
Efficient Integer-Linear Decomposition
of Multivariate Polynomials

Mark Giesbrecht

Symbolic Computation Group, University of Waterloo

Waterloo, Ontario, Canada

mwg@uwaterloo.ca

Hui Huang

Symbolic Computation Group, University of Waterloo

Waterloo, Ontario, Canada

h2huang@uwaterloo.ca

George Labahn

Symbolic Computation Group, University of Waterloo

Waterloo, Ontario, Canada

glabahn@uwaterloo.ca

Eugene Zima

Physics and Computer Science,

Wilfrid Laurier University

Waterloo, Ontario, Canada

ezima@wlu.ca

ABSTRACT
We present a new algorithm for the computation of the integer-

linear decomposition of a multivariate polynomial. Such a decompo-

sition is used in Ore-Sato theory and discrete creative telescoping,

for example to detect applicability of Zeilberger’s algorithm to

a hypergeometric term. Our algorithm is quite straightforward,

requiring only basic polynomial arithmetic along with efficient

rational root finding. We present complete complexity analyses for

both our and previous algorithms in the case of bivariate integer

polynomials, and show that our method has a better theoretical per-

formance. We also provide a Maple implementation which shows

that our method is faster in practice than previous algorithms.

1 INTRODUCTION
An irreducible polynomial p ∈ R[x1, . . . ,xn] over a ring R of char-

acteristic zero is said to be integer-linear if there exists a univariate
polynomial P ∈ R[z] and integers λ1, . . . , λn such that

p(x1, . . . ,xn) = P(λ1x1 + · · · + λnxn). (1)

Since a common factor of the integers λ1, . . . , λn can be pulled out

and absorbed into P , we assume that the integers λ1, . . . , λn have

no common divisor, that the last integer λn ≥ 0 and that λi = 0

whenever degxi (p) = 0. Such an n-tuple (λ1, . . . , λn) is unique and
is called the integer-linear type ofp. A polynomial in R[x1, . . . ,xn] is
called integer-linear (over R) if all its irreducible factors are integer-
linear, possibly with different integer-linear types. We similarly

define the notion of the integer-linear decomposition of a polynomial

p which factors into irreducible integer-linear or non-integer-linear

polynomials and groups irreducible factors having common types.

The notion of integer-linear polynomials appears frequently in

symbolic summation and has wide applications both in theory and

in practice. In theory, it is used in the Ore-Sato theorem [18, 20] to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISSAC ’19, July 15–18, 2019, Beijing, China
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

describe the structure of multivariate hypergeometric terms, which

in turn is applied by several authors [3, 4, 6, 19] to prove Wilf-

Zeilberger’s conjecture in different cases. In practice, the integer-

linearity of a polynomial also plays a crucial role in the applica-

bility of the well-known Zeilberger’s algorithm (also known as

the method of creative telescoping) for a bivariate hypergeomet-

ric term [1] or for a trivariate rational function [5]. Moreover, the

integer-linearity of the denominator determines if a given rational

sequence is holonomic (cf. [4, Theorem 13]).

The full integer-linear decomposition of a polynomial also has

many uses. For example such a decomposition enables one to

compute the Ore-Sato decomposition of a given hypergeometric

term [19]. In 2003, Le [15] used the integer-linear decomposition

to develop a direct creative telescoping algorithm in the case of

discrete bivariate rational functions, which is improved later by

the authors in the preparing work [13] to obtain a faster creative

telescoping algorithm. Therefore, the efficiency of the computation

of the integer-linear decomposition directly affects the utility of

the above algorithms.

There are currently two algorithms available to compute the

integer-linear decomposition of a polynomial. The first algorithm,

developed by Abramov and Le [2] in 2002, is a method based on

using resultants. Its main idea is to first find candidates for integer-

linear types via resultant and then, for each candidate, extract the

corresponding univariate polynomial by a suitable substitution and

a content computation. In that paper, their algorithm mainly serves

as a terminating condition for Zeilberger’s algorithm applied to

bivariate rational functions, and thus has only been worked out for

bivariate polynomials.

A second algorithm, by Li and Zhang [16], was developed for

their implementation of the multivariate Ore-Sato theorem. The

algorithm is based on full irreducible factorization of polynomials,

and works for polynomials in any number of variables. The core

of the algorithm lies in the fact that any nonzero homogeneous

component of an integer-linear polynomial of only one type, say a

polynomial p of the form (1), can always be written as some power

of the same linear factor λ1x1 + · · · + λnxn . Complexity compar-

isons between these two algorithms were not provided before but

empirical tests suggest that the second algorithm is considerably

faster than the first one especially for polynomials of high degrees.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

As one of our contributions we give a number of improvements

to the algorithm of Abramov-Le including the generalization to

handle more than two variables, taking into account the reordering

of coefficients and avoiding polynomial arithmetic with rational

coefficients. We also include a complexity analysis of the above two

algorithms in the case of bivariate integer polynomials.

An alternative way to look at integer-linear polynomials is

through functional decomposition. More specifically, for a polyno-

mial p ∈ R[x1, . . . ,xn] of the form (1) we have p = д ◦ h = д(h)
where д = P(z) and h = λ1x1 + · · ·+λnxn . In this sense, computing

the decomposition (1) of p is essentially the same as computing the

functional decomposition of p when restricted to the case where д
has the same total degree as p. The latter is in fact a special case

of the general problem of multivariate functional decomposition

that was considered by von zur Gathen [10] in 1990. In Section 5

of that paper, the author gives a fast algorithm which basically

addresses the following problem: given a multivariate polynomial

p of total degree n and a nonnegative integer r dividing n, find a

univariate polynomial д of degree r and a multivariate polynomial

h such that p = д ◦ h if such a decomposition exists. Limited to our

setup, in which r = n, the algorithm simply works as follows. For a

given polynomial p ∈ R[x1, . . . ,xn], compute the possible univari-

ate polynomial д = p(x1, 0, . . . , 0) and read out the only possible

candidate for h from the non-constant homogeneous component

of lowest degree. If it succeeds, say h = λ1x1 + · · · + λnxn , then
check whether p = д ◦ h. This suggests an alternative method, us-

ing a similar pattern as the algorithm of Li-Zhang, to compute the

integer-linear decomposition of a given polynomial. Namely, first

perform full factorization of the input polynomial, then apply the

algorithm of von zur Gathen to each irreducible factor, and finally

collect up those factors of same integer-linear types. In certain

sense, this method and the algorithm of Li-Zhang actually coincide.

The main goal of this paper is to present a new fast algorithm

for computing the integer-linear decomposition of a given multi-

variate polynomial. Our algorithm combines the main ideas of the

algorithms in [2, 16] (in the sense that we follow the pattern of the

algorithm of Abramov-Le and also take use of homogeneous poly-

nomials as the algorithm of Li-Zhang), but only requires a (faster)

rational root finding of the leading homogeneous component of

the input polynomial. In particular our algorithm avoids both the

computation of resultants and the full polynomial factorization. In

order to do a theoretical comparison we have analyzed the worst-

case running time complexity of all three algorithms in the case

of bivariate integer polynomials. The analysis shows that our new

algorithm is faster by a factor of the total degree of the input (d)
than the improved algorithm of Abramov-Le and is at least two

orders of magnitude better than the algorithm of Li-Zhang. In addi-

tion we also give experimental results which verify our complexity

comparisons.

The remainder of the paper proceeds as follows. In Section 2

we provide background and basic notions required in the paper. In

Section 3 we present our new algorithm for computing the integer-

linear decomposition in the special case of a bivariate polynomial

including its complexity costs. The new algorithm for the general

multivariate case, along with complexity estimates, is given in

Section 4. The following section provides a complexity comparison

of our new algorithm and the algorithms of [2] and [16]. The paper

ends with an experimental comparison among all three algorithms,

along with a conclusion section.

2 PRELIMINARIES
Throughout the paper, we let R be a unique factorization domain

(UFD) of characteristic zero with R[x1, . . . ,xn] denoting the ring

of polynomials in x1, . . . ,xn over R. Note that a domain of charac-

teristic zero always contains the ring of integers Z as a subdomain.

Letp be a polynomial in R[x1, . . . ,xn]. Throughout this paper we
will order terms using a pure lexicographic order in x1 ≺ · · · ≺ xn .
For this order we let lc(p), tc(p) and deg(p) denote the leading and

trailing coefficients and total degree, respectively, of p over R with

respect to x1, . . . ,xn . We follow the convention that deg(0) = −∞.

The content, denoted by cont(p), of p (over R) is the greatest com-

mon divisor (GCD) over R of the coefficients of p with respect to

x1, . . . ,xn with p being primitive if cont(p) = 1. The primitive part

prim(p) of p (over R) is defined to be p/cont(p). For brevity, we
will omit the domain if it is clear from the context. In certain in-

stances, we also need to consider the above notions with respect

to a subset of the n variables. In these cases, we will either specify

the corresponding domain or emphasize the related variables by

indicating them as indices of the corresponding notion. For exam-

ple, lcx1,x2 (p), tcx1,x2 (p), degx1,x2 (p), contx1,x2 (p) and primx1,x2 (p)
denote each function but applied to a polynomial p viewing it as a

polynomial in x1,x2 over the domain R[x3, . . . ,xn].
Homogeneous polynomials play a key role in our algorithms.

Recall a polynomial in p ∈ R[x1, . . . ,xn] is called homogeneous
if all its nonzero terms have the same total degree in the vari-

ables x1, . . . ,xn . By gathering together the nonzero monomials

of the same total degree, every polynomial in R[x1, . . . ,xn] can
be uniquely decomposed as a sum of homogeneous polynomials.

Each of such homogeneous polynomials is called a homogeneous
component of the given polynomial. Amongst all homogeneous

components, the one of maximum total degree, namely the one

having the same total degree as the original polynomial, is then

called the leading homogeneous component of the given polynomial.

As described previously, we sometimes only need to consider homo-

geneous polynomials with respect to part of the variables and these

instances will be identified by explicitly listing out the involved

variables.

We are interested in finding the following decomposition of a

polynomial, something briefly alluded to in the introduction.

Definition 2.1. Let p ∈ R[x1, . . . ,xn] be a polynomial admitting

the decomposition

p = c P0(x1, . . . ,xn)
m∏
i=1

Pi (λi1x1 + · · · + λinxn), (2)

where c ∈ R, m ∈ N, λi1, . . . , λin ∈ Z, P0 ∈ R[x1, . . . ,xn] and
Pi (z) ∈ R[z]. Then (2) is called the integer-linear decomposition of p
if and only if

(1) P0 is primitive over R and none of its non-constant irre-

ducible factors is integer-linear;

(2) each Pi (z) is primitive and of positive degree in z;
(3) each (λi1, . . . , λin) is an integer-linear type, in other words,

gcd(λi1, . . . , λin) = 1 and λin ≥ 0.

(4) any two n-tuples of the (λi1, . . . , λin) are distinct.

We say that the (λi1, . . . , λin) are integer-linear types of p and the

Pi (z) are the corresponding univariate polynomials.

Clearly, p is integer-linear if and only if P0 = 1 in the decomposi-

tion (2). By using a full factorization, we see that every polynomial

admits an integer-linear decomposition. Moreover, the decomposi-

tion is unique up to the order of the factors and multiplication by

units of R, according to the uniqueness of the integer-linear types

and the full factorization.

3 THE BIVARIATE CASE
Before turning to the general multivariate case, we first consider

the simpler yet important subcase of bivariate polynomials. In

this section we develop a fast algorithm to find the integer-linear

decomposition for bivariate polynomials, with the intention being

to illustrate the main idea of our general algorithm in a concise

way. By convention, in this section, we will write (x ,y) for the two
variables (x1,x2).

Let p be a polynomial in R[x ,y]. As univariate polynomials in

x or y are always integer-linear we may assume without loss of

generality that the given polynomial p is non-constant, and it is

primitive over R[x] and over R[y], respectively. In this case p admits

the integer-linear decomposition of the form

p = P0(x ,y)
m∏
i=1

Pi (λix + µiy), (3)

wherem, µi ∈ N, λi ∈ Z, P0 ∈ R[x ,y] and Pi (z) ∈ R[z] with
• the P0 being primitive over R and merely having non-integer-

linear factors except for constants;

• the Pi (z) being non-constant and primitive over R;
• the (λi , µi) being distinct integer-linear types and all the λi ,
µi are nonzero.

From (3) we immediately have the following proposition.

Proposition 3.1. The leading homogeneous component of the
polynomial p with respect to x ,y admits a primitive squarefree part
over R of the form

P̃0(x ,y)
m∏
i=1

(λix + µiy) (4)

for some squarefree homogeneous polynomial P̃0 ∈ R[x ,y] that is
coprime with any of the linear factors (λix + µiy). Moreover, if p is
integer-linear then P̃0 = 1.

Proposition 3.1 provides a necessary condition for p to be an

integer-linear polynomial, that is, the number of linear factors of

the leading homogeneous component of p counting multiplicities

must be equal to the total degree ofp in x ,y. In addition, the formula

(4) implies that (the primitive squarefree part of) the leading homo-

geneous component contains all information needed for knowing

(a superset of) integer-linear types of p. With candidates for the

(λi , µi) at hand, we are then able to find the corresponding univari-

ate polynomials Pi (z), making use of the following observation of

Abramov and Le [2].

Proposition 3.2. A pair (λ, µ) is an integer-linear type of p if
and only if the polynomial p(µx , z − λx) has a nontrivial content
with respect to x . Moreover, for any integer-linear type (λ, µ) of p, the

corresponding univariate polynomial is equal to the primitive part of
P̃(z/µ) over R, where P̃ = contx (p(µx , z − λx)).

Proposition 3.2 also guarantees that any false candidate can

easily be recognized by a content computation.

In order to obtain the integer-linear decomposition, it remains

to find candidates for the (λi , µi). Rather than using the resultant

method employed by Abramov-Le [2], we choose to study the lead-

ing homogeneous component instead. Notice that (4) is a bivariate

homogeneous polynomial in x ,y of total degree, say, d in x ,y. As

such, by removing the factor xd , this homogeneous polynomial can

be treated as a univariate polynomial inw = y/x of the form

д(w) = P̃0(1,w)

m∏
i=1

(λi + µiw).

It is readily seen from the above equation that all the −λi/µi
appear as (nonzero) rational roots of д(w). Observe that any integer-

linear type (λi , µi) is uniquely determined by the rational number

λi/µi . It then follows that all the integer-linear types of p will be

correctly found over a domain Rwith effective rational root finding,

so that we know how to find all rational roots of a given univariate

polynomial over R. This essentially requires that the domain R
admits effective univariate factorization.

Many domains that we are interested in satisfy such a prop-

erty. For example, when R is the ring of integers Z or the ring of

integer polynomials, all rational roots of a given univariate poly-

nomial over R can be found in a modular fashion [11, 17]. In fact,

for the polynomial д(w) given above, instead of using the general

bound 2 degw (д)(| |д | |2∞ + | |д | |∞) for the moduli, with | |д | |∞ the

max-coefficient-norm of д, it is sufficient to choose a prime greater

than degw (д) and 2 ·D ·N , where D and N are the minimal absolute

values of integer coefficients which appear in lcw (д) and tcw (д),
respectively. Such a prime will make sure every monic linear factor

w + λi/µi has a unique modular image. We have all the µi ≤ D
and all the |λi | ≤ N by observing that the leading and trailing

coefficients of д with respect tow are given by

lcw (P̃0(1,w)) ·

m∏
i=1

µi and tcw (P̃0(1,w)) ·

m∏
i=1

λi .

Applying rational number reconstruction (cf. [7, 11]) to the resulting

modular linear factors quickly recovers all the integer-linear types.

When R is an algebraic number field, say R = Q(α) with α an

algebraic number, then this amounts to finding all rational roots of

the norm function of a given polynomial, which is just a polynomial

over Q (cf. [21]).

Note that although some false candidates may come from the

polynomial P̃0(1,w), there are at most d ≤ degx,y (p) candidates

that will be generated, which is linear in the size of the input

polynomial.

Proposition 3.3. Assume that R admits effective rational root
finding, then a superset of all integer-linear types of p can be found
efficiently.

Combining the information from Proposition 3.3 gives us a new

algorithm for computing the integer-linear decomposition of a

bivariate polynomial. For compatibility with later algorithms, we

take a non-constant and primitive polynomial as input.

BivariateILD. Given a non-constant and primitive polynomial

p ∈ R[x ,y] over R, where R admits effective rational root finding,

compute the integer-linear decomposition of p.

1. set f1(y) = contx (p), P0 = primx (p) andm = 0;

if f1(y) , 1 then updatem =m + 1 and set

Pm (z) = f1(z) and (λm , µm) = (0, 1).

2. set f2(x) = conty (P0) and update P0 = primy (P0);

if f2(x) , 1 then updatem =m + 1 and set

Pm (z) = f2(z) and (λm , µm) = (1, 0).

3. if P0 = 1 then return

∏m
i=1 Pi (λix + µiy).

4. let д̃ be the leading homogeneous component of P0;

if д̃ ∈ R[x] ∪ R[y] then return P0
∏m

i=1 Pi (λix + µiy).
5. let Λ = {−λ/µ | µ > 0 and gcd(λ, µ) = 1} be all the nonzero

rational roots of д(z) = д̃(1, z).
6. for −λ/µ in Λ do

6.1 set h(z) = contx (P0(µx , z − λx)).
6.2 if degz (h) , 0 then

updatem =m + 1, (λm , µm) = (λ, µ),

Pm (z) = primz (h(z/µ)) and P0 = P0/Pm (λx + µy);
7. return P0

∏m
i=1 Pi (λix + µiy).

The correctness and complexity of the above algorithm is given

in the following two theorems.

Theorem 3.4. Let R and p ∈ R[x ,y] be valid inputs of the al-
gorithm BivariateILD. Then the algorithm correctly computes the
integer-linear decomposition of p.

Proof. For the correctness of the algorithm, it suffices to show

that step 4 is correct, with the rest following from the discussion in

the paragraphs preceding the algorithm. Notice that at the stage of

step 4, P0 is a non-constant polynomial in R[x ,y]which is primitive

both over R[x] and over R[y]. Then by Proposition 3.1, we know that

the primitive squarefree part of the polynomial д̃ overR has the form

(4), in which all the λi , µi are nonzero. Assume that д̃ ∈ R[x] ∪R[y].
Then degx (д̃) degy (д̃) = 0. It follows that the numberm in (4) is

equal to zero. This in turn implies that P0 has no integer-linear

factors any more. Hence, P0
∏m

i=1 Pi (λix + µiy) is the integer-linear
decomposition of p, proving the correctness of step 4. □

Although our algorithms work in more general UFDs, we confine

our complexity analysis to the case of bivariate integer polynomials,

that is, when R is the ring of integers Z. The cost is given in terms

of number of word operations used so that growth of coefficients

comes into play. Recall that the word length of a nonzero integer a ∈

Z is defined asO(log |a |). Also recall that themax-norm of an integer

polynomial p =
∑
i, j≥0 pi, jx

iy j ∈ Z[x ,y] is defined as | |p | |∞ =
maxi, j≥0 |pi, j |. In this paper, all complexity is analyzed in terms

of O-estimates (or O
∼
-estimates) for classical and fast arithmetic,

where the soft-Oh notation “O
∼
” is basically “O” but suppressing

logarithmic factors (see [11, Definition 25.8] for a precise definition).

Theorem 3.5. Let p ∈ Z[x ,y] be a valid input of the algorithm
BivariateILD. Assume that degx,y (p) ≤ d and | |p | |∞ = β . Then the
algorithm computes the integer-linear decomposition of p over Z using
O(d4 log2 d+d3 log2 β)word operations with classical arithmetic and
O
∼(d3 log β) with fast arithmetic.

Proof. In steps 1–2, the content and the primitive part can be

computed with O(d4 + d3 log2 β) word operations with classical

arithmetic and O
∼(d3 + d2 log β) with fast arithmetic by [11, Theo-

rem 6.39, 9.6, Corollary 11.11]. Step 3 is the trivial case and takes

no word operations, while step 4 takes O(d2 log β) word opera-

tions with classical arithmetic to obtain the leading homogeneous

component д̃. Since the polynomial д ∈ Z[z] has degree at most

d in z and max-norm at most β , finding the set Λ in step 5 takes

O
∼(d3 + d2 log2 β) word operations with classical arithmetic and

O
∼(d2 log β) with fast arithmetic by [12, Theorem 5.10] and [11,

Theorem 15.21]. In step 6, observe that P0 is primitive over Z[x]
and also primitive over Z[y], at this stage. For each −λ/µ ∈ Λ, a
straightforward calculation shows that P0(µx , z − λx) has degree
in x at most d and degree in z at most degy (P0) ≤ d . Moreover, the

word length of its max-norm is O(d logd + d log β). To compute

the content h(z) in Step 6.1 we adapt the algorithm of [8], which

randomly reduces the problem to a single GCD of two polynomials

of degree d , requiringO(d3 log2 d+d2 log2 β)word operations with
classical arithmetic and O

∼(d2 log β) with fast arithmetic, which

dominates the cost for step 6.2. Any errors, happening with prov-

ably small probability, will be caught in step 6.2, and step 6.1 can be

repeated. Note that we can expand P0(µx , z−λx)with a Horner-like
scheme within the allowed costs. Since there are at most d elements

in the set Λ, the claimed cost then follows. □

Remark 3.6. If one is only interested in the integer-linearity of
the input polynomial p ∈ R[x ,y], rather than the full integer-linear
decomposition, then our algorithm can be adapted to abort early. In
this case, any of the following five conditions will trigger the adapted
algorithm to terminate early, implying that p is not integer-linear:

(1) after step 3, we have degx (P0) , degy (P0);
(2) in step 4, the д̃ is not primitive over R[x] or over R[y];
(3) in step 5, with multiplicities of each nonzero rational roots

recorded, the number of roots counting the multiplicities is less
than the degree degz (д);

(4) in step 6, we have degz (h) , e , where e is the multiplicity of
the root −λ/µ in д(z);

(5) in step 7, we have P0 , 1.

4 THE MULTIVARIATE CASE
In this section, we will deal with multivariate polynomials having

more than two variables. The difficulty is that simply following the

steps of the bivariate algorithm developed in the previous section

does not produce an efficient algorithm.

To understand the difficulties in directly extending the bivari-

ate algorithm we proceed as follows. Let p be a polynomial in

Z[x1, . . . ,xn]. If p is a constant then we are done. Similarly, if p
is not primitive over Z[xi] for certain integers i with 1 ≤ i ≤ n,
then we can iteratively remove the contents for these variables and

work with the remaining polynomial as done in steps 1-2 of our

bivariate algorithm. Note that the integer-linear decomposition of

every removed content, viewed as an (n − 1)-variate polynomial

over Z, can be computed recursively.

Thus, we assume that p is non-constant and primitive over Z[xi]
for all 1 ≤ i ≤ n. This implies that every integer-linear type of p
has no zero entries. Following step 4 of the bivariate algorithm, we

study the leading homogeneous component д̃ of p with respect to

x1, . . . ,xn . Because finding roots of a given univariate polynomial is

essentially computing linear factors of that polynomial, analogously

to the bivariate case we can find candidates for the integer-linear

types using modular factorization (subject to selection of a suitable

prime, together with rational number reconstruction applied to

all modular linear factors). As before, a nice bound for the prime

can be derived from the leading coefficients lcx1 (д), . . . , lcxn (д),
whereд is the primitive squarefree part of the leading homogeneous

component д̃. The integer-linear decomposition of p would then

follow from a multivariate version of Proposition 3.2 by considering

the polynomial

p(λnx1, . . . , λnxn−1, z − λ1x1 − · · · − λn−1xn−1)

for each candidate (λ1, . . . , λn).
Unfortunately this method does not appear to perform well

in practice, particularly when the input polynomial is an integer-

linear polynomial in more than three variables and of high total

degree. Indeed, in this case, empirical tests inMaple suggest that

the computation of the squarefree part of the leading homogeneous

component takes considerably more percentages of the total timing

as the number of variables or the total degree increased.

In order to overcome the above issue, we take a different ap-

proach. We recall an important proposition from [4], which, trans-

lated into our setting, reads as follows.

Proposition 4.1 ([4, Prop 7]). Let p ∈ R[x1, . . . ,xn]. Then there
exists a univariate polynomial P(z) ∈ R[z] and n integers λ1, . . . , λn ,
not all zero, such that p = P(λ1x1+ · · ·+λnxn) if and only if for each
pair of indices (i, j) with 1 ≤ i < j ≤ n, there are integers αi j , βi j , not
both zero, such that

p = Pi j (αi jxi + βi jx j)

for Pi j (z) ∈ R[x1, . . . ,xi−1,xi+1, . . . ,x j−1,x j+1 . . . ,xn][z].

Using Proposition 4.1 one sees that the problem of multivariate

integer-linearity is actually made up of a collection of subproblems

of bivariate integer-linearity. This inspires us to propose a new

algorithm, namely to iteratively tackle only two variables at a time

until all variables are treated. In this way, the GCD computation

executed in the algorithm typically involves less variables and

also has smaller sizes, particularly in the case of integer-linear

polynomials.

MultivariateILD. Given a polynomial p ∈ R[x1, . . . ,xn], where R
admits effective rational root finding, compute the integer-linear

decomposition of p.

1. if p ∈ R then set c = p and return c .
2. set c = contx1, ...,xn (p) and f = primx1, ...,xn (p).
3. if n = 1 then setm = 1, λm1 = 1, Pm (z) = f (z), and return

c
∏m

i=1 Pi (λm1x1).
4. if n = 2 then call the algorithm BivariateILD with input

f ∈ R[x1,x2] to compute its integer-linear decomposition

f = P0

m∏
i=1

Pi (λi1x1 + λi2x2);

and then return c P0
∏m

i=1 Pi (λi1x1 + λi2x2).
5. set m = 0, д = contx1,x2 (f), P0 = 1, and update f =

primx1,x2 (f).

6. if д , 1 then call the algorithm recursively with input д ∈

R[x3, . . . ,xn], returning

д = P̃0

m̃∏
i=1

P̃i (˜λi3x3 + · · · + ˜λinxn);

then update P0 = P0 · P̃0 and for i = 1, . . . ,m̃ iteratively

updatem =m + 1, (λm1, . . . , λmn) = (0, 0, ˜λi3, . . . , ˜λin) and
Pm (z) = P̃i (z).

7. if f = 1 then return c P0
∏m

i=1 Pi (λi1x1 + · · · + λinxn).

8. set Λ1 = {
(
(1), f (x0,x2, . . . ,xn)

)
} with x0 an indeterminate.

for k = 1, . . . ,n − 1 do

8.1 set Λk+1 = {}.

8.2 for

(
(µ1, . . . , µk),h(x0,xk+1, . . . ,xn)

)
in Λk do

call the algorithm BivariateILD with input

h ∈ R[xk+2, . . . ,xn][x0,xk+1] to compute its

integer-linear decomposition

h = P ′
0

m′∏
i=1

P ′i (λ
′
ix0 + µ

′
ixk+1,xk+2, . . . ,xn), (5)

where P ′
0
∈ R[x0,xk+1, . . . ,xn] and

P ′i (z,xk+2, . . . ,xn) ∈ R[xk+2, . . . ,xn][z];
then update P0 by multiplying the polynomial

P ′
0
(µ1x1 + · · · + µkxk ,xk+1, . . . ,xn)

and update Λk+1 by joining the elements(
(λ′i µ1, . . . , λ

′
i µk , µ

′
i), P

′
i (x0,xk+2, . . . ,xn)

)
for i = 1, . . . ,m′

.

9. for

(
(µ1, . . . , µn),h(x0)

)
in Λn do

updatem = m + 1, (λm1, . . . , λmn) = (µ1, . . . , µn) and
Pm (z) = h(z).

10. return c P0
∏m

i=1 Pi (λi1x1 + · · · + λinxn).

Theorem 4.2. Let R and p ∈ R[x1, . . . ,xn] be valid inputs of the
algorithmMultivariateILD. Then the algorithm correctly computes
the integer-linear decomposition of p.

Proof. The correctness of steps 1-7 is evident by definition and

Theorem 3.4. For clarity, with 1 ≤ k ≤ n − 1, we denote by P
(k)
0

and P
(k+1)
0

the respective polynomials P0 before and after the kth
iteration of the outer loop of step 8. If the algorithm does not

terminate after step 7, then at this stage (namely before step 8) we

have that f , 1 and

p = c P
(1)

0

m∏
i=1

Pi (λi1x1 + · · · + λinxn) · f . (6)

We show by induction on k that the following invariant holds each

time before and also after the algorithm passes through steps 8.1-8.2.

f =
P
(k)
0

P
(1)

0

∏
Λk

h(µ1x1 + · · · + µkxk ,xk+1, . . . ,xn) (7)

for any 1 ≤ k ≤ n, where the product runs through all elements

((µ1, . . . , µk),h(x0,xk+1, . . . ,xn)) in Λk . From this the correctness

of the algorithm follows, since taking k = n in (7), one sees from

(6) that

p = c P
(n)
0

m∏
i=1

Pi (λi1x1 + · · · + λinxn)
∏
Λn

h(µ1x1 + · · · + µnxn),

implying that steps 9-10 give the desired integer-linear decomposi-

tion of p.
For k = 1, we have Λ1 = {((1), f (x0,x2, . . . ,xn))} so there is

nothing to show. We now assume that the invariant (7) holds

for 1 ≤ k ≤ n − 1 and aim to show that it is also true for the

case k + 1. In the kth iteration, one execution of the inner loop

in step 8.2 gives the integer-linear decomposition (5) for each

element ((µ1, . . . , µk),h(x0,xk+1, . . . ,xn)) of Λk . By substituting

x0 = µ1x1 + · · · + µkxk into (5) and updating P0,Λk+1 as described
in step 8.2, it follows from the induction hypothesis that, after the

kth iteration, the invariant (7) holds with k replaced by k + 1. This
completes the proof. □

In terms of complexity, it follows from Theorem 3.5 that our

algorithm uses merely polynomial time in the case of integer poly-

nomials.

Theorem 4.3. Let p ∈ Z[x1, . . . ,xn] be a valid input of the algo-
rithm MultivariateILD. Then the algorithm takes (n + log | |p | |∞ +
deg(p))O(1) word operations.

Example 4.4. Consider the polynomial p ∈ Z[x1,x2,x3,x4] of
the form

P0 · P1(2x1 − 4x2 + 3x3 + 5x4) · P2(−4x1 + 8x2 − 6x3 + 7x4), (8)

where P0 = (x1−2x2)x3+x4, P1(z) = 3z30+z+1 and P2(z) = 7z27−
z + 2. Note that the decomposed form given here is for readability

only. In order to compute the integer-linear decomposition, namely

(8) by definition, of p over Z, our algorithm (mainly step 8) proceeds

in the following three stages. Firstly, by viewing p as a polynomial

in x1,x2 over Z[x3,x4], applying the algorithm BivariateILD to p
gets

p = P (1)(−x1 + 2x2,x3,x4) (9)

with P (1)(z,x3,x4) equal to

(−zx3 + x4) · P1(−2z + 3x3 + 5x4) · P2(4z − 6x3 + 7x4).

There is only one integer-linear type, namely (−1, 2), of p over

Z[x3,x4]. Next, with input P (1)(z,x3,x4) ∈ Z[x4][z,x3], calling the

algorithm BivariateILD again and substituting z = −x1+2x2 yield

p = P0 · P
(2)(2x1 − 4x2 + 3x3,x4) (10)

with P (2)(z,x4) = P1(z + 5x4)P2(−2z + 7x4). The integer-linear type
of p over Z[x4] is then given by (2,−4, 3). Finally, the last call to

the algorithm BivariateILD for P (2)(z,x4) ∈ Z[z,x4], along with

z = 2x1 − 4x2 + 3x3, leads to the desired decomposition (8). The

two integer-linear types (2,−4, 3, 5) and (−4, 8,−6, 7) of p over Z
have been correctly recovered.

From (9) and (10), one sees that p is integer-linear over Z[x3,x4]
but it is not integer-linear over Z[x4]. The latter in turn implies

the non-integer-linearity of p over Z, even before starting the third

stage.

Similar to the bivariate algorithm, the above algorithm can be

modified so as to only determine the integer-linearity of a given

polynomial. This is saying that the algorithm can stop already and

return the non-integer-linearity of the input polynomial, provided

that one of the following conditions is satisfied.

• In step 4 or step 8.2, one of the triggers of the bivariate

algorithm listed in Remark 3.6 is touched.

• In step 6, the д turns out to be non-integer-linear.

5 COMPLEXITY COMPARISON
In this section we provide a complexity analysis of the two known

algorithms of [2] and [16] in the case of bivariate integer poly-

nomials. Our complexity model follows that discussed earlier in

Section 3.

As mentioned in the introduction, the algorithm in [2] is com-

pletely focused on the bivariate case so we will further extend it to

also tackle the general multivariate case that the algorithm in [16]

can already handle. In order to give complexity comparisons we

need to estimate the costs of these previously known algorithms. As

such we will first briefly review the algorithms from [2] and [16].

5.1 Algorithm of Abramov-Le
As we do with our bivariate algorithm, the algorithm of Abramov-

Le [2] also first finds candidates for all integer-linear types of a given

bivariate polynomial and then obtains the univariate polynomials

via content computation. The difference is that they use resultants

to find the candidates.

In order to state their main idea, let p ∈ R[x ,y] be non-constant
and be respectively primitive overR[x] and overR[y]. Thenp admits

the integer-linear decomposition of the form (3) with all the λi , µi
nonzero. Observe that any integer-linear type (λi , µi) is uniquely
determined by the rational number ri = λi/µi . Thus it amounts to

finding candidates for the ri . Analogous to Proposition 3.2, we have

that a rational number r gives rise to an integer-linear type of p if

and only if p(x ,y−rx) has a nontrivial content with respect to x , or
equivalently, all coefficients of p(x ,y − rx) with respect to x have

a nontrivial GCD. This means that, by writing д1, . . . ,дs ∈ R[r ,y]
for those coefficients, all the ri are nonzero rational roots of any

resultant Resy (дi ,дj) for 1 ≤ i < j ≤ s . It follows that all nonzero
rational roots of any nontrivial Resy (дi ,дj) give candidates for the
ri (and then for the (λi , µi)). After generating candidates, the algo-

rithm continues to find the corresponding univariate polynomials.

To this end, for each candidate r , the original algorithm directly

computes the content ofp(x ,y−rx)with respect to x . This operation
actually induces polynomial arithmetic with rational coefficients

and thus may take considerably more time than step 6.1 of our bi-

variate algorithm. In order to improve the performance, we proceed

by using step 6 of our bivariate algorithm instead.

In the original work [2], the authors did not make any preference

about the order of selection of factorsдi , which actually maymake a

huge difference about the performance of the algorithm. To stabilize

the performance, we reorder the factors дi in such a way that

degy (д1) ≤ · · · ≤ degy (дs) and then start the computation in

increasing order of indices. In this way, the computation of resultant

typically involves matrices of much smaller sizes and thus the

efficiency is improved.

If one directly generalizes the above idea to a multivariate poly-

nomial, say p ∈ R[x1, . . . ,xn], then the problem would be re-

duced to finding nonzero rational roots (r1, . . . , rn−1) of a (n − 1)-

variate polynomial over R that is deduced from the coefficients of

p(x1, . . . ,xn−1, z−r1x1−· · ·−rn−1xn−1)with respect tox1, . . . ,xn−1.
When R = Z, this is equivalent to the well-known Hilbert’s tenth

problem and thus is unsolvable for an arbitrary n. Therefore, this
direct way will not work. In fact, as indicated by Proposition 4.1, the

algorithm of Abramov-Le generalizes to polynomials in any number

of variables in the same fashion as the algorithm BivariateILD.
The following theorem gives a cost estimate for the algorithm

of Abramov-Le when applied to a bivariate integer polynomial.

Theorem 5.1. Let p be a polynomial in Z[x ,y] of total degree d in
x ,y and with max-norm β . Then the algorithm of Abramov-Le takes
O(d5 log2 d+d3 log2 β)word operations with classical arithmetic and
O
∼(d4 + d3 log β) with fast arithmetic.

Proof. With a slight abuse of notation, let p be the input poly-

nomial with contents with respect to x and y both being removed.

Then the algorithm proceeds to find candidates for the integer-

linear types ofp by first computing all nonzero coefficientsд1, . . . ,дs
of p(x ,y − rx) with respect to x , where r is an indeterminate. This

step takes O(d5 log2 d + d3 log2 β) word operations with classical

arithmetic and O
∼(d4 + d3 log β) with fast arithmetic. Assuming

that the coefficients are ordered so that degy (д1) ≤ · · · ≤ degy (дs).

Then one sees that degy (д1) = 0, 0 < degr (д1) = degy (p) ≤ d

and | |д1 | |∞ ≤ β , provided that degy (p) > 0. In the best case

where degy (д2) = 1, the resultant Resy (д1,д2) is exactly equal

to д1 , 0. Then the algorithm tries to find all nonzero rational roots

of д1, whose cost is outweighed by the subsequent computation

of the corresponding univariate polynomials for all integer-linear

types. Similar to Theorem 3.5, the latter can be accomplished using

O(d4 log2 d + d3 log2 β) word operations with classical arithmetic

and O
∼(d3 log β) with fast arithmetic, concluding the total cost of

the algorithm. □

5.2 Algorithm of Li-Zhang
Unlike the algorithm of Abramov-Le the method used by Li-Zhang

[16] is based on full factorization of polynomials. The key obser-

vation of their algorithm is that, for any integer-linear polynomial

in R[x1, . . . ,xn] having only one integer-linear type (λ1, . . . , λn),
every nonzero homogeneous component can be written into the

form c · (λ1x1 + · · ·+λnxn)
k
for some c ∈ R and k ∈ N. This allows

one to easily determine the integer-linearity of an irreducible poly-

nomial. Now the algorithm of Li-Zhang proceeds as follows. After

performing full factorization of an input polynomial, it investigates,

for each irreducible factor, whether all nonzero homogeneous com-

ponents are powers of the same linear factor based on the above key

observation. Then regrouping all factors of the same integer-linear

type eventually yields the desired integer-linear decomposition of

the given polynomial.

A careful study of the algorithm of Li-Zhang leads to the follow-

ing cost estimates.

Theorem 5.2. Let p be a polynomial in Z[x ,y] of total degree d
in x ,y and with max-norm β . Then the algorithm of Li-Zhang takes
O
∼(d7 log β) word operations.

Proof. Computing a complete factorization of p(x ,y) into ir-

reducibles dominates the other costs of the algorithm. While we

do not know of an explicit analysis of this complexity of factoring

bivariate integer polynomials (beyond being in polynomial-time,

since [14]). However, the algorithm of [9] can be applied and ana-

lyzed as suggested there, and appears to require O
∼(d7 log β) word

operations. □

6 IMPLEMENTATION AND TIMINGS
We have implemented our algorithm inMaple 18 in the case where

the domain R is the ring of integer polynomials or an algebraic num-

ber field. The code is available by email request. The main problem

we have encountered during the implementation is the following.

Given a bivariate polynomial p ∈ R[x ,y] and a candidate integer-

linear type (λ, µ), to find the corresponding univariate polynomial,

we need to compute the content of the polynomial p(µx , z − λx)
with respect to x (cf. step 6.1 of the algorithm). If we directly call

the Maple command content to do the job, it would be rather time-

consuming and most of time is spent on bringing p(µx , z − λx)
to an expanded form. Instead, we adopt another solution which

takes advantage of properties of homogeneous polynomials. The

key idea is that manipulating a bivariate homogeneous polynomial

f (x ,y) ∈ R[x ,y] is essentially the same as manipulating the univari-

ate polynomial f (1,y). It is much faster to compute f (µ, z −λ) than
to compute f (µx , z−λx). Applying this idea to every homogeneous

component of the given polynomial p yields the final expanded

form of p(µx , z − λx), and then calling the content command in

Maple efficiently completes the task. Experimental tests indicate

that this solution is indeed a significant improvement.

In order to get an idea about the efficiency of our algorithm, we

compared its runtime, as well as the memory requirements, to the

performance of the Maple implementations of the other two known

algorithms. The implementation for the algorithm of Abramov-Le

is adapted from the hidden procedure IsFactorable in the built-

in Maple command SumTools[Hypergeometric][ZpairDirect]. We

incorporate reordering of coefficients, replacing content with the

idea mentioned in the previous paragraph and extending to the

general multivariate case. The implementation for the algorithm of

Li-Zhang uses the code provided by the authors themselves.

The test suite was generated by

p = P0(x1, . . . ,xn)
m∏
i=1

Pi (λi1x1 + · · · + λinxn), (11)

where n,m ∈ N,

• P0 is a random integer polynomial in x1, . . . ,xn of total de-

gree d0;
• the (λi1, . . . , λin) are random integer n-tuples with |λi j | ≤
20 (note that they may not be distinct).

• Pi (z) = fi1(z)fi2(z)fi3(z) with fi j (z) ∈ Z[z] random polyno-

mials of degrees j · d for some d ∈ N.

Note that, in all the tests, the algorithms take the expanded forms of

examples given above as input. All timings are measured in seconds

on a Linux computer with 128GB RAM and fifteen 1.2GHz Dual

core processors.

For a selection of random polynomials of the form (11) for dif-

ferent choices of n,m,d0,d , Table 1 tabulates the timings of the

extended algorithm of Abramov-Le (AL), the algorithm of Li-Zhang

(LZ) and our algorithm (MILD). The experimental results illustrate

that our algorithm indeed outperforms the other two algorithms.

(n,m,d0,d) AL LZ MILD

(2, 2, 5, 5) 0.28 0.49 0.11

(2, 2, 5, 10) 2.25 3.39 0.77

(2, 2, 5, 15) 9.72 13.80 2.82

(2, 2, 5, 20) 44.20 35.80 6.68

(2, 2, 5, 25) 176.00 80.50 13.50

(2, 3, 5, 10) 9.85 14.00 2.68

(2, 3, 10, 10) 10.80 13.40 3.14

(2, 3, 20, 10) 17.10 16.00 3.80

(2, 3, 30, 10) 19.40 18.00 5.32

(2, 3, 40, 10) 25.50 20.90 5.92

(2, 1, 20, 15) 1.16 2.01 0.39

(2, 2, 20, 15) 15.20 16.00 3.34

(2, 3, 20, 15) 129.00 62.00 14.80

(2, 4, 20, 15) 801.00 181.00 47.40

(2, 5, 20, 15) 3350.00 498.00 114.00

(3, 2, 5, 5) 6.71 10.80 2.52

(4, 2, 5, 5) 710.00 657.00 440.00

Table 1:Comparison of all three algorithms for a collection of poly-
nomials p of the form (11).

7 CONCLUSION
In this paper we have presented a new algorithm for the integer-

linear decomposition of a multivariate polynomial. Compared with

two previously known algorithms, our algorithm is at least faster

by a factor of the total degree of the input (d) in terms of worst-case

complexity. In practice, our algorithm is also more efficient than

these two algorithms. In addition, we have extended and improved

the original contribution of Abramov-Le and provided complexity

analysis for the improved version. We remark that our algorithm

has much better performance than both algorithms in the case

where the coefficient domain contains algebraic numbers.

ACKNOWLEDGMENTS
The authors would like to thank Ziming Li for providing the Maple

code on the algorithm of Li-Zhang, and the anonymous referees

for their constructive and helpful comments. This research was

partly supported by the Natural Sciences and Engineering Research

Council (NSERC) of Canada (Giesbrecht, Labahn and Zima).

REFERENCES
[1] S. A. Abramov. 2003. When does Zeilberger’s algorithm succeed? Adv. in Appl.

Math. 30, 3 (2003), 424–441. https://doi.org/10.1016/S0196-8858(02)00504-3

[2] S. A. Abramov and H. Q. Le. 2002. A criterion for the applicability of Zeilberger’s

algorithm to rational functions. Discrete Math. 259, 1-3 (2002), 1–17. https:

//doi.org/10.1016/S0012-365X(02)00442-9

[3] S. A. Abramov and M. Petkovšek. 2001. Proof of a conjecture of Wilf and Zeil-

berger. Preprints Series of the Institute of Mathematics, Physics and Mechanics

39(748)(2001), Ljubljana.

[4] S. A. Abramov and M. Petkovšek. 2002. On the structure of multivariate

hypergeometric terms. Adv. in Appl. Math. 29, 3 (2002), 386–411. https:

//doi.org/10.1016/S0196-8858(02)00022-2

[5] S. Chen, Q.-H. Hou, G. Labahn, and R.-H. Wang. 2016. Existence problem of

telescopers: beyond the bivariate case. In Proceedings of ISSAC’16. ACM, New

York, 167–174. https://doi.org/10.1145/2930889.2930895

[6] S. Chen and C. Koutschan. 2019. Proof of the Wilf-Zeilberger conjecture for

mixed hypergeometric terms. J. Symbolic Comput. 93 (2019), 133–147. https:

//doi.org/10.1016/j.jsc.2018.06.003

[7] G. E. Collins andM. J. Encarnación. 1995. Efficient rational number reconstruction.

J. Symbolic Comput. 20, 3 (1995), 287–297. https://doi.org/10.1006/jsco.1995.1051

[8] A. Conflitti. 2003. On computation of the greatest common divisor of several

polynomials over a finite field. Finite Fields Appl. 9, 4 (2003), 423–431. https:

//doi.org/10.1016/S1071-5797(03)00022-4

[9] S. Gao. 2003. Factoring multivariate polynomials via partial differential

equations. Math. Comp. 72, 242 (2003), 801–822. https://doi.org/10.1090/

S0025-5718-02-01428-X

[10] J. von zur Gathen. 1990. Functional decomposition of polynomials: the tame case.

J. Symbolic Comput. 9, 3 (1990), 281–299. https://doi.org/10.1016/S0747-7171(08)

80014-4

[11] J. von zur Gathen and J. Gerhard. 2013. Modern Computer Algebra (third ed.).

Cambridge University Press, Cambridge. xiv+795 pages. https://doi.org/10.1017/

CBO9781139856065

[12] J. Gerhard. 2004. Modular Algorithms in Symbolic Summation and Symbolic
Integration (Lecture Notes in Computer Science). Springer-Verlag.

[13] M. Giesbrecht, H. Huang, G. Labahn, and E. Zima. 2019. Efficient rational creative

telescoping. In preparation.

[14] E. Kaltofen. 1985. Polynomial-time reductions from multivariate to bi- and

univariate integral polynomial factorization. SIAM J. Comput. 14, 2 (1985), 469–
489. https://doi.org/10.1137/0214035

[15] H. Q. Le. 2003. A direct algorithm to construct the minimal Z -pairs for rational

functions. Adv. in Appl. Math. 30, 1-2 (2003), 137–159. https://doi.org/10.1016/

S0196-8858(02)00529-8

[16] Z. Li and Y. Zhang. 2013. An algorithm for decomposing multivariate hypergeo-

metric terms. A contributed talk in CM2013.

[17] R. Loos. 1983. Computing rational zeros of integral polynomials by p-adic
expansion. SIAM J. Comput. 12, 2 (1983), 286–293. https://doi.org/10.1137/

0212017

[18] O. Ore. 1930. Sur la forme des fonctions hypergéométriques de plusieurs variables.

J. Math. Pures Appl. (9) 9, 4 (1930), 311–326.
[19] G. H. Payne. 1997. Multivariate Hypergeometric Terms. Ph.D. Dissertation. Penn-

sylvania State University, Pennsylvania, USA. Advisor(s) Andrews, George E.

[20] M. Sato. 1990. Theory of prehomogeneous vector spaces (algebraic part)—the

English translation of Sato’s lecture from Shintani’s note. Nagoya Math. J.
120 (1990), 1–34. https://doi.org/10.1017/S0027763000003214 Notes by Takuro

Shintani, Translated from the Japanese by Masakazu Muro.

[21] B. M. Trager. 1976. Algebraic factoring and rational function integration. In

Proceedings of SYMSAC’76. ACM, New York, 219–226. https://doi.org/10.1145/

800205.806338

https://doi.org/10.1016/S0196-8858(02)00504-3
https://doi.org/10.1016/S0012-365X(02)00442-9
https://doi.org/10.1016/S0012-365X(02)00442-9
https://doi.org/10.1016/S0196-8858(02)00022-2
https://doi.org/10.1016/S0196-8858(02)00022-2
https://doi.org/10.1145/2930889.2930895
https://doi.org/10.1016/j.jsc.2018.06.003
https://doi.org/10.1016/j.jsc.2018.06.003
https://doi.org/10.1006/jsco.1995.1051
https://doi.org/10.1016/S1071-5797(03)00022-4
https://doi.org/10.1016/S1071-5797(03)00022-4
https://doi.org/10.1090/S0025-5718-02-01428-X
https://doi.org/10.1090/S0025-5718-02-01428-X
https://doi.org/10.1016/S0747-7171(08)80014-4
https://doi.org/10.1016/S0747-7171(08)80014-4
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1137/0214035
https://doi.org/10.1016/S0196-8858(02)00529-8
https://doi.org/10.1016/S0196-8858(02)00529-8
https://doi.org/10.1137/0212017
https://doi.org/10.1137/0212017
https://doi.org/10.1017/S0027763000003214
https://doi.org/10.1145/800205.806338
https://doi.org/10.1145/800205.806338

	Abstract
	1 Introduction
	2 Preliminaries
	3 The bivariate case
	4 The multivariate case
	5 Complexity comparison
	5.1 Algorithm of Abramov-Le
	5.2 Algorithm of Li-Zhang

	6 Implementation and timings
	7 Conclusion
	References

