is hidden in the variables x1, . . . , xn. Since a common factor of
the λi can be pulled out and absorbed into P, and a monomial can be merged into xα1

1 · · · xαn
n if

necessary, we assume that the integers λ1, . . . , λn have no common divisor, that the last nonzero
integer in the λi is positive, that λi = 0 whenever degxi

(p) = 0 and that P(0) , 0. Such a vector
(λ1, . . . , λn), as well as such a polynomial P, is unique. We call the vector (λ1, . . . , λn) the q-
integer linear type of p and the polynomial P its corresponding univariate polynomial. Note that
the resulting α1, . . . , αn all belong to N since p ∈ R[x1, . . . , xn] and P ∈ R[y]. A polynomial in
R[x1, . . . , xn] is called q-integer linear (over R) if all its irreducible factors are q-integer linear,
possibly with different q-integer linear types. For a polynomial p ∈ R[x1, . . . , xn], we can define
its q-integer linear decomposition by factoring into irreducible q-integer linear or non-q-integer
linear polynomials and collecting irreducible factors having common types.

The class of q-integer linear polynomials plays a fundamental role in the q-analysis of sym-
bolic summation. For example, it is an important ingredient of the q-analogue of the Ore-
Sato theorem for describing the structure of multivariate q-hypergeometric terms (Du and Li,
2019), which in turn serves as a promising indispensable tool for settling a q-analogue of Wilf-
Zeilberger’s conjecture (Wilf and Zeilberger, 1992; Chen and Koutschan, 2019). Furthermore,
the q-integer linearity of polynomials is used to detect the applicability of the q-analogue of
Zeilberger’s algorithm (also known as the method of creative telescoping) for q-hypergeometric
terms (Chen et al., 2005).
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The full q-integer linear decomposition of polynomials is also very useful. On the one hand,
it provides a natural way to determine the q-integer linearity of a given polynomial. On the
other hand, it enables one to compute the q-analogue of Ore-Sato decomposition of a given q-
hypergeometic term, and can also be employed to develop a fast creative telescoping algorithm
for rational functions in the q-shift setting in analogy to (Giesbrecht et al., 2021). Evidently, the
efficiency of the computation of q-integer linear decompositions directly affects the utility of all
these algorithms.

In contrast to the ordinary shift case (Abramov and Le, 2002; Giesbrecht et al., 2019; Li
and Zhang, 2013), algorithms for computing the q-integer linear decomposition of a multivariate
polynomial are not very well developed. As far as we are aware, there is only one algorithm
available to compute such a decomposition of a bivariate polynomial. This algorithm was de-
veloped by Le (2001, §5) with an extended description provided in (Le et al., 2001). Except for
using the same pattern as its ordinary shift counterpart (Abramov and Le, 2002), this algorithm
takes use of a completely different strategy, especially for finding q-integer linear types. This is
mainly because all q-integer linear types appear as the exponent vectors of p, rather than as the
coefficients in the ordinary shift case. The main idea used by Le (2001, §5) is to first find can-
didates for q-integer linear types by computing a resultant and then, for each candidate, extract
the corresponding univariate polynomial via bivariate GCD computations. Given the algebraic
machinery on which the algorithm is based, it is not clear how one can directly generalize this to
handle polynomials in more than two variables.

The main contribution of this paper is a pair of new fast algorithms for computing the q-
integer linear decomposition of a multivariate polynomial. Both algorithms will work for any
unique factorization domain containing all integers and for any polynomial with an arbitrary
number of variables. The first approach follows the pattern of the algorithm of Le but avoids
the computation of resultants. More precisely, this approach reduces the problem of finding can-
didates for q-integer linear types to the well-studied geometric task of constructing the Newton
polytope of the given polynomial, implying computations only using basic arithmetic operations
(+,−,÷,×) of integers. It then computes each corresponding univariate polynomial by a content
computation. As such we show that the q-analogue is actually simpler than its ordinary shift
counterpart in the sense that, instead of finding rational roots of polynomials, one merely needs
to perform basic integer manipulations.

Our second approach uses a bivariate-based method. This scheme takes the bivariate version
of our previous algorithm, that is, the algorithm for computing the q-integer linear decomposition
of a bivariate polynomial, as a base case and iteratively tackles only two variables at a time until
all variables are treated. Clearly, our two approaches coincide in the bivariate case.

An additional contribution is to use our bivariate-based scheme (approach two) to extend the
algorithm of Le so that it can readily tackle polynomials in any number of variables. For the
sake of completeness, we also include another algorithm based on full irreducible factorization.
This algorithm makes use of the observation that the difference of exponent vectors of any two
monomials appearing in an irreducible q-integer linear polynomial, say the polynomial p of the
form (1.1), must be a scalar multiple of the q-integer linear type (λ1, . . . , λn).

In order to do a theoretical comparison we have analyzed the worst-case running time com-
plexity of our both approaches, as well as that of the other two algorithms, in the case of multi-
variate polynomials over Z[q, q−1]. The analysis shows that the second approach is superior to
the first one when the given polynomial has more than two variables. When restricted to the case
of bivariate polynomials over Z[q, q−1], the two approaches merge into one, which in turn is con-
siderably faster than the algorithm of Le and the algorithm based on factorization. In addition,
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we also give experimental results which verify our complexity comparisons.
The remainder of the paper proceeds as follows. Background and basic notions required in

the paper are provided in the next section. Our two new approaches for computing q-integer
linear decompositions of multivariate polynomials are given successively in Sections 3 and 4.
The following section provides a complexity comparison of our two algorithms, the algorithm
of Le and the factorization-based algorithm. The paper ends with an experimental comparison
among all algorithms, along with a conclusion section.

2. Preliminaries: polynomials and Newton polytopes

Throughout the paper, we let D be a unique factorization domain (UFD) of characteristic
zero with R = D[q, q−1] denoting the transcendental ring extension by an indeterminate q. Note
that a domain of characteristic zero always contains the ring of integers Z as a subdomain. Let
R[x1, . . . , xn] be the ring of polynomials in x1, . . . , xn over R, where x1, . . . , xn are variables
distinct from q. We reserve the variables x and y as synonyms for x1 and x2, respectively, so as
to avoid subscripts in the case when n ≤ 2.

Let p be a polynomial in R[x1, . . . , xn]. Throughout this paper we will order monomials in
R[x1, . . . , xn] using a pure lexicographic order in x1 ≺ · · · ≺ xn. For this order we let lc(p)
and deg(p) denote the leading coefficient and the total degree, respectively, of p with respect
to x1, . . . , xn. We follow the convention that deg(0) = −∞. We say that p is monic (over R) if
lc(p) = 1. The content of p (over R), denoted by cont(p), is the greatest common divisor (GCD)
over R of the coefficients of p with respect to x1, . . . , xn with p being primitive if cont(p) = 1.
The primitive part prim(p) of p (over R) is defined as p/ cont(p). For brevity, we will omit the
domain if it is clear from the context. In certain instances, we also need to consider the above
notions with respect to a subset of the n variables. In these cases, we will either specify the
relevant domain or indicate the related variables as subscripts of the corresponding notion. For
example, lcx1,x2 (p), degx1,x2

(p), contx1,x2 (p) and primx1,x2
(p) denote each function but applied to

a polynomial p viewing it as a polynomial in x1, x2 over the domain R[x3, . . . , xn].
In order to obtain a canonical representation, we introduce the notion of q-primitive poly-

nomials in the univariate case. A polynomial p ∈ R[y] is called q-primitive if it is primitive
over R and its constant term p(0) is nonzero. Note that this concept is a ring counterpart of
q-monic polynomials introduced by Paule and Riese (1997). Clearly, any factor of a q-primitive
polynomial in R[y] is again q-primitive.

The Newton polytope of multivariate polynomials plays a crucial role in our algorithms. In
what follows, we recall some terminology and results on convex polytopes from a polynomial
point of view. For a more general theory, one is referred to, for example, (Grünbaum, 2003).

In order to simplify notations, we employ bold letters, say i, for a column vector (i1, . . . , in)T

in the Euclidean space Rn, and the multi-index convention xi for the monomial xi1
1 · · · xin

n if i ∈ Zn.
The zero vector in Rn is denoted by boldface 0. Taking advantage of this boldface notation, we
later write R[x] and R[x, x−1] for the polynomial ring R[x1, . . . , xn] and the Laurent polynomial
ring R[x1, x−1

1 , . . . , xn, x−1
n ], respectively.

Let p ∈ R[x] be a polynomial of the form
∑

i aixi with ai ∈ R, having finitely many nonzero
terms. The support of p, denoted by supp(p), is defined as the set of indices i ∈ Nn with the
property that the corresponding coefficient ai is nonzero. Clearly, supp(p) is a finite set in Nn,
and it is empty if and only if p = 0. An exponent vector i of p can be considered as a point in Rn.
The convex hull of the set supp(p) in Rn is then known as the Newton polytope of p, denoted
by Newt(p). By convention, Newt(0) is the empty set.
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For two sets A and B in Rn, their Minkowski sum is defined as the set

A + B = {a + b | a ∈ A, b ∈ B}.

The following well-known result, due to Ostrowski (1921, 1975), reveals the relation between
the Newton polytope of a polynomial and those of its factors.

Lemma 2.1 ((Ostrowski, 1921, 1975)). Let f , g ∈ R[x]. Then Newt( f g) = Newt( f ) + Newt(g).

It proves convenient to extend the notion of Newton polytopes to Laurent polynomials in the
ring R[x, x−1]. Notice that any Laurent polynomial from R[x, x−1] can be written as the form
xαp for some α ∈ Zn and p ∈ R[x]. Thus the Newton polytope of the given Laurent polynomial
is defined to be the translation Newt(p) + α of Newt(p) by α. Evidently, Lemma 2.1 literally
carries over to Laurent polynomials.

Lemma 2.2. Let f , g ∈ R[x, x−1]. Then Newt( f g) = Newt( f ) + Newt(g).

We will consider faces of Newton polytopes. Let C be a Newton polytope of a certain Laurent
polynomial over R. A hyperplane H = {x ∈ Rn | aT x = b} with a ∈ Rn \ {0} and b ∈ R is called a
supporting hyperplane of C with outward normal a if H ∩C , ∅ and aT x ≤ b for all x ∈ C. We
call the intersection H ∩ C a face of C. By convention, ∅ and C are called improper faces of C.
The faces of dimension zero and one are also called vertices and edges, respectively. Note that
for any nonzero vector a ∈ Rn, there exists a unique supporting hyperplane of C with outward
normal a (cf. (Grünbaum, 2003, Theorem 8, Page 15)). We then refer to the intersection of this
supporting hyperplane and C as the face of C determined by the outward normal a.

Lemma 2.3. Let f , g ∈ R[x, x−1] and a ∈ Rn \ {0}. Then F f g,a = F f ,a + Fg,a, where F f ,a is the
face of Newt( f ) determined by the outward normal a.

Proof. By Lemma 2.2, Newt( f ) = Newt( f ) + Newt(g). The assertion is then a direct result of
(Grünbaum, 2003, Theorem 1, Page 317).

3. q-Integer linear decomposition: the first approach

We are interested in finding the following decomposition of a polynomial, something briefly
alluded to in the introduction.

Definition 3.1. Let p ∈ R[x] be a polynomial admitting the decomposition

p = c xαP0

m∏
i=1

Pi(xλi ), (3.1)

where c ∈ R, m ∈ N, α ∈ Nn, λi ∈ Zn \ {0}, P0 ∈ R[x] and Pi ∈ R[y]. Then (3.1) is called the
q-integer linear decomposition of p (over R) if

(1) P0 is primitive and none of its irreducible factors of positive total degree is q-integer linear;

(2) each Pi is q-primitive and of positive degree;
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(3) each λi satisfies the conditions that gcd(λi1, . . . , λin) = 1 and its rightmost nonzero coordi-
nate is positive 1;

(4) the λi are pairwise distinct.

We call each λi a q-integer linear type of p and Pi its corresponding univariate polynomial.

Evidently, p is q-integer linear if and only if P0 is a unit of R in (3.1). By full factorization, we
see that every polynomial admits a q-integer linear decomposition. Moreover, this decomposition
is unique up to the order of factors and multiplication by units of R, according to the uniqueness
of full factorization and that of the q-integer linear type of an irreducible polynomial.

Let p ∈ R[x] be a polynomial of positive total degree. Without loss of generality, we assume
that p is primitive with respect to any variable from {x1, . . . , xn}. Otherwise, we may replace
p by the remaining part after iteratively removing from p its content with respect to xi for all
i = 1, . . . , n. Note that all these removed contents are polynomials over R having at most (n − 1)
variables and hence can be dealt with recursively, knowing that univariate polynomials are all
q-integer linear. With this set-up, p admits the q-integer linear decomposition of the form (3.1),
in which c = 1, αn = 0 and none of the types λi has zero coordinates. In order to compute
such a decomposition, we mimic the strategy of Abramov and Le (2002) in the ordinary shift
case, that is, we first find all possible candidates for q-integer linear types and then extract the
corresponding univariate polynomial for each type.

3.1. Candidates for q-integer linear types

Observe that all q-integer linear types λi in (3.1) appear as exponent vectors, and the Newton
polytope of each Pi(xλi ) is just a line segment. This leads us to investigate edges of the Newton
polytope of the given polynomial.

For this purpose, we assign a direction to each line segment in Rn. Let u, v ∈ Rn with u , v
and let [u, v] = {tu + (1 − t)v | t ∈ R, 0 ≤ t ≤ 1} denote the line segment connecting u, v.
A nonzero vector λ ∈ Rn is called the direction vector of [u, v] if u − v = tλ for some t ∈
R, gcd(λ1, . . . , λn) = 1 and the rightmost nonzero coordinate of λ is positive. As before, the
requirement on the positivity of the last nonzero coordinate guarantees the uniqueness of such
a direction vector. Clearly, two parallel (nondegenerate) line segments share the same direction
vector, and vice versa.

Lemma 3.2. Let p ∈ R[x] \ R with contx1 (p) = · · · = contxn (p) = 1, and assume that it admits
the q-integer linear decomposition (3.1). Then for any i ∈ N with 1 ≤ i ≤ m, the Newton polytope
of p possesses an edge of the direction vector λi. Moreover, if Newt(p) is not a line segment then
there are at least two such edges.

Proof. There is nothing to show when m = 0, so assume that m > 0. We merely show the
assertions for i = m, and then the lemma follows by symmetry.

Let p∗ = xαP0
∏m−1

i=1 Pi(xλi ). Then p∗ ∈ R[x] \ {0}, and by (3.1),

p = p∗Pm(xλm ). (3.2)

1As mentioned in the introduction, the positivity of the rightmost nonzero coordinate of λi required here can be easily
obtained and is used to make such a vector unique.
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Notice that Newt(Pm(xλm )) is a line segment in Rn with direction vector λm. Then for any nonzero
vector a ∈ Rn with aTλm = 0, the supporting hyperplane of Newt(Pm(xλm )) determined by the
outward normal a contains the whole polytope. This means that Newt(Pm(xλm )) itself is the
(improper) edge determined by such an outward normal.

In order to show the first assertion, it then amounts to finding a nonzero vector a ∈ Rn

with aTλm = 0 such that the face of Newt(p∗) determined by the outward normal a is either a
vertex or an edge parallel to Newt(Pm(xλm )). The rest then follows by (3.2), Lemma 2.3 and the
observation that the Minkowski sum of a line with a point or another parallel line is again a line
parallel to the original line.

By an affine coordinate transformation if necessary, we may assume without loss of generality
that λm is equal to the n-th unit vector en = (0, . . . , 0, 1)T ∈ Rn. Then Newt(Pm(xλm )) is contained
by the xn-axis. We now consider the projection of Newt(p∗) onto the hyperplane {x ∈ Rn | xn = 0}
in the direction of λm = en, that is,

Projn(p∗) = {x ∈ Rn | xn = 0 and x + ten ∈ Newt(p∗) for some t ∈ R}.

This is again a Newton polytope by (Grünbaum, 2003, Theorem 8, Page 74). Since p∗ is nonzero,
Newt(p∗) is nonempty, and so is Projn(p∗). Let ṽ be a vertex of Projn(p∗). Then by definition,
there exists a hyperplane H of the form H = {x ∈ Rn | aT x = b} for a ∈ Rn \ {0} with an = 0
and b ∈ R such that H ∩ Projn(p∗) = {ṽ} and aT x ≤ b for all x ∈ Projn(p∗). Since ṽ ∈ Projn(p∗),
there exists a number t ∈ R such that ṽ + ten ∈ Newt(p∗). Among these numbers, let t1, t2 ∈ R be
the minimum and maximum ones, respectively. Note that t1, t2 are not necessarily distinct. Let
u = ṽ + t1en and v = ṽ + t2en. Then the line segment [u, v], possibly being a point when t1 = t2,
is parallel to the xn-axis and contained in Newt(p∗) by convexity.

Evidently, aTλm = aT en = 0. We claim that [u, v] is the face of Newt(p∗) determined by the
outward normal a, which will complete the proof of the first assertion. In other words, we aim
to prove that

H ∩ Newt(p∗) = [u, v] and aT x ≤ b for all x ∈ Newt(p∗).

Let x ∈ Newt(p∗) and x̃ = (x1, . . . , xn−1, 0). Then aT x = aT x̃ ≤ b as an = 0 and x̃ ∈ Projn(p∗).
To see the inclusion H ∩ Newt(p∗) ⊂ [u, v], we further assume that x ∈ H ∩ Newt(p∗). Thus
x̃ ∈ H ∩ Projn(p∗) = {ṽ}. This means that x̃ = ṽ. By the minimality of t1 and maximality of t2,
we know that x ∈ [u, v]. The opposite direction H ∩ Newt(p∗) ⊃ [u, v] is clear from definition.

Moreover, assume that Newt(p) is not a line segment. Then Newt(p∗) cannot be a point or
a line segment parallel to Newt(Pm(xλm )) by (3.2) and Lemma 2.2. This implies that Projn(p∗)
has at least two different vertices. Taking another vertex of Projn(p∗) distinct from ṽ and arguing
along similar lines as above yields another edge of Newt(p) which has the direction vector λm.
The lemma therefore follows.

From the above lemma, one sees that the direction vectors of edges of Newt(p) exhaust all
possible choices of q-integer linear types. When Newt(p) is not a line segment, one can restrict
attention to those vectors with multiple occurrences. Note that in our application, the Newton
polytope of a given polynomial will be described by the set of its edges. Such a set can be easily
deduced from the face lattice or the vertex-facet incidence matrix of the given Newton polytope,
for which algorithms from computational geometry are well developed; see (Goodman et al.,
2018, Chapter 26) and the references therein.

Given a set of points with cardinality s ∈ N, it is known that the number of edges of the
convex hull of this set is bounded by

(
s
2

)
(cf. (Grünbaum, 2003, Theorem 2, Page 194)). Thus
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Lemma 3.2 might offer us a superset of q-integer linear types of cardinality O(s2) in the worst
case. The following lemma, however, helps us bring it down to O(s).

Lemma 3.3. With the assumptions of Lemma 3.2, for any i ∈ N with 1 ≤ i ≤ m and for any
j ∈ supp(p), there exists another vector j̃ ∈ supp(p) such that the line segment [ j, j̃] has the
direction vector λi, or equivalently, j − j̃ = kλi for some nonzero integer k.

Proof. There is nothing to show when m = 0, so assume that m > 0. By symmetry, it suffices to
show that the assertion holds for i = m.

Again, we take p∗ = xαP0
∏m−1

i=1 Pi(xλi ) and derive the decomposition (3.2) of p. Notice that
supp(p) is nonempty as p , 0. Let j ∈ supp(p). It follows from (3.2) that there is j∗ ∈ supp(p∗)
and k∗ ∈ supp(Pm) such that j = j∗ + k∗λm. Now consider the set

S = { j̄ ∈ supp(p∗) | j̄ = j∗ + kλm for some k ∈ Z}.

Then there exist p∗1, p∗2 ∈ R[x] with supp(p∗1) = S and supp(p∗2) = supp(p∗) \ S such that
p∗ = p∗1 + p∗2. It is evident that j∗ ∈ S . Thus S is nonempty and then p∗1 is nonzero. Let α∗ ∈ S
be such that any element of S can be written as α∗ + kλm for some k ∈ N, or equivalently, any
monomial present in p∗1 takes the form xα∗+kλm for some k ∈ N. It then follows that there exists a
nonzero univariate polynomial P∗ ∈ R[y] such that p∗1 = xα∗P∗(xλm ).

On the other hand, by noticing that for any j̄ ∈ supp(p∗2) = supp(p∗)\S , we have j̄ , j∗+kλm

for all k ∈ Z. Hence, p can be decomposed as p = f +g, where f = p∗1Pm(xλm ) and g = p∗2Pm(xλm )
with supp( f )∩supp(g) = ∅. As a consequence, supp(p) = supp( f )]supp(g). Since j = j∗+k∗λm,
we have j ∈ supp( f ). Notice that p∗1 = xα∗P∗(xλm ). So f = xα∗ P̃(xλm ) with P̃ = P∗Pm ∈ R[y]\{0}.
Then there exists k ∈ supp(P̃) such that j = α∗ + kλm. Since Pm is q-primitive and of positive
total degree, it possesses more than one monomial, and hence so does P̃. This implies that there
is another element k̃ ∈ supp(P̃) distinct from k. Let j̃ = α∗ + k̃λm. Then j̃ ∈ supp( f ) ⊂ supp(p)
and j − j̃ = (k − k̃)λm. This concludes the proof.

Combining Lemmas 3.2 and 3.3 suggests a simple geometric way to find candidates for all
q-integer linear types of a given polynomial.

Proposition 3.4. With the assumptions of Lemma 3.2, let Λ1 be the multiset of direction vectors
of edges of Newt(p) having no zero coordinates. Let v ∈ supp(p) be fixed and let Λ2 be the
set consisting of direction vectors of line segments connecting v and all other points in supp(p)
which have no zero coordinates.

(1) If the cardinality of Λ1 is one then p is q-integer linear of type λ ∈ Λ1.

(2) Otherwise, let Λ∗1 be the subset of Λ1 composed of elements with multiple occurrences.
Then the intersection Λ∗1 ∩ Λ2 constitutes a superset of q-integer linear types of p. More-
over, with s ∈ N denoting the cardinality of supp(p), this superset has no more than s − 1
elements in total.

Let p be as given in Lemma 3.2 and assume further that p is q-integer linear. Then one sees
from the decomposition (3.1) and Lemma 2.2 that Newt(p) is the Minkowski sum of finitely
many line segments. Such a polytope is called a zonotope in the literature. Zonotopes form
an especially interesting and important class of convex polytopes; we refer to (Ziegler, 1995,
Lecture 7) for more information. One of the key features of the zonotope Newt(p) is that the
direction vectors of its edges are exactly those of its zones (namely the line segments present in
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the Minkowski sum), which, in our context, are all q-integer linear types λ1, . . . , λm from (3.1).
We therefore obtain the following necessary condition for a polynomial to be q-integer linear.

Proposition 3.5. With the assumptions of Lemma 3.2, further assume that p is q-integer linear.
Then Newt(p) is a zonotope and none of the direction vectors of edges of Newt(p) has zero
coordinates. As a consequence, for any integer i with 1 ≤ i ≤ n, there exists a unique vector in
supp(p) whose i-th coordinate takes extremum value.

Proof. Notice that none of the q-integer linear types of p has zero coordinates. The first assertion
is thus a direct result of the discussion preceding the proposition. In terms of the second assertion,
we only show the argument on minimality for i = n, that is, we will prove that there exists only
one vector in supp(p) whose i-th coordinate attains minimum. The rest follows by symmetry.

We proceed with using proof by contradiction. Suppose that there are at least two vectors
in supp(p) whose n-th coordinate is equal to minx∈supp(p){xn}. Let a ∈ supp(p) be one of these
vectors. We claim that H := {x ∈ Rn | −xn = −an} is a supporting hyperplane of Newt(p). By the
minimality of an, we know that −xn ≤ −an for all x ∈ supp(p). It then follows from the convexity
of Newt(p) that −xn ≤ −an for all x ∈ Newt(p). Since a ∈ H ∩ Newt(p) , ∅, the claim holds.

Let F = H ∩ Newt(p). Then F is a face of Newt(p) by the claim and thus is itself a Newton
polytope by (Ziegler, 1995, Proposition 2.3(i)). By assumption, F has at least two points and then
possesses an edge, say [u, v] for u, v ∈ supp(p). By (Ziegler, 1995, Proposition 2.3 (iii)), [u, v] is
also an edge of Newt(p), whose direction vector has zero n-th coordinate since u, v ∈ F ⊂ H, a
contradiction with the first assertion.

3.2. Computation of univariate polynomials

With candidates for the q-integer linear types at hand, we are able to find the corresponding
univariate polynomials based on a q-counterpart of (Giesbrecht et al., 2019, Proposition 3.2).

Proposition 3.6. With the assumptions of Lemma 3.2, let λ ∈ Zn with gcd(λ1, . . . , λn) = 1,
λ1, . . . , λn−1 not all zero and λn > 0. Let P∗ ∈ R[y] be the content with respect to x1, . . . , xn−1
of the numerator of p(xλn

1 , . . . , x
λn
n−1, yx−λ1

1 · · · x−λn−1
n−1 ). If P∗ < R then λ is a q-integer linear type

of p with corresponding univariate polynomial P∗(y1/λn ) ∈ R[y]. Otherwise, λ is not a q-integer
linear type of p.

In order to prove the above proposition, we first need to introduce some basic notions and
lemmas. In the sequel of this subsection, we let K denote the quotient field of R and consider
polynomials in xn over the field K(x1, . . . , xn−1), all of which form the ring K(x1, . . . , xn−1)[xn]. It
is convenient to extend the definition of content and primitive part to polynomials in this setting.
Let p ∈ K(x1, . . . , xn−1)[xn] be of the form

∑d
i=0(ai/b)xi

n for d ∈ N and ai, b ∈ R[x1, . . . , xn−1].
Then the content contxn (p) of p with respect to xn is defined as gcd(a0, . . . , ad)/b and the corre-
sponding primitive part primxn

(p) = p/ contxn (p). Evidently, primxn
(p) ∈ R[x]. The definition

of leading coefficient and degree extends to polynomials in K[x1, . . . , xn] in a natural manner.

Lemma 3.7. Let P ∈ R[y]\R with P(0) , 0 and let λ ∈ Zn with gcd(λ1, . . . , λn) = 1, λ1, . . . , λn−1
not all zero and λn > 0. Then

(i) for any factor f ∈ K(x1, . . . , xn−1)[xn] of P(xλ) which is monic and irreducible over
K(x1, . . . , xn−1), there exists c ∈ K, α1, . . . , αn−1 ∈ Z and a factor g ∈ R[y] of P such
that f = cxα1

1 · · · xαn−1
n−1 g(xλ). Moreover, 0 < deg(g) = degxn

( f )/λn.
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(ii) P is irreducible over R if and only if P(xλ) is irreducible over K(x1, . . . , xn−1) if and only
if primxn

(P(xλ)) is irreducible over R.

Proof. (i) Since P(0) , 0, all its roots in the algebraic closure K of the field K are nonzero. In
order to prove the assertion, it is sufficient to show that for any root r ∈ K of P, the polynomial
xλ − r is irreducible over K(x1, . . . , xn−1). For then, since f ∈ K(x1, . . . , xn−1)[xn] is a monic
and irreducible factor of P(xλ), it factors completely into irreducibles in K(x1, . . . , xn−1)[xn] as
follows

f =

s∏
i=1

(x−λ1
1 · · · x−λn−1

n−1 )(xλ − ri) = (x−λ1
1 · · · x−λn−1

n−1 )s
s∏

i=1

(xλ − ri),

where s ∈ N with s ≤ deg(P) and the ri ∈ K are roots of P, and thus the assertion directly follows
by letting g(y) = primy(

∏s
i=1(y − ri)).

Let r ∈ K be a root of P and suppose that xλ − r is reducible over K(x1, . . . , xn−1). Then we
have λn > 1. Consider the algebraic closure K(x1, . . . , xn−1) of K(x1, . . . , xn−1) and let ω ∈ K be
a λn-th root of unity so that ωλn = 1. Since r is nonzero, the complete factorization of xλ − r over
K(x1, . . . , xn−1) is given by

xλ − r = xλ1
1 · · · xλn−1

n−1

λn−1∏
i=0

(
xn − ω

ir1/λn x−λ1/λn
1 · · · x−λn−1/λn

n−1

)
.

It then follows from the reducibility of xλ − r over K(x1, . . . , xn−1) that there exist i1, . . . , ik ∈
{0, . . . , λn − 1} with 0 < k < λn such that

k∏
j=1

(
xn − ω

i j r1/λn x−λ1/λn
1 · · · x−λn−1/λn

n−1

)
∈ K(x1, . . . , xn−1)[xn].

This implies that (λi/λn)k ∈ Z for all i = 1, . . . , n − 1. Thus λn divides k · gcd(λ1, . . . , λn−1) in Z.
Since λ1, . . . , λn−1 are not all zero, gcd(λ1, . . . , λn) = 1 and λn > 1, we have λn divides k in Z, a
contradiction since 0 < k < λn.

(ii) For the first equivalence, the sufficiency is evident. In order to show the necessity, suppose
that P(xλ) is reducible over K(x1, . . . , xn−1). Let f ∈ K(x1, . . . , xn−1)[xn] be an irreducible factor
of P(xλ). Then the degree of f in xn is less than λn deg(P). By assertion (i), we obtain that there
exists a nontrivial factor g ∈ R[y] dividing P in R[y] and deg(g) = degxn

( f )/λn < deg(P), a
contradiction with the assumption that P is irreducible over R. Therefore, P(xλ) is irreducible
over K(x1, . . . , xn−1).

For the second equivalence, by Gauß’ lemma, one easily sees that P(xλ) is irreducible over
K(x1, . . . , xn−1) if and only if primxn

(P(xλ)) is irreducible over R[x1, . . . , xn−1]. It thus amounts
to showing the equivalence between the irreducibility of primxn

(P(xλ)) over R[x1, . . . , xn−1] and
its irreducibility over R. The direction from R to R[x1, . . . , xn−1] is trivial. In order to see the
converse, notice that any nontrivial factor of primxn

(P(xλ)) can only belong to R[x1, . . . , xn−1]
since primxn

(P(xλ)) is irreducible over R[x1, . . . , xn−1]. On the other hand, the existence of any
such a nontrivial factor would contradict with the fact that primxn

(P(xλ)) is primitive with respect
to xn. Accordingly, primxn

(P(xλ)) must be irreducible over R.

Lemma 3.8. Let p ∈ R[x] and λ ∈ Zn with gcd(λ1, . . . , λn) = 1, λ1, . . . , λn−1 not all zero and
λn > 0. Let P ∈ K[y] be such that P(0) , 0 and P(xλ) divides p in K(x1, . . . , xn−1)[xn]. Then λ is
a q-integer linear type of p with the corresponding univariate polynomial divided by P in K[y].
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Proof. Let f ∈ R[y] be a primitive irreducible factor of P. Since P(0) , 0, then f is q-primitive.
Notice that λ ∈ Zn and λn > 0. So primxn

( f (xλ)) = xα f (xλ) for some α ∈ Nn with αn = 0.
This implies that primxn

( f (xλ)) is a q-integer linear polynomial in R[x] of type λ. Because P(xλ)
divides p in K(x1, . . . , xn−1)[xn], so does f (xλ). One then concludes from Lemma 3.7 (ii) that
primxn

( f (xλ)) is an irreducible factor of p over R. Therefore, by Definition 3.1, λ is a q-integer
linear type of p and f divides its corresponding polynomial in R[y]. Since f is arbitrary, the
lemma follows.

We are now ready to prove Proposition 3.6.

Proof of Proposition 3.6. Assume that P∗ ∈ R[y] \ R and let f ∈ K[y] be a monic irreducible
factor of P∗. Then f (xn) divides p(xλn

1 , . . . , x
λn
n−1, xnx−λ1

1 · · · x−λn−1
n−1 ) in K(x1, . . . , xn−1)[xn]. Sub-

sequently substituting xn by xnxλ1
1 · · · x

λn−1
n−1 and then xi by x1/λn

i for i = 1, . . . , n − 1 yields
that f (xnxλ1/λn

1 · · · xλn−1/λn
n−1 ) divides p in K(x1, . . . , xn−1)[xn] where K(x1, . . . , xn−1) denotes the

algebraic closure of K(x1, . . . , xn−1). This implies that f (y) , y, for, otherwise, we would
have that xn divides p in K(x1, . . . , xn−1)[xn] and then p(x1, . . . , xn−1, 0) = 0, a contradiction
with the primitivity of p with respect to x1. Let r ∈ K be a root of f . Then r , 0 and f
is its minimal polynomial in K[y]. Notice that p is divided by f (xnxλ1/λn

1 · · · xλn−1/λn
n−1 ). Thus

p(x1, . . . , xn−1, rx−λ1/λn
1 · · · x−λn−1/λn

n ) = 0. Let P ∈ K[y] be the minimal polynomial of rλn . By
Lemma 3.7 (ii), P(xλ) is irreducible over K(x1, . . . , xn−1). Then P(xλ), upon making it monic
with respect to xn, gives rise to the minimal polynomial of xn = rx−λ1/λn

1 · · · x−λn−1/λn
n . Therefore,

P(xλ) divides p in K(x1, . . . , xn−1)[xn]. One thus concludes from Lemma 3.8 that λ is a q-integer
linear type of p, say λ = λi for some integer i with 1 ≤ i ≤ m, and then P divides Pi in K[y].
Notice that f is the minimal polynomial of r and P(rλn ) = 0. So f divides P(yλn ) and then Pi(yλn )
in K[y]. As f is arbitrary, we have that P∗ divides Pi(yλn ) in K[y]. Since both polynomials are
q-primitive and λn > 0, then P∗ divides Pi(yλn ) in R[y] by Gauß’ lemma.

In order to show the first assertion, it remains to verify that Pi(yλn ) divides P∗ in R[y], and
then P∗ and Pi(yλn ) only differ by a unit in R, yielding the assertion.

Since λ = λi, by a simple calculation, one sees from (3.1) that Pi(yλn ) divides all coefficients
of p(xλn

1 , . . . , x
λn
n−1, yx−λ1

1 · · · x−λn−1
n−1 ) with respect to x1, . . . , xn−1. By the definition of P∗, we obtain

that Pi(yλn ) divides P∗ in R[y]. This actually also implies that P∗ < R if λ = λi is a q-integer linear
type of p, because Pi < R. The second assertion follows and the proof is thus concluded.

3.3. Algorithm and example

Assembling everything together yields our first approach.
MultivariateQILD1. Given a polynomial p ∈ R[x], compute its q-integer linear decomposition.

1. If p ∈ R then set c = p; and return c.

2. Set c = cont(p) and f = prim(p). If supp( f ) is a singleton then set α to be the only element
and update c = c f /xα; and return cxα.

3. If n = 1 then set α1 to be the lowest degree of f with respect to x1, m = 1, λm1 = 1 and
Pm(y) = f (y)/yα1 ; and return c xα1

1
∏m

i=1 Pi(xλi1
1 ).

4. Set α = 0, P0 = 1, m = 0.
For i = 1, . . . , n do

4.1 Set g = contxi ( f ), and update f = primxi
( f ).

11



4.2 If g , 1 then call the algorithm recursively with input g ∈ R[x1, . . . , xi−1, xi+1, . . . , xn],
returning

g = xα̃1
1 · · · xα̃i−1

i−1 xα̃i+1
i+1 · · · xα̃n

n P̃0

m̃∏
j=1

P̃ j(xλ̃ j1

1 · · · xλ̃ j,i−1

i−1 xλ̃ j,i+1

i+1 · · · xλ̃ jn
n ),

update α = α + (α̃1, . . . , α̃i−1, 0, α̃i+1, . . . , α̃n), P0 = P0P̃0, and for j = 1, . . . , m̃
iteratively update m = m + 1, λm = (λ̃ j1, . . . , λ̃ j,i−1, 0, λ̃ j,i+1, . . . , λ̃ jn), Pm(y) = P̃ j(y).

5. If deg( f ) = 0 then update c = c f ; and return c xαP0
∏m

i=1 Pi(xλi ).

6. Find the multiset Λ of direction vectors of edges of Newt( f ) having no zero coordinates.

7. If Λ has more than one element then

7.1 Update Λ to be its subset composed of elements with multiple occurrences.

7.2 For fixed v ∈ supp( f ), find the set Λ̃ consisting of direction vectors of line segments
connecting v and all other points in supp(p) which have no zero coordinates.

7.3 Update Λ to be Λ ∩ Λ̃.

8. For λ in Λ do

8.1 Set P∗(y) to be the content of the numerator of f (xλn
1 , . . . , x

λn
n−1, yx−λ1

1 · · · x−λn−1
n−1 ) with

respect to x1, . . . , xn−1.

8.2 If deg(P∗) > 0 then

Update m = m + 1, λm = λ, Pm(y) = P∗(y1/λn ).
Set f ∗, g∗ ∈ R[x1, . . . , xn] to be the numerator and denominator of Pm(xλ),
and update f = f / f ∗ and αi = αi + degxi

(g∗) for i = 1, . . . , n − 1.

9. If deg( f ) > 0 then update P0 = P0 f else update c = c f .

10. Return c xαP0
∏m

i=1 Pi(xλi ).

Theorem 3.9. Let p ∈ R[x]. Then the algorithm MultivariateQILD1 terminates and correctly
computes the q-integer linear decomposition of p.

Proof. This is evident by Propositions 3.4 and 3.6.

Remark 3.10. If one is merely interested in only determining the q-integer linearity of the input
polynomial p ∈ R[x], rather than the full q-integer linear decomposition, then the above algo-
rithm can be easily modified: any of the following conditions will trigger the adapted algorithm
to terminate early, returning that p is not q-integer linear.

• In Step 4.2, the polynomial g turns out to be non-q-integer linear.

• (Proposition 3.5) In Step 6, the Newton polytope of f is not a zonotope; or there exists an
edge of Newt( f ) whose direction vector has zero coordinates. In particular, the support
supp( f ) has more than one element whose certain coordinate attains the extremum value.

• (Proposition 3.6) In Step 8.2, the case of deg(P∗) = 0 happens, that is, the candidate λ
currently under investigation is fake.

• (Definition 3.1) In Step 10, we have deg(P0) > 0.
12



Example 3.11. Consider the polynomial p ∈ Z[q, q−1][x1, x2, x3, x4] of the form

p = 2q2x9
1x12

2 x13
3 + 2qx8

1x14
2 x13

3 + 2qx8
1x14

2 x12
3 x4 + 18q2x11

1 x8
2x16

3 x5
4 + 18qx10

1 x10
2 x16

3 x5
4

+ 18qx10
1 x10

2 x15
3 x6

4 − 2qx5
1x20

2 x7
3x7

4 − 2x4
1x22

2 x7
3x7

4 − 2x4
1x22

2 x6
3x8

4 − 18qx7
1x16

2 x10
3 x12

4

− 18x6
1x18

2 x10
3 x12

4 − 18x6
1x18

2 x9
3x13

4 + 7q2x1x28
2 x3x14

4 + 7qx30
2 x3x14

4 + 7qx30
2 x15

4

+ 6q4x15
1 x22

3 x15
4 + 6q3x14

1 x2
2x22

3 x15
4 + 6q3x14

1 x2
2x21

3 x16
4 + 63q2x3

1x24
2 x4

3x19
4

+ 63qx2
1x26

2 x4
3x19

4 + 63qx2
1x26

2 x3
3x20

4 − 6q3x11
1 x8

2x16
3 x22

4 − 6q2x10
1 x10

2 x16
3 x22

4

− 6q2x10
1 x10

2 x15
3 x23

4 + 21q4x7
1x16

2 x10
3 x29

4 + 21q3x6
1x18

2 x10
3 x29

4 + 21q3x6
1x18

2 x9
3x30

4 (3.3)

In order to compute the q-integer linear decomposition of the polynomial p over Z[q, q−1], the
algorithm MultivariateQILD1 first tries to find candidates for all possible q-integer linear types
of p. In this respect, it computes the Newton polytope of p from its support supp(p), which can
be readily read out from (3.3), and finds that Newt(p) possesses 11 vertices:{

v0 := (9, 12, 13, 0), v1 := (8, 14, 13, 0), v2 := (8, 14, 12, 1), v3 := (1, 28, 1, 14),

v4 := (0, 30, 1, 14), v5 := (0, 30, 0, 15), v6 := (15, 0, 22, 15), v7 := (14, 2, 22, 15),

v8 := (7, 16, 10, 29), v9 := (6, 18, 10, 29), v10 := (6, 18, 9, 30)
}
,

and 19 edges:{
[v1, v4], [v4, v9], [v7, v9], [v1, v7], [v4, v5], [v1, v2], [v2, v5], [v5, v10], [v9, v10], [v0, v2],

[v0, v1], [v6, v7], [v6, v8], [v8, v9], [v0, v3], [v3, v5], [v0, v6], [v3, v8], [v8, v10]
}
.

Based on Proposition 3.4 (namely Steps 6-7), one obtains three candidates for q-integer linear
types of p, that is, (−1, 2,−1, 1), (2,−4, 3, 5), (−4, 8,−6, 7). A subsequent content computation
for each candidate finally leads to the following q-integer linear decomposition

p = x8
1x12

2 x12
3 · P0 · P1(x2

1x−4
2 x3

3x5
4) · P2(x−4

1 x8
2x−6

3 x7
4), (3.4)

where P0 = qx1x3 + x2
2x3 + x2

2x4, P1(y) = 3q2y3 + qy + 1 and P2(y) = 7qy2 − 2y + 2q.
Notice that there are two elements in the support supp(p) (namely the exponent vectors of

the first two monomials in (3.3)) attaining the minimum value of x4. One thus immediately sees
from Proposition 3.5 that the given polynomial p is not q-integer linear. Also, the candidate
(−1, 2,−1, 1) turns out to be fake, implying, once again, the non-q-integer linearity of p.

4. q-Integer linear decomposition: the second approach

In this section we present our second approach for computing the q-integer linear decompo-
sition of a polynomial in an arbitrary number of variables. This approach uses a bivariate-based
scheme, where the base bivariate case is tackled by the first approach from the preceding section.
In order to describe it concisely, we need a q-analogue of (Abramov and Petkovšek, 2002, Propo-
sition 7). To this end, we require two technical lemmas. The first one corresponds to (Abramov
and Petkovšek, 2002, Lemma 2) but restricted to the case of Laurent polynomials.

Lemma 4.1. Let p ∈ R[x, x−1] be a nonzero Laurent polynomial. If there exists a nonzero
integer a and a nonzero element c ∈ R such that p(qax) = cp(x), then c = qam for some m ∈ Z
and p(x)/xm ∈ R.
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Proof. The assertion is clear if p has only one monomial. Otherwise, let xi and x j with i, j ∈ Z
be two monomials of p. Extracting their coefficients in the identity p(qax) = cp(x) gives qai =

c = qa j. Thus c has the form qai for some i ∈ Z and all the exponents j of the monomials in p
satisfy a( j − i) = 0, yielding j = i as a is nonzero. The lemma follows.

Evidently, the above lemma remains valid by replacing the ring R with any of its ring exten-
sions which is independent of the variable x, or changing the variable x to any its rational power
xr for r ∈ Q. The next lemma plays the role of (Abramov and Petkovšek, 2002, Lemma 3) in the
q-shift setting, which describes a nice structure of q-shift invariant bivariate polynomials.

Lemma 4.2. Let p ∈ R[x, y]. If there exists c ∈ R and a, b ∈ Z, not both zero, such that
p(qax, qby) = cp(x, y), then there is a univariate polynomial P ∈ R[y] and four integers α, β, λ, µ
with λ, µ not both zero such that p = xαyβP(xλyµ).

Proof. Without loss of generality, we assume that a is nonzero. Otherwise, we can switch the
roles of x and y in the following proof. Define h(x, y) = p(x, yxb/a). Then h ∈ R[x1/a, x−1/a, y] and
p(x, y) = h(x, yx−b/a). Using p(qax, qby) = cp(x, y), a simple calculation shows that h(qax, y) =

p(qax, qbyxb/a) = ch(x, y). Viewing h as a Laurent polynomial in x1/a over R[y], Lemma 4.1
implies that h/xm/a ∈ R[y] for some m ∈ Z. From the definition of h we have that i+(b/a) j = m/a
for all (i, j) ∈ supp(p). Let xαyβ with α, β ∈ N be the trailing monomial in p, and let λ, µ ∈ Z be
such that λ/µ = −b/a, gcd(λ, µ) = 1 and µ > 0. Then µ(i − α) = λ( j − β) for all (i, j) ∈ supp(p).
By the coprimeness of λ and µ, one obtains that for any (i, j) ∈ supp(p), there exists k ∈ N such
that (i, j) = (α, β) + k(λ, µ). It thus follows that p = xαyβP(xλyµ) for some P ∈ R[y].

From the above lemma, we are then able to establish the fact that the problem of multivariate
q-integer linearity is made up of a collection of subproblems of bivariate q-integer linearity.

Proposition 4.3. Let p ∈ R[x]. Then there exists a univariate polynomial P ∈ R[y] and two
vectors α ∈ Nn, λ ∈ Zn \ {0} such that p = xαP(xλ) if and only if for each pair (i, j) with
1 ≤ i < j ≤ n, there is a polynomial Pi j(y) ∈ R[x1, . . . , xi−1, xi+1, . . . , x j−1, x j+1, . . . , xn][y] and
four integers βi j, β ji, µi j, µ ji with µi j, µ ji not both zero such that p = xβi j

i xβ ji

j Pi j(xµi j

i xµ ji

j ).

Proof. The necessity is clear. For the sufficiency, we proceed by induction on the number n of
variables. There is nothing to show in the base case where n = 1. Assume that n > 1 and the
assertion holds for n − 1.

Consider p as a polynomial in x1, . . . , xn−1 over R[xn]. By the induction hypothesis, there is
a polynomial P∗(y) ∈ R[xn][y] and two vectors (α∗1, . . . , α

∗
n−1) ∈ Nn−1, (λ∗1, . . . , λ

∗
n−1) ∈ Zn−1 with

the λ∗i not all zero such that

p(xn)(x1, . . . , xn−1) = xα
∗
1

1 · · · xα
∗
n−1

n−1 P∗(xλ
∗
1

1 · · · xλ
∗
n−1

n−1 ).

We may assume without loss of generality that λ∗1 , 0. Regarding P∗ as an element of R[y, xn],
we rewrite the preceding equation as

p(x1, . . . , xn) = xα
∗
1

1 · · · xα
∗
n−1

n−1 P∗(xλ
∗
1

1 · · · xλ
∗
n−1

n−1 , xn). (4.1)

By taking i = 1 and j = n in the assumption, we know that p = xβ1n
1 xβn1

n P1n(xµ1n
1 xµn1

n ) for P1n ∈

R[x2, . . . , xn−1][y] and β1n, βn1, µ1n, µn1 ∈ Z with µ1n, µn1 not both zero. Therefore,

p(qµn1 x1, x2, . . . , xn−1, q−µ1n xn) = cp(x1, . . . , xn) with c = qβ1nµn1−βn1µ1n ∈ R.
14



It follows from (4.1) that P∗(qµn1λ
∗
1 xλ

∗
1

1 · · · xλ
∗
n−1

n−1 , q
−µ1n xn) = cq−µn1α

∗
1 P∗(xλ

∗
1

1 · · · xλ
∗
n−1

n−1 , xn), that is,

P∗(qµn1λ
∗
1 y, q−µ1n xn) = cq−µn1α

∗
1 P∗(y, xn).

Applying Lemma 4.2 to P∗(y, xn) yields that there is a univariate polynomial P ∈ R[y] and four
integers αn, α

∗
n, λn, λ

∗
n with λn, λ

∗
n not both zero such that P∗(y, xn) = yα

∗
n xαn

n P(yλ
∗
n xλn

n ). Substituting
y = xλ

∗
1

1 · · · xλ
∗
n−1

n−1 into this equation, together with (4.1), implies that p = xαP(xλ) with α =

(α∗1 + λ∗1α
∗
n, . . . , α

∗
n−1 + λ∗n−1α

∗
n, αn) and λ = (λ∗1λ

∗
n, . . . , λ

∗
n−1λ

∗
n, λn). The proof follows by noticing

that λ is nonzero.

Inspired by the above proposition, we propose an algorithm which takes a multivariate poly-
nomial as input and computes its q-integer linear decomposition in an iterative fashion. At each
iteration step, only two variables are used with the others treated as coefficient parameters.
MultivariateQILD2. Given a polynomial p ∈ R[x], compute its q-integer linear decomposition.

1. If p ∈ R then set c = p; and return c.

2. Set c = cont(p) and f = prim(p). If supp( f ) is a singleton then set α to be the only element
and update c = c f /xα; and return cxα.

3. If n = 1 then set α1 to be the lowest degree of f with respect to x1, m = 1, λm1 = 1 and
Pm(y) = f (y)/yα1 ; and return c xα1

1
∏m

i=1 Pi(xλi1
1 ).

4. If n = 2 then call the algorithm MultivariateQILD1 with input f ∈ R[x1, x2] to compute
its q-integer linear decomposition

f = xα1
1 xα2

2 P0

m∏
i=1

Pi(xλi1
1 xλi2

2 );

and then return c xα1
1 xα2

2 P0
∏m

i=1 Pi(xλi1
1 xλi2

2 ).

5. Set α = 0, P0 = 1, m = 0 and g = contx1,x2 ( f ), and update f = primx1,x2
( f ).

6. If g , 1 then call the algorithm recursively with input g ∈ R[x3, . . . , xn], returning

g = xα̃3
3 · · · xα̃n

n P̃0

m̃∏
i=1

P̃i(xλ̃i3
3 · · · xλ̃in

n ),

update α = α + (0, 0, α̃3, . . . , α̃n), P0 = P0P̃0, and for i = 1, . . . , m̃ iteratively update
m = m + 1, λm = (0, 0, λ̃i3, . . . , λ̃in), Pm(y) = P̃i(y).

7. If supp( f ) is a singleton then set α∗ to be the only element and update α = α + α∗,
c = c f /xα∗ ; and return c xαP0

∏m
i=1 Pi(xλi ).

8. Set Λ1 =
{(

(1), f (y, x2, . . . , xn)
)}

.
For k = 1, . . . , n − 1 do

8.1 Set Λk+1 = {}.

8.2 For
(
(µ1, . . . , µk), h(y, xk+1, . . . , xn)

)
in Λk do

15



Call the algorithm MultivariateQILD1 with input h ∈ R[xk+2, . . . , xn][y, xk+1]
to compute its q-integer linear decomposition

h = yα
∗

xβ
∗

k+1P∗0

m∗∏
i=1

P∗i (yλ
∗
i xµ

∗
i

k+1, xk+2, . . . , xn),

where P∗0 ∈ R[y, xk+1, . . . , xn] and P∗i (y, xk+2, . . . , xn) ∈ R[y, xk+2, . . . , xn];
then update α by adding the vector (µ1α

∗, . . . , µkα
∗, β∗, 0, . . . , 0), update P0

by multiplying P∗0(xµ1
1 · · · xµk

k , xk+1, . . . , xn) and update Λk+1 by joining the
elements

(
(µ1λ

∗
i , . . . , µkλ

∗
i , µ
∗
i ), P∗i (y, xk+2, . . . , xn)

)
for i = 1, . . . ,m∗.

9. Set g ∈ R[x] to be the denominator of P0. Update P0 to be its numerator, update αi =

αi − degxi
(g) for i = 1, . . . , n − 1, and for

(
µ, h(y)

)
in Λn iteratively update m = m + 1,

λm = µ and Pm(y) = h(y).

10. Return c xαP0
∏m

i=1 Pi(xλi ).

Theorem 4.4. Let p ∈ R[x]. Then the algorithm MultivariateQILD2 correctly computes the
q-integer linear decomposition of p.

Proof. The correctness immediately follows from Proposition 4.3.

Example 4.5. Consider the same polynomial p given by (3.3) as Example 3.11. In order to
compute its q-integer linear decomposition over Z[q, q−1], the algorithm MultivariateQILD2
(mainly Step 8) proceeds in the following three stages with their respective Newton polytopes
plotted in Figure 1. Firstly, by viewing p as a polynomial in x1, x2 over Z[q, q−1, x3, x4], applying
the algorithm MultivariateQILD1 to p gives

p = x15
1 P(1)(x−1

1 x2
2, x3, x4) (4.2)

with

P(1)(y, x3, x4) = 7qy15x3x14
4 + 7qy15x15

4 + 7q2y14x3x14
4 + 63qy13x4

3x19
4 + 63qy13x3

3x20
4

+ 63q2y12x4
3x19

4 − 2y11x7
3x7

4 − 2y11x6
3x8

4 − 2qy10x7
3x7

4 + 21q3y9x10
3 x29

4 − 18y9x10
3 x12

4

+ 21q3y9x9
3x30

4 − 18y9x9
3x13

4 + 21q4y8x10
3 x29

4 − 18qy8x10
3 x12

4 + 2qy7x13
3 + 2qy7x12

3 x4

+ 2q2y6x13
3 − 6q2y5x16

3 x22
4 + 18qy5x16

3 x5
4 − 6q2y5x15

3 x23
4 + 18qy5x15

3 x6
4 − 6q3y4x16

3 x22
4

+ 18q2y4x16
3 x5

4 + 6q3yx22
3 x15

4 + 6q3yx21
3 x16

4 + 6q4x22
3 x15

4 .

There is only one q-integer linear type, namely (−1, 2), of p over Z[q, q−1, x3, x4]. Next, with
input P(1)(y, x3, x4) ∈ Z[q, q−1, x4][y, x3], calling the algorithm MultivariateQILD1 again and
substituting y = x−1

1 x2
2 yields

p = x28
2 · P0 · P(2)(x2

1x−4
2 x3

3, x4), (4.3)

where P0 = qx1x3 + x2
2x3 + x2

2x4 and P(2)(y, x4) = 6q3y7x15
4 − 6q2y5x22

4 + 18qy5x5
4 + 2qy4 +

21q3y3x29
4 − 18y3x12

4 − 2y2x7
4 + 63qyx19

4 + 7qx14
4 . The vector (2,−4, 3) is then the only q-integer

linear type of p over Z[q, q−1, x4]. Finally, the last call to the algorithm MultivariateQILD1
with input P(2)(y, x4) ∈ Z[q, q−1][y, x4], along with the substitution y = x2

1x−4
2 x3

3, leads to the
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Stage 3

Figure 1: Newton polytopes constructed in the three stages in Example 4.5.

desired decomposition (3.4). The two q-integer linear types (2,−4, 3, 5) and (−4, 8,−6, 7) of p
over Z[q, q−1] have been correctly recovered.

From (4.2) and (4.3), one sees that p is q-integer linear over Z[q, q−1, x3, x4] but it is not
q-integer linear over Z[q, q−1, x4]. This last point indicates the non-q-integer linearity of p over
Z[q, q−1], even before starting the third stage.

Once more, similar to Remark 3.10, the above algorithm can be easily modified so as to
determine the q-integer linearity of a given polynomial only. In other words, the algorithm can
exit early and return a negative answer whenever one of the following situations occurs.

• In Step 4 or in any iteration step of Step 8.2, any of the triggers listed in Remark 3.10 is
touched.

• In Step 6, the polynomial g turns out to be not q-integer linear.

5. Complexity comparison

In this section, we give complexity analyses for the two algorithms presented in Sections 3
and 4 in the case of R = Z[q, q−1]. In addition, we discuss two more algorithms for the same
purpose, namely for computing q-integer linear decompositions of polynomials, along with their
costs in the bivariate case for the sake of comparison.

5.1. Complexity background
We first collect some classical complexity notations and facts needed in this paper. More

background on these can be found in (von zur Gathen and Gerhard, 2013).
Although our algorithms work in more general UFDs, we confine our complexity analysis

to the case of integer (Laurent) polynomials, that is, when D is the ring of integers Z and then
R is equal to Z[q, q−1]. Here q can be viewed as a variable in addition to x1, . . . , xn. Note that
operations in Z[q, q−1] can be easily transferred to those in Z[q] with a negligible cost. The cost
is given in terms of number of word operations used so that growth of coefficients comes into
play. Recall that the word length of a nonzero integer a ∈ Z is defined as O(log |a|). In this paper,
all complexity is analyzed in terms of a function M(d) which bounds the cost required to multiply
two integers of word length at most d or polynomials of degree at most d. We take M(d) = d2

using classical arithmetic and M(d) = O∼(d) using fast arithmetic, where the soft-Oh notation
“O∼” is basically “O” but suppressing logarithmic factors (see (von zur Gathen and Gerhard,

17



2013, Definition 25.8) for a precise definition). We assume that M is subadditive, superlinear and
subquadratic, that is, M(a) + M(b) ≤ M(a + b) and aM(b) ≤ M(ab) ≤ a2M(b) for all a, b ∈ N.

Throughout this paper, we define the max-norm ||p||∞ of a Laurent polynomial p ∈ Z[q, q−1]
as the maximum absolute value of its coefficients with respect to q, and the max-norm ||p||∞ of
a polynomial p =

∑
i∈N pi1,...,in xi ∈ Z[q, q−1][x] as maxi∈N{||pi1,...,in ||∞}. The GCD computation

is fundamental for our algorithms. Before analyzing the algorithm, let us recall some useful
complexity results on GCD computation.

Lemma 5.1 ((Gel′fond, 1960, Page 135-139)). Let p1, . . . , pm ∈ Z[x]. Let p = p1 · · · pm and let
di = degxi

(p) for all i = 1, . . . , n. Then

||p1||∞ · · · ||pm||∞ ≤ ed1+···+dn ||p||∞,

where e is the base of the natural logarithm.

Note that when n = 1 the above bound is actually worse than Mignotte’s factor bound for
large d, which, however, leads to the same order of magnitude for word lengths of the max-norms.

The lemma below provides bounds for the resultant of two multivariate integer polynomials,
which can be verified by following the proof of (Bistritz and Lifshitz, 2010, Theorem 10) but
arguing from the perspective of multivariate polynomials.

Lemma 5.2. Let f , g ∈ Z[x] with degxi
( f ), degxi

(g) ≤ di for all i = 1, . . . , n. Then

||Resxn ( f , g)||∞ ≤ (2dn)!(d1 + 1)2dn−1 · · · (dn−1 + 1)2dn−1|| f ||dn
∞ ||g||

dn
∞ .

The next result is likely known in the literature, but we could not find a suitable reference, so
we included a proof here for completeness.

Lemma 5.3. Let f , g ∈ Z[x] with degxi
( f ) ≤ di, degxi

(g) ≤ di for all i = 1, . . . , n, || f ||∞ ≤ β and
||g||∞ ≤ β. Let d = max{d1, . . . , dn} and Dn = d1 · · · dn. Then computing gcd( f , g) over Z takes
O(DnM(nd + log β) log(nd + log β)) word operations.

Proof. We proceed to compute h = gcd( f , g) by a small prime modular algorithm. By Lemma 5.1,
|| gcd( f , g)||∞ ≤ ed1+···+dnβ ≤ endβ = B with e being the base of the natural logarithm. Then
log B ∈ O(nd + log β). Let k = d2 log2((2d)!(d + 1)(n−1)(2d−1)β2d)e. By Lemma 5.2, the value k is
an upper bound on 2 log2 ||Resxn ( f /h, g/h)||∞ and thus guarantees that at least k/2 of the first k
primes p1 = 2, . . . , pk do not divide Resxn ( f /h, g/h). This means that at least half of the primes
p1, . . . , pk are “lucky”. It is then sufficient to choose dlog2(2B + 1)e ≤ k/2 “lucky” ones from
these k primes, each of word length O(log k). For every chosen prime p, we reduce all coeffi-
cients of f and g modulo p, using O(Dn log β log p) word operations, and compute gcd( fp, gp)
with fp = f mod p and gp = g mod p. The desired gcd( f , g) can be recovered by a final
application of the Chinese remainder theorem, which takes O(DnM(nd + log β) log(nd + log β))
word operations. Neglecting the cost of computing primes, it remains to count the number of
arithmetic operations, denoted by Gp(n, d,Dn), used by the gcd computation in the field Zp for
each prime p, with the rest following by the fact that each operation of these takes O(M(log p))
word operations and log p ∈ O(log(nd) + log log β).

For each prime p, we compute gcd( fp, gp) with fp = f mod p and gp = g mod p by an
evaluation-interpolation scheme (Geddes et al., 1992): evaluate coefficients of fp, gp with respect
to x1, . . . , xn−1 at dn points from Zp for xn; compute dn GCDs over Zp of two (n − 1)-variate
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polynomials of degrees at most d1, . . . , dn−1 in x1, . . . , xn−1, respectively; recover the final GCD
by interpolation. Notice that there are at most d1 · · · dn−1 = Dn/dn monomials in x1, . . . , xn−1
appearing in each of the polynomials fp and gp. The process of evaluation and interpolation
then takes O((Dn/dn)M(dn) log dn) arithmetic operations in the field Zp. The second step uses
O(dnGp(n − 1, d(n−1),Dn−1)) arithmetic operations in Zp, where d(n−1) = max{d1, . . . , dn−1} and
Dn−1 = d1 · · · dn−1. Thus we obtain the recurrence relation

O(Gp(n, d,Dn)) ⊂ O((Dn/dn)M(dn) log dn) + O(dnGp(n − 1, d(n−1),Dn−1)).

From the initial condition that Gp(1, d1, d1) is in O(M(d1) log d1), one concludes that Gp(n, d,Dn)
is in O((Dn/d)M(d) log Dn).

5.2. Cost analyses of our two algorithms

We are now ready to present the cost of our first approach. In order to make it ready
to use in the subsequent analysis of our second approach, we analyze the cost in the case of
R = Z[q, q−1, z1, . . . , zv], where v ∈ N is arbitrary but fixed and the zi are additional parameters
independent of q, x1, . . . , xn.

Theorem 5.4. Let p ∈ Z[q, q−1, z1, . . . , zv][x]. Assume that both the numerator and denominator
of p have degrees at most d in each variable from {q, z1, . . . , zv, x1, . . . , xn} separately, and let
||p||∞ = β. Then the algorithm MultivariateQILD1 computes the q-integer linear decomposition
of p over Z[q, q−1, z1, . . . , zv] using

O(n!d2n+v+2M((n3 + nv)d + n log β) log((n2 + v)d + log β) + n!dnbn/2cM(n log d) log log d)

word operations.

Proof. Let T (n, d, log β) denote the number of word operations used by the algorithm applied to
the polynomial p. Steps 1 and 5 treat the trivial case, taking no word operations. In Step 2, finding
the content c amounts to computing a GCD of at most (d + 1)n polynomials in Z[q, z1, . . . , zv] of
degree at most d in each variable separately and max-norm at most β. Thus by Lemma 5.3, this
step takes O(dn+v+1M((v+1)d+ log β) log((v+1)d+ log β)) word operations. Step 3 deals with the
univariate case, yielding that the initial cost T (1, d, log β) is in O(dv+2M((v + 1)d + log β) log((v +

1)d + log β)).
In Step 4, at each iteration of the loop, the computation of the content g and its primitive part

in Step 4.1 can be done using O(dn+v+1M((n + v)d + log β) log((n + v)d + log β)); while Step 4.2
takes O(T (n − 1, d, nd + log β)) word operations as g ∈ Z[q, x1, . . . , xi−1, xi+1, . . . , xn] has degree
at most d in each variable separately and max-norm of word length O(nd + log β) by Lemma 5.1.
Since there are n iterations, this step in total takes O(ndn+v+1M((n + v)d + log β) log((n + v)d +

log β)) + O(nT (n − 1, d, nd + log β)) word operations.
The computation of the Newton polytope of f dominates the other costs in Steps 6-7, which,

by (Goodman et al., 2018, Theorem 26.3.1), takes O((s log s + sbn/2c)M(log d) log log d) word
operations with s denoting the cardinality of supp( f ). Since s ≤ (d + 1)n, we obtain the total
cost O((ndn log d + dnbn/2c)M(log d) log log d) for Steps 6-7. In Step 8, for each λ ∈ Λ, a direct
calculation shows that f (xλn

1 , . . . , x
λn
n−1, yx−λ1

1 · · · x−λn−1
n−1 ) has degree in y at most d, max-norm of

word length O(nd + log β) and at most (d + 1)n nonzero monomials in x1, . . . , xn−1 appearing.
Thus by Lemma 5.3, Step 8.1 takes O(dn+v+2M((n + v + 2)d + log β) log((n + v + 2)d + log β))
word operations, dominating the cost for Step 8.2. Since there are at most s − 1 ≤ (d + 1)n − 1
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elements in the set Λ, this step takes O(d2n+v+2M((n + v + 2)d + log β) log((n + v + 2)d + log β))
word operations. Steps 9 and 10 both take no word operations without expanding the product.

In summary, we obtain the recurrence relation

O(T (n, d, log β)) ⊂ O(d2n+v+2M((n + v + 2)d + log β) log((n + v + 2)d + log β)

+ dnbn/2cM(log d) log log d) + O(nT (n − 1, d, nd + log β)),

along with T (1, d, log β) ∈ O(dv+2M((v + 1)d + log β) log((v + 1)d + log β)). The cost follows.

Corollary 5.5. With the assumptions of Theorem 5.4, further let v = 0. Then the algorithm
MultivariateQILD1 computes the q-integer linear decomposition of p over Z[q, q−1] using
O∼(n!d2n+4 + d2n+2 log2 β+ n!dnbn/2c) word operations with classical arithmetic and O∼(n!d2n+3 +

n!d2n+2 log β + n!dnbn/2c) with fast arithmetic.

In the case of our second algorithm we have the following cost.

Theorem 5.6. Let p ∈ Z[q, q−1][x]. Assume that both the numerator and denominator of p have
degrees at most d in each variable from {q, x1, . . . , xn} separately, and let ||p||∞ = β. Then the
algorithm MultivariateQILD2 computes the q-integer linear decomposition of p over Z using
O(dn+4M(n4d + n2 log β) log(n2d + log β)) word operations.

Proof. Let T (n, d, log β) denote the number of word operations used by the algorithm applied to
the polynomial p. The first three steps are exactly the same as the algorithm MultivariateQILD1.
Thus, as before, Step 1 takes no word operations, Step 2 uses O(dn+1M(d + log β) log(d + log β))
word operations, and Step 3 gives the initial cost T (1, d, log β) ∈ O(d2M(d+ log β) log(d+ log β)).
Step 4 deals with the bivariate case. By Theorem 5.4 with n = 2 and v = 0, this step yields that
T (2, d, log β) is in O(d6M(d + log β) log(d + log β)).

In Step 5, by Lemma 5.3, the computation of the content and primitive part can be done
within O(dn+1M(nd + log β) log(nd + log β)) word operations. Notice that g ∈ Z[q, x3, . . . , xn]
has degree at most d in each variable separately and max-norm of word length O(nd + log β) by
Lemma 5.1. Then Step 6 takes O(T (n − 2, d, nd + log β)) word operations. Step 7 takes linear
time in the cardinality of supp( f ), which is at most (d + 1)n. In Step 8, notice that for the kth
iteration, the polynomial h ∈ Z[q, xk+2, . . . , xn][y, xk+1] has degree at most d in each variable
separately and max-norm of word length O(nd + log β). Thus by Theorem 5.4 with n = 2 and
v = n−k−1, the kth iteration requires O(dn−k+5M((n−k−1)d+log β) log((n−k−1)d+log β)) word
operations. Since 1 ≤ k ≤ n − 1, this step in total takes O(dn+4M(n2d + n log β) log(nd + log β))
word operations, dominating the costs of Steps 9-10.

In summary, we obtain the recurrence relation

O(T (n, d, log β)) ⊂ O(dn+4M(n2d + n log β) log(nd + log β)) + O(T (n − 2, d, nd + log β)),

along with T (1, d, log β) ∈ O(d2M(d + log β) log(d + log β)) and T (2, d, log β) ∈ O(d6M(d +

log β) log(d + log β)). The announced cost follows.

Corollary 5.7. With the assumptions of Theorem 5.6, the algorithm MultivariateQILD2 com-
putes the q-integer linear decomposition of p over Z[q, q−1] using O(dn+6 + dn+4 log2 β) word
operations with classical arithmetic and O∼(dn+5 + dn+4 log β) with fast arithmetic.

Remark 5.8. The complexity of our both approaches could be further improved if one finds
a multivariate version of the GCD algorithm of Conflitti (2003). This is the algorithm which
randomly reduces computing the GCD of several polynomials over a finite field to computing a
single GCD of two polynomials over the same field.
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5.3. Cost analysis of the resultant-based algorithm

In this subsection, we review the algorithm of Le (2001). As mentioned in the introduction,
this algorithm is based on resultant and completely focused on bivariate polynomials. So we will
further extend it to also tackle polynomials having more than two variables.

As we proceed with our first approach, the algorithm of Le (2001) first finds candidates
for q-integer linear types of a given bivariate polynomial and then obtains the corresponding
univariate polynomials by going through these candidates. The difference is that it uses resultants
to determine candidates and performs bivariate GCD computations for detecting each candidate.

In order to state its main idea, let p ∈ R[x, y] be a polynomial of positive total degree which is
primitive with respect to its either variable. By Lemma 4.2, an integer pair (λ, µ) with λµ , 0 is a
q-integer linear type of p if and only if there exists a factor f ∈ R[x, y] \R of p with the property
that f divides f (qµx, q−λy) in R[x, y]. Note that such an f must satisfy degx( f ) degy( f ) > 0 and
f (x, 0) f (0, y) , 0 because p is assumed to be primitive with respect to its either variable. By a
careful study on the structure of the factor f , it is then not hard to see that f divides f (qµx, q−λy)
in R[x, y] if and only if f divides f (qx, q−λ/µy) in R[x, y]. Observe that any integer pair (λ, µ)
with λµ , 0 is uniquely determined by the rational r = −λ/µ. We have thus shown the following.

Lemma 5.9. With p given above, a nonzero rational number r gives rise to a q-integer linear
type of p if and only if gcd(p, p(qx, qry)) < R.

This implies that for any integer-linear type (λ, µ) of p with λµ , 0, the rational number
−λ/µ is a root of the resultant Resy(p, p(qx, qry)) ∈ R[qr, x] in terms of r, or equivalently, it is
eliminated by the content in R[qr] of the resultant with respect to x. Note that such a rational
root of a polynomial in R[qr] can be found by matching powers of q appearing in the given
polynomial in pairs along with a subsequent substitution for zero testing. One can find more
details in (Le, 2001, §5). Accordingly, we derive a way to produce candidates for the rationals
−λ/µ (and then the q-integer linear types (λ, µ)). After generating candidates, the algorithm
of Le (2001) continues to compute the possible corresponding univariate polynomial for each
candidate r = −λ/µ by finding a factor f of p that stabilizes gcd( f , f (qx, qry)), or more efficiently,
gcd( f , f (qµx, q−λy)). This operation actually induces bivariate polynomial arithmetic over R and
thus may take considerably more time than Step 8.1 of our algorithm MultivariateQILD1. In
order to improve the performance, we instead proceed by using Step 8 of our algorithm.

We remark that Lemma 5.9 cannot be literally carried over to polynomials in more than two
variables. It is actually not clear how to directly generalize the algorithm of Le (2001) to the
multivariate case. Nevertheless, using the bivariate-based scheme indicated by Proposition 4.3,
this algorithm extends to the case of polynomials in any number of variables in the same fashion
as our second approach.

The following theorem gives a complexity analysis for the algorithm of Le (2001) when
applied to a polynomial in Z[q, q−1][x, y].

Theorem 5.10. Let p ∈ Z[q, q−1][x, y]. Assume that both the numerator and denominator of
p have degrees at most d in each variable from {q, x, y} separately, and let ||p||∞ = β. Then the
algorithm of Le takes O((d6 log d+d6 log β)M(d2)M(log d+log log β) log d log(log d+log log β)+

d6M(d log d + d log β) log(d log d + d log β)) word operations.

Proof. With a slight abuse of notation, let p be the input polynomial with content with respect
to its either variable being removed. Then p ∈ Z[q, x, y] and log ||p||∞ ∈ O(d + log β). The algo-
rithm proceeds to compute the resultant Resy(p, p(qx, qry)) with r undetermined. By definition,
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it is readily seen that Resy(p, p(qx, qry)) is a polynomial in Z[q, qr, x] of degree in q at most 3d2,
degree in qr at most d2 and degree in x at most 2d2. Observe that every entry in the Sylvester ma-
trix is a monomial in qr. Thus we have ||Resy(p, p(qx, qry))||∞ ≤ ||Resy(p, p(qx, y))||∞, which, by
Lemma 5.2, is at most B = (2d)!(2d + 1)2d−1(d + 1)2d−1||p||2d

∞ . Then log B ∈ O(d log d + d log β).
Viewing qr as a new indeterminate u independent of q, we can compute this resultant using
a small prime modular algorithm, along with an evaluation-interpolation scheme: (1) choose
dlog2(2B + 1)e primes, each of word length O(log log B); (2) for every chosen prime h, do the
following: reduce all coefficients of p and p(qx, uy) modulo h, evaluate both modular images
successively at 3d2 points for q, d2 points for u and 2d2 points for x, compute 6d6 resultants of
two polynomials in Zh[y] of degrees in y at most d, and recover the modular resultant by inter-
polation; (3) reconstruct the desired resultant using the Chinese remainder theorem. Neglecting
the cost for choosing primes in Step (1), we analyze the costs used by Steps (2)-(3). In Step (2),
the cost per prime h for reducing all coefficients modulo h is O(d2 log β log h) word operations.
The process of evaluation and interpolation is performed in O(d5M(d2) log d) arithmetic opera-
tions in Zh. Each resultant over Zh[y] can be computed using O(M(d) log d) arithmetic operations
in Zh, yielding O(d6M(d) log d) arithmetic operations in Zh in total for this step. Notice that the
cost for each arithmetic operation in Zh is O(M(log h) log log h) word operations. Also notice that
every chosen prime h is of word length log h ∈ O(log d + log log β). Thus Step (2) in total takes
O((d6 log d + d6 log β)M(d2)M(log d + log log β) log d log(log d + log log β)) word operations. In
Step (3), the Chinese remainder theorem requires O(d6M(d log d + d log β) log(d log d + d log β))
word operations. Therefore, computing the resultant Resy(p, p(qx, qry)) takes O((d6 log d +

d6 log β)M(d2)M(log d+ log log β) log d log(log d+ log log β)+d6M(d log d+d log β) log(d log d+

d log β)) word operations. This dominates the costs for subsequent steps including finding ratio-
nal roots and computing corresponding univariate polynomials. The claimed cost follows.

Corollary 5.11. With the assumptions of Theorem 5.10, the algorithm of Le takes O∼(d10 log β+

d8 log2 β) word operations with classical arithmetic and O∼(d8 log β) with fast arithmetic.

5.4. Cost analysis of the factorization-based algorithm
In the current subsection, we introduce another algorithm which is based on full irreducible

factorization of polynomials and works for polynomials in any number of variables. In order to
analyze its cost, we will briefly describe its main idea.

The key observation of this algorithm is that, for any q-integer linear polynomial p ∈ R[x] of
only one type (λ1, . . . , λn), the difference of any two vectors from supp(p) can be written into the
form k·(λ1, . . . , λn) for some k ∈ Z. This allows one to readily determine the q-integer linearity of
any irreducible polynomial. That is, given an irreducible polynomial p ∈ R[x], take α ∈ supp(p)
to be such that xα is the trailing monomial of p and investigate whether the difference between
α and any other vector from supp(p) is equal to a scalar multiple of the same integer vector. One
thus immediately establishes a factorization-based algorithm for computing the q-integer linear
decomposition of a polynomial in R[x]: (1) first perform the full irreducible factorization of the
input polynomial over R, then (2) determine the q-integer linearity of each irreducible factor and
finally (3) regroup all factors of the same q-integer linear type.

A careful study of the above algorithm leads to the following complexity.

Theorem 5.12. Let p be a polynomial in Z[q, q−1][x, y]. Assume that both the numerator and de-
nominator of p have degrees at most d in each variable from {q, x, y} separately, and let ||p||∞ = β.
Then the factorization-based algorithm described above requires O∼(d9 log2 β) word operations
with classical arithmetic and O∼(d8 log β) with fast arithmetic.
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Proof. Computing a complete factorization of p into irreducibles over Z[q, q−1] dominates the
other costs of the algorithm. This is essentially the complexity of factoring in Z[q][x, y], for
polynomials bounded by degree d in all variables (q, x and y). While we do not know of an
explicit analysis of this complexity (beyond being in polynomial-time, since (Kaltofen, 1985)),
the algorithm of Gao (2003) can be applied and analyzed over the function field Q(q), and ap-
pears to require O∼(d9 log2 β) word operations with classical arithmetic and O∼(d8 log β) with
fast arithmetic.

Remark 5.13. Recall from Corollary 5.11 that the algorithm of Le takes O∼(d10 log β+d8 log2 β)
word operations with classical arithmetic and O∼(d8 log β) with fast arithmetic. This compares
to the above factorization-based algorithm which requires O∼(d9 log2 β) word operations with
classical arithmetic and O∼(d8 log β) with fast arithmetic. All of these compare to Corollary 5.5
(or Corollary 5.7) with n = 2, which reads that our algorithm when restricted to the bivariate
case takes O∼(d8 + d6 log2 β) word operations with classical arithmetic and O∼(d7 + d6 log β)
with fast arithmetic.

6. Implementation and timings

We have implemented both of our algorithms in Maple 2018 in the case where the domain R
is the ring of polynomials over Z[q, q−1]. The code is available by email request. In order to get
an idea about the efficiency of our algorithms, we have compared their runtimes, as well as the
memory requirements, to the performance of our Maple implementations of the two algorithms
discussed in the preceding section.

The test suite was generated by

p = P0

m∏
i=1

num(Pi(xλi )), (6.1)

where n,m ∈ N,

• P0 ∈ Z[q][x1, . . . , xn] is a random polynomial with degx1,...,xn
(P0) = degq(P0) = d0,

• the λi ∈ Zn are random integer vectors each of which has coordinates of maximum absolute
value no more than 10 (note that they may not be distinct),

• Pi(z) = fi1(z) fi2(z) with fi j(z) ∈ Z[q][z] a random polynomial of degree j · d for some
d ∈ N, and num( · · · ) denotes the numerator of the argument.

Note that, in all tests, the algorithms take the expanded forms of examples given above as input.
All timings are measured in seconds on a Linux computer with 128GB RAM and fifteen 1.2GHz
Dual core processors. The computations for the experiments did not use any parallelism.

For a selection of random polynomials of the form (6.1) for different choices of n,m, d0, d,
Table 1 collects the timings of the algorithm of Le (LQILD), the algorithm based on factorization
(FQILD) and our two algorithms (MQILD1, MQILD2). The dash in the table indicates that with
this choice of (m, n, d0, d), the corresponding procedure reached the CPU time limit (which was
set to 12 hours) and yet did not return.
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(n,m, d0, d) LQILD FQILD MQILD1 MQILD2

(2, 1, 1, 1) 5408.48 0.04 0.01 0.01
(2, 1, 5, 1) 8381.99 0.06 0.03 0.03
(2, 1, 10, 1) – 0.19 0.04 0.04
(2, 1, 20, 1) – 0.63 0.09 0.09
(2, 1, 30, 1) – 1.47 0.13 0.10
(2, 1, 40, 1) – 2.55 0.24 0.21
(2, 1, 50, 1) – 6.64 0.42 0.39
(2, 2, 10, 1) – 0.92 0.10 0.08
(2, 3, 10, 1) – 3.29 0.31 0.26
(2, 4, 10, 1) – 5.74 0.67 0.54
(2, 5, 10, 1) – 18.83 2.01 1.54
(2, 2, 10, 2) – 4.55 0.27 0.20
(2, 4, 10, 2) – 114.82 4.98 4.53
(2, 5, 10, 2) – 264.02 25.63 24.29
(2, 3, 10, 2) – 36.14 1.38 1.21
(2, 3, 10, 3) – 169.13 4.28 3.80
(2, 3, 10, 4) – 649.03 12.15 12.86
(2, 3, 10, 5) – 1554.31 31.54 33.50
(2, 2, 5, 1) – 0.32 0.05 0.05
(3, 2, 5, 1) – 1.99 0.14 0.12
(4, 2, 5, 1) – 11.46 0.35 0.20
(5, 2, 5, 1) – 183.17 0.99 0.63
(6, 2, 5, 1) – 1141.32 2.58 0.98
(7, 2, 5, 1) – 11759.89 6.07 1.74
(8, 2, 5, 1) – 18153.45 10.60 5.29
(9, 2, 5, 1) – – 65.53 38.12
(10, 2, 5, 1) – – 176.25 89.87

Table 1: Comparison of all four algorithms for a collection of polynomials p of the form (6.1).

7. Conclusion

In this paper we have presented two new algorithms for computing q-integer linear decom-
positions of multivariate polynomials over any UFD of characteristic zero. When restricted to
the bivariate case, both algorithms reduce to the same algorithm. For the sake of comparison,
we included an algorithm based on full irreducible factorization of polynomials. Compared with
the known algorithm of Le (2001) and this factorization-based algorithm in the bivariate case,
our algorithm is considerably faster. In practice, both our algorithms are also more efficient than
these two algorithms. In addition, we have extended and improved the original contribution of Le
and provided complexity analysis for the improved version. We remark that both our algorithms
have much better performances than the other two algorithms in the case where the coefficient
domain contains algebraic numbers.
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