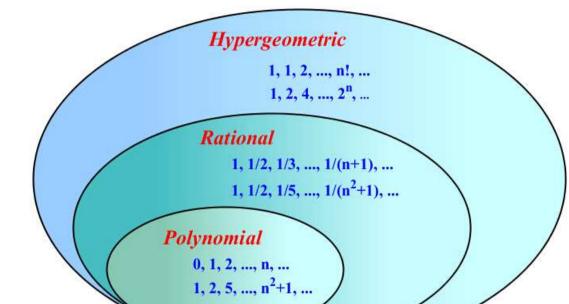


Improved Abramov–Petkovšek's Reduction for Hypergeometric Terms


Shaoshi Chen¹, Hui Huang^{1,2} and Ziming Li¹ ¹ KLMM, CAS, Beijing ² RISC, JKU, Linz.

Hypergeometric Sequences

A sequence $T : \mathbb{N} \to \mathbb{C}$ is said to be *hypergeometric* if

 $\exists \ R \in \mathbb{C}(n) \text{ s.t. } T(n+1) = R(n)T(n) \text{ for all } n \in \mathbb{N}.$

Key Lemma. The \mathbb{C} -linear map ϕ_K is injective and $\mathbb{C}[n] = \operatorname{im}(\phi_K) \oplus \mathcal{N}_K$.

Improved AP reduction. Given a hypergeometric sequence T(n), compute two hypergeometric sequences $T_1(n)$ and $T_2(n)$ s.t. the two conditions in (1) hold.

1. Compute (2) as in step 1 of AP reduction.

2. Compute the projection p of w in \mathcal{N}_K . Set

 $T_2 := \left(\frac{a}{b} + \frac{p}{v}\right)H.$

The sequence $T_1(n)$ can be constructed as the product of a rational function r(n) and the sequence H(n) incrementally.

Improved AP reduction avoids computing a polynomial solution of any auxiliary O Δ E.

Notation.

- For a sequence A(n), $\Delta(A) = A(n+1) A(n)$.
- For two hypergeometric sequences T(n), S(n), write

 $T \equiv S$ if $T - S = \Delta(H)$ for some hypergeometric sequence H(n).

Definition 1. A hypergeometric sequence T(n) is *summable* if $T \equiv 0$. **Summability.** Given a hypergeometric sequence T(n), decide whether $T \equiv 0$. Gosper algorithm [4] solves the summability problem.

Abramov–Petkovšek's Reduction

Additive Decomposition. Given a hypergeometric sequence T(n), compute two hypergeometric sequences $T_1(n)$ and $T_2(n)$ s.t.

 $T = \Delta(T_1) + T_2$ and $T \equiv 0 \iff T_2 = 0.$ (1)

Abramov–Petkovšek's reduction (AP reduction) [1, 2] computes $T_1(n)$ and $T_2(n)$ in (1). **Remark 1.** AP reduction solves the summability problem as well. **Definition 2.**

Experiments

We compare

- G: the Maple function Gosper in SumTools[Hypergeometric].
- S: a procedure that solves the summability problem based on improved AP, in which T_1 is not normalized if T is not summable.
- AP: the Maple function SumDecomposition in SumTools[Hypergeometric].
- IAP: the reduction algorithm of improved AP-reduction, in which T_1 is always normalized.

Test suite:

$$T(n) := \frac{f(n)}{g(n) \cdot g(n+\lambda) \cdot g(n+\mu) \cdot h(n) \cdot h(n+\lambda) \cdot h(n+\mu)} \cdot \prod_{k=n_0}^n \frac{u(k)}{v(k)},$$

where $f, g, h \in \mathbb{Z}[n]$ of respective degrees 20, 10 and 10, u(n), v(n) are the product of two linear polynomials in $\mathbb{Z}[n]$, and $\lambda, \mu \in \mathbb{N}$ with $\lambda \leq \mu$.

	mΡ			
(λ,μ)	G	S	AP	IAP
[0, 0]	0.08	0.12	0.19	0.12
[5, 5]	0.42	0.52	4.80	0.64
[10, 10]	0.74	1.00	17.06	1.42

Input T(n)

Input: $I(n + 1) - I(n)$	Input: $T(n+1) - T(n)$	
--------------------------	------------------------	--

(λ,μ)	G	S	AP	IAP
[0, 0]	1.22	1.46	2.83	1.44
[5, 5]	1.98	1.75	9.06	1.76
[10, 10]	2.55	1.87	19.21	1.89

- $p \in \mathbb{C}[n]$ is shift-free if gcd(p(n), p(n+i)) = 1 for all $i \in \mathbb{Z} \setminus \{0\}$.
- $-r \in \mathbb{C}(n)$ with r = u/v is *shift-reduced* if gcd(u(n), v(n+i)) = 1 for all $i \in \mathbb{Z}$.
- Let r = u/v be a shift-reduced rational function in $\mathbb{C}(n)$. A polynomial $f \in \mathbb{C}[n]$ is strongly prime with r if either $f \in \mathbb{C}$, or, for every irreducible factor p of f,

 $p \nmid uv, \ p(n+i) \nmid u \text{ and } p(n-i) \nmid v \text{ for all } i \in \mathbb{Z}^+.$

AP reduction. Given a hypergeometric sequence T(n), compute two hypergeometric sequences $T_1(n)$ and $T_2(n)$ such that the two conditions in (1) hold.

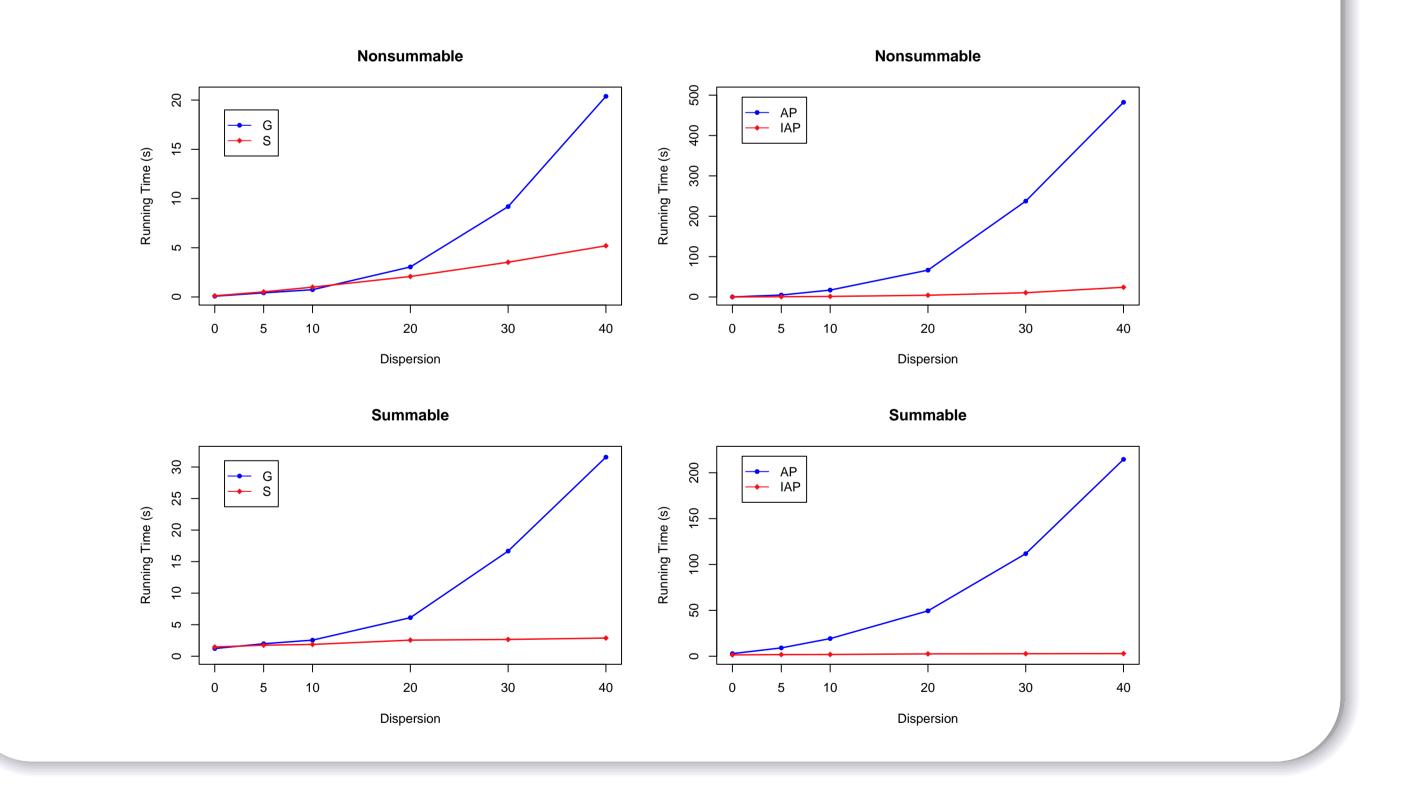
1. Compute three polynomials $a, b, w \in \mathbb{C}[n]$ such that

$$T \equiv (a/b + w/v) H \tag{2}$$

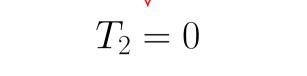
where H(n + 1)/H(n) = u/v is shift-reduced, $\deg(a) < \deg(b)$, $\gcd(a, b) = 1$ and b is shift-free and strongly prime with u/v. Moreover, the numerator w has minimal degree.

2. Consider the equation

$$u(n)y(n+1) - v(n)y(n) = w(n).$$


Summable caseNon-summable $b \in \mathbb{C}^*$ and w = 0 or $b \notin \mathbb{C}^*$ (3) has a polynomial solution(3) has no polynomial solution

Non-summable case $b \notin \mathbb{C}^*$ or (3) has no polynomial solution


(3)

	[10, 20]	3.05	2.08	66.50	4.30
	[10, 30]	9.18	3.53	237.50	10.54
[:	10, 40]	20.38	5.20	482.34	24.02

Timings (in sec.) measured on a Mac computer, 4GB RAM, 3.06 GHz Core 2 Duo processor.

Experiments illustrate that the improved AP reduction is more efficient than both Gosper algorithm and AP-reduction.

 $T_2 = (a/b + w/v) H$

The sequence $T_1(n)$ can be constructed as the product of a rational function r(n) and the sequence H(n) incrementally.

Improved AP Reduction

Idea. Not only bound the degree of the numerator w in (2) as in [1, 2], but also reduce the number of its terms as in [3].

Definition 3. Let K = u/v be shift-reduced. Define

 $\phi_K : \mathbb{C}[n] \longrightarrow \mathbb{C}[n]$ $f(n) \mapsto u(n)f(n+1) - v(n)f(n).$ Let $\mathcal{N}_K = \operatorname{span}_{\mathbb{C}} \left\{ n^{\ell} \mid \ell \in \mathbb{N} \text{ and } \ell \neq \deg(g) \text{ for all } g \in \operatorname{im}(\phi_K) \right\}.$

A Potential Application

Can one compute the minimal telescoper for a bivariate hypergeometric term by the improved AP reduction, following the idea in [3]?

Advantage. Such an algorithm would separate the computation for telescopers from that for certificates so as to improve the efficiency.

Difficulty. The least common multiple of shift-free polynomials is *not* necessarily shift-free.

References

- [1] S.A. Abramov and M. Petkovšek. Minimal decomposition of indefinite hypergeometric sums. *Proc. of ISSAC 2001*, 7–14, New York, ACM, 2001.
- [2] S.A. Abramov and M. Petkovšek. Rational normal forms and minimal decompositions of hypergeometric terms. *J. Symbolic Comput.*, 33:521–543, 2002.
- [3] A. Bostan, S. Chen, F. Chyzak, Z. Li, and G. Xin. Hermite reduction and creative telescoping for hyperexponential functions. *Proc. of ISSAC 2013*, 77–84, New York, ACM, 2013.

[4] R.W. Gosper, Jr. Decision procedure for indefinite hypergeometric summation. *Proc. Nat. Acad. Sci. U.S.A.*, 75(1):40–42, 1978.