
The VLDB Journal (2010) 19:91–113
DOI 10.1007/s00778-009-0165-y

SPECIAL ISSUE PAPER

The RDF-3X engine for scalable management of RDF data

Thomas Neumann · Gerhard Weikum

Received: 13 January 2009 / Revised: 19 June 2009 / Accepted: 7 August 2009 / Published online: 1 September 2009
© Springer-Verlag 2009

Abstract RDF is a data model for schema-free structured
information that is gaining momentum in the context of
Semantic-Web data, life sciences, and also Web 2.0 plat-
forms. The “pay-as-you-go” nature of RDF and the flexible
pattern-matching capabilities of its query language SPARQL
entail efficiency and scalability challenges for complex que-
ries including long join paths. This paper presents the RDF-
3X engine, an implementation of SPARQL that achieves
excellent performance by pursuing a RISC-style architecture
with streamlined indexing and query processing. The physi-
cal design is identical for all RDF-3X databases regardless of
their workloads, and completely eliminates the need for index
tuning by exhaustive indexes for all permutations of subject-
property-object triples and their binary and unary projections.
These indexes are highly compressed, and the query proces-
sor can aggressively leverage fast merge joins with excellent
performance of processor caches. The query optimizer is able
to choose optimal join orders even for complex queries, with
a cost model that includes statistical synopses for entire join
paths. Although RDF-3X is optimized for queries, it also
provides good support for efficient online updates by means
of a staging architecture: direct updates to the main database
indexes are deferred, and instead applied to compact differ-
ential indexes which are later merged into the main indexes in
a batched manner. Experimental studies with several large-
scale datasets with more than 50 million RDF triples and
benchmark queries that include pattern matching, manyway
star-joins, and long path-joins demonstrate that RDF-3X can
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outperform the previously best alternatives by one or two
orders of magnitude.
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1 Introduction

1.1 Motivation and problem

The resource description framework (RDF) data model has
been around for a decade. It has been designed as a flexi-
ble representation of schema-relaxable or even schema-free
information for the Semantic Web [61]. In the commercial IT
world, RDF has not received much attention until recently,
but now it seems that RDF is building up a strong momen-
tum. Semantic-Web-style ontologies and knowledge bases
with millions of facts from Wikipedia and other sources have
been created and are available online [4,55,65]. E-science
data repositories support RDF as an import/export format and
also for selective (thus, query-driven) data extractions, most
notably, in the area of life sciences (e.g., [8,58]). Finally, Web
2.0 platforms for online communities are considering RDF
as a non-proprietary exchange format and as an instrument
for the construction of information mashups [25,26,44].

In RDF, all data items are represented in the form
of (subject, predicate, object) triples, also known as
(subject, property, value) triples. For example, informa-
tion about the song “Changing of the Guards” performed by
Patti Smith could include the following triples:
(id1, hasT ype, “song)”,
(id1, hasT itle, “Changing of the Guards)”,
(id1, per f ormed By, id2),
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(id2, has Name, “Patti Smith)”,
(id2, bornOn, “December 30, 1946)”,
(id2, bornI n, id3),
(id3, has Name, “Chicago)”,
(id3, located I n, id4),
(id4, has Name, “I llinois)”,
(id1, composed By, id5),
(id5, has Name, “Bob Dylan)”,
and so on.

Note that, although predicate names such as “performed-
By” or “composedBy” resemble attributes, there is no data-
base schema; the same database may contain triples about
songs with predicates “performer”, “hasPerformed”, “sung-
By”, “composer”, “creator”, etc. A schema may emerge in
the long run (and can then be described by the RDF Vocabu-
lary Description Language). In this sense, the notion of RDF
triples fits well with the modern notion of data spaces and
its “pay as you go” philosophy [21]. Compared to an entity-
relationship model, both an entity’s attributes and its rela-
tionships to other entities are represented by predicates. All
RDF triples together can be viewed as a large (instance-level)
graph.

The SPARQL query language is the official standard
for searching over RDF repositories. It supports conjunc-
tions (and also disjunctions) of triple patterns, the coun-
terpart to select-project-join queries in a relational engine.
For example, we can retrieve all performers of songs
composed by Bob Dylan by the following SPARQL
query:

Select ?n Where {
?p <hasName> ?n. ?s <performedBy> ?p.
?s <composedBy> ?c. ?c <hasName> "Bob Dylan"

}

Here each of the conjunctions, denoted by a dot, corre-
sponds to a join. The whole query can also be seen as graph
pattern that needs to be matched in the RDF data graph. In
SPARQL, predicates can also be variables or wildcards, thus
allowing schema-agnostic queries.

RDF engines for storing, indexing, and querying have
been around for quite a few years; especially, the Jena frame-
work by HP Labs has gained significant popularity [64], and
Oracle also provides RDF support for semantic data integra-
tion in life sciences and enterprises [13,42]. However, with
the exception of the VLDB 2007 paper by Abadi et al. [1] (and
very recent work presented at VLDB 2008 [39,50,60]), none
of the prior implementations could demonstrate convincing
efficiency, failing to scale up towards large datasets and high
load. [1] achieves good performance by grouping triples with
the same property name into property tables, mapping these
onto a column store, and creating materialized views for fre-
quent joins.

Managing large-scale RDF data includes technical chal-
lenges for the storage layout, indexing, and query processing:

1. The absence of a global schema and the diversity of
predicate names pose major problems for the physical
database design. In principle, one could rely on an auto-
tuning “wizard” to materialize frequent join paths; how-
ever, in practice, the evolving structure of the data and the
variance and dynamics of the workload turn this problem
into a complex sisyphus task.

2. By the fine-grained modeling of RDF data—triples
instead of entire records or entities—queries with a large
number of joins will inherently form a large part of the
workload, but the join attributes are much less predict-
able than in a relational setting. This calls for specific
choices of query processing algorithms, and for careful
optimization of complex join queries; but RDF is meant
for on-the-fly applications over data spaces, so the opti-
mization takes place at query run-time.

3. As join-order and other execution-plan optimizations
require data statistics for selectivity estimation, an RDF
engine faces the problem that a suitable granularity of
statistics gathering is all but obvious in the absence
of a schema. For example, single-dimensional histo-
grams on all attributes that occur in the workload’s where
clauses—the state-of-the-art approach in relational sys-
tems—is unsuitable for RDF, as it misses the effects of
long join chains or large join stars over many-to-many
relationships.

4. Although RDF uses XML syntax and SPARQL involves
search patterns that resemble XML path expressions, the
fact that RDF triples form a graph rather than a collec-
tion of trees is a major difference to the more intensively
researched settings for XML.

1.2 Contribution and outline

This paper gives a comprehensive, scalable solution to the
above problems. It presents a complete system, coined
RDF-3X (for RDF Triple eXpress), designed and imple-
mented from scratch specifically for the management and
querying of RDF data. RDF-3X follows the rationale advo-
cated in [30,54] that data-management systems that are
designed for and customized to specific application domains
can outperform generic mainstream systems by two orders of
magnitude. The factors in this argument include (1) tailored
choices of data structures and algorithms rather than sup-
porting a wide variety of methods, (2) much lighter software
footprint and overhead, and as a result, (3) simplified optimi-
zation of system internals and easier configuration and self-
adaptation to changing environments (e.g., data and workload
characteristics).
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The RDF-3X engine 93

RDF-3X follows such a RISC-style design philosophy
[12], with “reduced instruction set” designed to support RDF.
RDF-3X is based on the following three key principles:

– Physical design is workload-independent by creating
appropriate indexes over a single “giant triples table”.
RDF-3X does not rely on the success (or limitation) of
an auto-tuning wizard, but has effectively eliminated the
need for physical-design tuning. It does so by building
indexes over all 6 permutations of the three dimensions
that constitute an RDF triple, and additionally, indexes
over count-aggregated variants for all three two-dimen-
sional and all three one-dimensional projections. Each of
these indexes can be compressed very well; the total stor-
age space for all indexes together is less than the size of
the primary data.

– The query processor is RISC-style by relying mostly on
merge joins over sorted index lists. This is made possible
by the “exhaustive” indexing of the triples table. In fact,
all processing is index-only, and the triples table exists
merely virtually. Operator trees are constructed so as to
preserve interesting orders [20] for subsequent joins to
the largest possible extent; only when this is no longer
possible, RDF-3X switches to hash-based join process-
ing. This approach can be highly optimized at the code
level, and has much lower overhead than traditional query
processors. At the same time, it is sufficiently versatile
to support also the various duplicate-elimination options
of SPARQL, disjunctive patterns in queries, and all other
features that SPARQL requires.

– The query optimizer mostly focuses on join order in
its generation of execution plans. It employs dynamic
programming for plan enumeration, with a cost model
based on RDF-specific statistical synopses. These sta-
tistics include counters of frequent predicate-sequences
in paths of the data graph; such paths are potential join
patterns. Compared to the query optimizer in a univer-
sal database system, the RDF-3X optimizer is simpler
but much more accurate in its selectivity estimations and
decisions about execution plans.

Although it is reasonable to assume that most RDF dat-
abases are query-intensive if not read-only (e.g., large refer-
ence repositories in life sciences), there has to be support for
at least incremental loading and ideally even online updates
such as inserting a new triple for annotating existing data.
The challenge in doing this efficiently is to deal with the
aggressive indexing that RDF-3X employs for fast querying.
We have developed a staging architecture that defers index
updates. Updates are collected in workspaces and differential
indexes, and are later merged into the main database indexes
in a very efficient batched manner. This staging is transparent
to programs; the query processor is appropriately extended

to provide this convenience with low overhead. While this
approach does not provide full-fledged ACID transactions,
it includes simple but effective ways of concurrency con-
trol and recovery and supports the read-committed isolation
level.

The scientific contributions of this work are

1. A novel architecture for RDF indexing and querying,
eliminating the need for physical database design;

2. an optimizer for large join queries over non-schematic
RDF triples, driven by a new kind of selectivity estima-
tion for RDF paths;

3. New staging architecture for efficiently handling updates,
with very good performance of batched updates;

4. A comprehensive performance evaluation, based on real
measurements with three large datasets, demonstrating
large gains over the previously best engine [1] (by a typ-
ical factor of 10 and up to 100 or more for some queries).

The source code of RDF-3X and the experimental data are
available for non-commercial purposes from the Web site
[43].

A previous version of this work has been presented in [39].
The current paper extends this prior publication in two major
ways: (1) we describe the algorithms for query compilation
and query optimization, which are merely sketched in [39];
(2) we present a novel way of efficiently supporting updates
to RDF-3X databases, and give performance measurements
for multi-user workloads.

The rest of the paper is organized as follows: Sect. 2
provides background on RDF, SPARQL, and prior work on
indexing and query processing. Section 3 presents our solu-
tion for the physical design of RDF repositories. Section 4
describes the architecture and algorithms of the RDF-3X
query compiler and query processor. Section 5 covers the
query optimization techniques used in RDF-3X. Section 6
discusses our solutions to selectivity estimation for SPAR-
QL expressions. Section 7 shows how to efficiently support
online updates and incremental loading in RDF-3X. Section 8
presents the results of our comprehensive performance eval-
uation and comparison to alternative approaches.

2 Background and state of the art

2.1 SPARQL

SPARQL queries [62] are pattern matching queries on triples
that constitute an RDF data graph. Syntactic sugar aside, a
basic SPARQL query has the form

select ?variable1 ?variable2 ...
where { pattern1. pattern2. ... }
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where each pattern consists of subject, predicate, object ,
and each of these is either a variable or a literal. The query
model is query-by-example style: the query specifies the
known literals and leaves the unknowns as variables. Vari-
ables can occur in multiple patterns and thus imply joins. The
query processor needs to find all possible variable bindings
that satisfy the given patterns and return the bindings from
the projection clause to the application. Note that not all vari-
ables are necessarily bound (e.g., if a variable only occurs in
the projection and not in a pattern), which results in NULL
values.

This pattern-matching approach restricts the freedom of
the query engine with regard to possible execution plans, as
shown in the following example:

select ?a ?c where { ?a label1 ?b. ?b label2 ?c }

The user is interested in all ?a and ?c that are reachable
with certain edges via ?b. The value of ?b itself is not part
of the projection clause. Unfortunately, the pattern-matching
semantics requires that nevertheless all bindings of ?b need
to be computed. There might be multiple ways from ?a to
?c, resulting in duplicates in the output. As this is usually not
what the user/application intends, SPARQL introduced two
query modifiers: the distinct keyword specifies that dupli-
cates must be eliminated, and the reduced keyword specifies
that duplicates may but need not be eliminated. The goal
of the reduced keyword was obviously to help RDF query
engines by allowing optimizations, but with the reduced
option the query output has a nondeterministic nature.

Nevertheless, even the default mode of creating all dupli-
cates allows some optimizations. The query processor must
not ignore variables that are projected away due to their effect
on duplicates, but it does not have to create the explicit bind-
ings. As long as we can guarantee that the correct number
of duplicates is produced, the bindings themselves are not
relevant. We will use this observation later by counting the
number of duplicates rather than producing the duplicates
themselves.

2.2 Related work

Most publicly accessible RDF systems have mapped RDF
triples onto relational tables (e.g., RDFSuite [2,27], Sesame
[9,41], Jena [28,64], the C-Store-based RDF engine of
[1], and also Oracle’s RDF_MATCH implementation [13]).
There are two extreme ways of doing this: (1) All triples are
stored in a single, giant triples table with generic attributes
subject, predicate, object. (2) Triples are grouped by their
predicate name, and all triples with the same predicate name
are stored in the same property table. The extreme form of
property tables with a separate table for each predicate name
can be made more flexible, leading to a hybrid approach; (3)
Triples are clustered by predicate names, based on predicates

for the same entity class or co-occurrence in the workload;
each cluster-property table contains the values for a small
number of correlated predicates, and there may additionally
be a “left-over” table for triples with infrequent predicates. A
cluster-property table has a class-specific schema with attri-
butes named after the corresponding RDF predicates, and
its width can range from a single predicate (attribute) to all
predicates of the same entity type.

Early open-source systems like Jena [28,64] and Sesame
[9,41] use clustered-property tables, but left the physical
design to an application tuning expert. Neither of these sys-
tems has reported any performance benchmarks with large-
scale data in the Gigabytes range with more than 10 mil-
lion triples. Oracle [42] has reported very good performance
results in [13], but seems to heavily rely on good tuning by
making the right choice of materialized join views (coined
subject-property matrix) in addition to its basic triples table.
The previously fastest RDF engine by [1] uses minimum-
width property tables (i.e., binary relations), but maps them
onto a column-store system. [56] gives a nice taxonomy
of different storage layouts and presents systematic perfor-
mance comparisons for medium-sized synthetic data and
synthetic workload.

The scalable system of [1], published in the 2007 VLDB
conference, kindled great interest in RDF performance issues
and new architectures. In contrast to the arguments that [1]
gives against the “giant-triples-table” approach, both RDF-
3X [39] and HexaStore [60] recently showed how to success-
fully employ a triples table with excellent performance. The
work of [50] systematically studied the impact of column-
stores (MonetDB) and row-stores (PostgreSQL) on differ-
ent physical designs and identified strengths and weaknesses
under different data and workload characteristics. The quest
for scalable performance has also led to new benchmark pro-
posals [45] and the so-called billion triples challenge [49].

The previously best performing systems, Oracle and the
C-Store-based engine [1], rely on materialized join paths and
indexes on these views. The indexes themselves are standard
indexes as supported by the underlying RDBMS and col-
umn store, respectively. The native YARS2 system [23] pro-
poses exhaustive indexes of triples and all their embedded
sub-triples (pairs and single values) in six separate B+-tree
or hash indexes. This resembles our approach, but YARS2
misses the need for indexing triples in collation orders other
than the canonical order by subject, predicate, object (as pri-
mary, secondary, and tertiary sort criterion). A very similar
approach is presented for the HPRD system [7] and available
as an option (coined “triple-indexes”) in the Sesame system
[41]. Both YARS2 and HPRD seem to be primarily geared
for simple lookup operations with limited support for joins;
they lack DBMS-style query optimization (e.g., do not con-
sider any join-order optimizations, although [7] recognizes
the issue). Baolin and Bo [6] proposes to index entire join
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paths using suffix arrays, but does not discuss optimizing que-
ries over this physical design. Udrea [57] introduces a new
kind of path indexing based on judiciously chosen “center
nodes”; this index, coined GRIN, shows good performance
on small- to medium-sized data and for hand-specified exe-
cution plans. Physical design for schema-agnostic “wide and
sparse tables” is also discussed in [14], without specific con-
sideration to RDF. All these methods for RDF indexing and
materialized views incur some form of physical design prob-
lem, and none of them addresses the resulting query optimi-
zation issues over these physical-design features.

As for query optimization, [1,13,42] utilize the state-of-
the-art techniques that come with the SQL engines on which
these solutions are layered. To our knowledge, none of them
employs any RDF-native optimizations. Stocker et al. [53]
outlines a framework for algebraic rewriting, but it seems
that the main rule for performance gains is pushing selec-
tions below joins (i.e., applying selections as early as pos-
sible); there is no consideration of join ordering. Hartig and
Heese [24] has a similar flavor, and likewise disregards the
key problem of finding good join orderings.

Recently, selectivity estimation for SPARQL patterns over
graphs have been addressed by [33,53]. The method by [53]
gathers separate frequency statistics for each subject, each
predicate, and each object (label or value); the frequency of
an entire triple pattern is estimated by assuming that sub-
ject, predicate, and object distributions are probabilistically
independent. The method by [33,34] is much more sophis-
ticated by building statistics over a selected set of arbitrarily
shaped graph patterns. It casts the selection of patterns into
an optimization problem and uses greedy heuristics. The car-
dinality estimation of a query pattern identifies maximal sub-
patterns for which statistics exist, and combines them with
uniformity assumptions about super-patterns without statis-
tics. While [53] seems to be too simple for producing accurate
estimates, the method by [33] is based on a complex optimi-
zation problem and relies on simple heuristics to select a good
set of patterns for the summary construction. The method that
we employ in RDF-3X captures path-label frequencies, thus
going beyond [53] but avoiding the computational complex-
ity of [33].

3 Storage and indexing

3.1 Triples store and dictionary

Although most of the prior, and especially the recent, litera-
ture favors a storage schema with property tables, we decided
to pursue the conceptually simpler approach with a single,
potentially huge triples table, with our own storage imple-
mentation underneath (as opposed to using an RDBMS). This
reflects our RISC-style and “no-knobs” design rationale. We

overcome the previous criticism that a triples table incurs
too many expensive self-joins by creating the “right” set of
indexes (see below) and by very fast processing of merge
joins (see Sect. 4).

We store all triples in a (compressed) clustered B+-tree.
The triples are sorted lexicographically in the B+-tree, which
allows the conversion of SPARQL patterns into range scans.
In the pattern (literal1,literal2,?x) the literals specify the com-
mon prefix and thus effectively a range scan. Each possible
binding of ?x is found during a single scan over a moderate
number of leaf pages.

As triples may contain long string literals, we adopt the
natural approach (see, e.g., [13]) of replacing all literals by ids
using a mapping dictionary. This has two benefits: (1) it com-
presses the triple store, now containing only id triples, and
(2) it is a great simplification for the query processor, allow-
ing for fast, simple, RISC-style operators (see Sect. 4.4).
The small cost for these gains is two additional dictionary
indexes. During query translation, the literals occurring in
the query are translated into their dictionary ids, which can
be done with a standard B+-tree from strings to ids. After
processing the query the resulting ids have to be transformed
back into literals as output to the application/user. We could
have used a B+-tree for this direction, too, but instead we
implemented a direct mapping index [17]. Direct mapping is
tuned for id lookups and results in a better cache hit ratio,
as it is more compact than a B+-tree and accesses only two
pages per lookup. Note that this is only an issue when the
query produces many results. Usually the prior steps (joins
etc.) dominate the costs, but for simple queries with many
results dictionary lookups are non-negligible.

3.2 Compressed indexes

In the index-range-scan example given above we rely on the
fact that the variables are a suffix (i.e., the object or the pred-
icate and object). To guarantee that we can answer every
possible pattern with variables in any position of the pattern
triple by merely performing a single index scan, we maintain
all six possible permutations of subject (S), predicate (P) and
object (O) in six separate indexes. We can afford this level
of redundancy because we compress the id triples (discussed
below). On all our experimental datasets, the total size for all
indexes together is less than the original data.

As the collation order in each of the six indexes is
different (SPO, SOP, OSP, OPS, PSO, POS), we use the
generic terminology value1, value2, value3 instead of sub-
ject, predicate, object for referring to the different col-
umns. The triples in an index are sorted lexicographically
by (value1, value2, value3) (for each of the six different
permutations) and are directly stored in the leaf pages of the
clustered B+-tree.
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Fig. 1 Structure of a compressed triple

Fig. 2 Pseudo-code of triple compression

The collation order causes neighboring triples to be very
similar: most neighboring triples have the same values in
value1 and value2, and the increases in value3 tend to be
very small. This observation naturally leads to a compres-
sion scheme for triples. Instead of storing full triples we only
store the changes between triples. This compression scheme
is inspired by methods for inverted lists in text retrieval
systems [68], but we generalize it to id triples rather than
simple ids. For reasons discussed below, we apply the com-
pression only within individual leaf pages and never across
pages.

For the compression scheme itself, there is a clear trade-off
between space savings and CPU consumption for decompres-
sion or interpretation of compressed items [63]. We noticed
that CPU time starts to become an issue when compress-
ing too aggressively, and therefore settled for a byte-level
(rather than bit-level) compression scheme. We compute the
delta for each value, and then use the minimum number of
bytes to encode just the delta. A header byte denotes the
number of bytes used by the following values (Fig. 1). Each
value consumes between 0 bytes (unchanged) and 4 bytes
(delta needs the full 4 bytes), which means that we have

5 possible sizes per value. For three values these are 5 ∗
5 ∗ 5 = 125 different size combinations, which fits into
the payload of the header byte. The remaining gap bit is
used to indicate a small gap: When only value3 changes,
and the delta is less than 128, it can be directly included in
the payload of the header byte. This kind of small delta is
very common, and can be encoded by a single byte in our
scheme.

The details of the compression are shown in Fig. 2. The
algorithm computes the delta to the previous tuple. If it is
small it is directly encoded in the header byte; otherwise, it
computes the δi values for each of the tree values and calls
encode. encode writes the header byte with the size informa-
tion and then writes the non-zero tail of the δi (i.e., it writes δi

byte-wise but skips leading zero bytes). This results in com-
pressed tuples with varying sizes, but during decompression
the sizes can be reconstructed easily from the header byte. As
all operations are byte-wise, decompression involves only a
few cheap operations and is very fast.

We tested the compression rate and the decompression
time (in seconds) of our byte-wise compression against a
number of bit-wise compression schemes proposed in the lit-
erature [46]. The results for the Barton dataset (see Sect. 8)
are shown in Table 1. Our byte-wise scheme compresses
nearly as good as the best bit-wise compression scheme,
while providing much better decompression speed. The
Gamma and Golomb compression methods, which are popu-
lar for inverted lists in IR systems, performed worse because,
in our setting, gaps can be large whenever there is a change
in the triple prefix.

We also experimented with the more powerful LZ77 com-
pression on top of our compression scheme. Interestingly, our
compression scheme compresses better with LZ77 than the
original data, as the delta encoding exhibits common patterns
in the triples. The additional LZ77 compression decreases the
index size roughly by a factor of two, but increases CPU
time significantly, which would become critical for com-
plex queries. Thus, the RDF-3X engine does not employ
LZ77.

An important consideration for the compressed index is
that each leaf page is compressed individually. Compressing
larger chunks of data leads to better compression (in partic-
ular in combination with the LZ77 compression), but page-
wise compression has several advantages. First, it allows us to
seek (via B+-tree traversal) to any leaf page and directly start

Table 1 Comparison of
byte-wise compression versus
bit-wise compression for the
Barton dataset

Barton data Byte-wise Bit-wise

RDF-3X Gamma Delta Golomb

6 indexes (GBytes) 1.10 1.21 1.06 2.03

Decompression (s) 3.2 44.7 42.5 82.6
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reading triples. If we compressed larger chunks we would
often have to decompress preceding pages. Second, the com-
pressed index behaves just like a normal B+-tree (with a spe-
cial leaf encoding). Thus, updates can be easily done like in
a standard B+-tree. This greatly simplifies the integration of
the compressed index into the rest of the engine and preserves
its RISC nature. In particular, we can adopt advanced concur-
rency control and recovery methods for index management
without any changes.

3.3 Aggregated indices

For many SPARQL patterns, indexing partial triples rather
than full triples would be sufficient, as demonstrated by the
following SPARQL query:

select ?a ?c where { ?a ?b ?c }

It computes all ?a and ?c that are connected through any
predicate, the actual bindings of ?b are not relevant. We there-
fore additionally build aggregated indexes, each of which
stores only two out of the three columns of a triple. More
precisely, they store two entries (e.g., subject and object),
and an aggregated count, namely, the number of occurrences
of this pair in the full set of triples. This is done for each of the
three possible pairs out of a triple and in each collation order
(SP, PS, SO, OS, PO, OP), thus adding another six indexes.

The count is necessary because of the SPARQL seman-
tics. The bindings of ?b do not occur in the output, but the
right number of duplicates needs to be produced. Note that
the aggregated indexes are much smaller than the full-triple
indexes; the increase of the total database size caused by the
six additional indexes is negligible.

Instead of (value1, value2, value3), the aggregated
indexes store (value1, value2, count), but otherwise they
are organized in B+-trees just like the full-triple compressed
indexes. The leaf encoding is slightly different, as now most
changes involve a gap in value2 and a low count value. The
pseudo-code is shown in Fig. 3.

Finally, in addition to these indexes for pairs in triples,
we also build all three one-value indexes containing just
(value1, count) entries (the encoding is analogous). While

Fig. 3 Aggregated triple compression

triple patterns using only one variable are probably rare, the
one-value indexes are very small, and having them available
simplifies query translation.

4 Query translation and processing

4.1 Translating SPARQL queries

The first step in compiling a SPARQL query is to transform
it into a calculus representation suitable for later optimiza-
tions. We construct a query graph representation that can be
interpreted as relational tuple calculus. It would be simpler
to derive domain calculus from SPARQL, but tuple calculus
is better suited for the query optimizer.

The translation of SPARQL queries is illustrated by an
example in Fig. 4. While SPARQL allows many syntax
shortcuts to simplify query formulation (Fig. 4a), each (con-
junctive) query can be parsed and expanded into a set of
triple patterns (Fig. 4b). Each component of a triple is
either a literal or a variable. The parser already performs
dictionary lookups, i.e., the literals are mapped into ids.
Similar to domain calculus, SPARQL specifies that vari-
able bindings must be produced for every occurrence of
the resulting literals-only triple in the data. When a query
consists of a single triple pattern, we can use our index
structures from Sect. 3 and answer the query with a sin-
gle range scan. When a query consist of multiple triple
patterns, we must join the results of the individual pat-
terns (Fig. 4d). We thus employ join ordering algorithms
on the query graph (Fig. 4c) representation, as discussed in
Sect. 5.

Each triple pattern corresponds to one node in the query
graph. Conceptually, each node entails a scan of the whole
database with appropriate variable bindings and selections
induced by the literals. While each of these scans could
be implemented as a single index range scan, the optimizer
might choose a different strategy (see below). The edges in
the query graph reflect joint variable occurrences: two nodes
are connected if and only if they have a (query) variable in
common.

Using the query graph, we can construct an (unoptimized)
execution plan as follows:

1. Create an index scan for each triple pattern. The literals
in the pattern determine the range of the scan.

2. Add a join for each edge in the query graph. If the join is
not possible (i.e., if the triple patterns are already joined
via other edges) add a selection.

3. If the query graph is disconnected, add cross-products as
necessary to obtain a single join tree.

4. Add a selection containing all FILTER predicates.
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(a) (b) (c) (d)

Fig. 4 SPARQL translation example. a SPARQL, b Triples form, c Possible join tree, d Query graph

5. If the projection clause of a query includes the distinct
option, add an aggregation operator that eliminates dupli-
cates in the result.

6. Finally add a dictionary lookup operator that converts
the resulting ids back into strings.

This gives us a “canonical” execution plan for any con-
junctive SPARQL query, i.e., a plan that is valid but poten-
tially inefficient. In the RDF-3X system the steps 1 through 4
are actually performed by the query optimizer (see Sect. 5),
which finds the optimal scan strategy and the optimal join
order for a given query.

4.2 Handling disjunctive queries

While conjunctive queries are more commonly used, SPAR-
QL also allows certain forms of disjunctions. The UNION
expression returns the union of the bindings produced by
two or more pattern groups. The OPTIONAL expressions
returns the bindings of a pattern group if there are any results,
and NULL values otherwise. In this context, pattern groups
are sets of triple patterns, potentially containing UNION and
OPTIONAL expressions themselves.

During query translation and optimization, we treat pat-
tern groups in UNION and OPTIONAL as nested subqueries.
That is, we translate and optimize the nested pattern groups
first (potentially recursively) and then treat them as base rela-
tions with special costs and cardinalities during the transla-
tion and optimization of the outer query. For UNION we add
the union of the results of the pattern groups as if it were
a base relation, for OPTIONAL we add the result as a base
relation using an outer join.

In principle, it would be possible to optimize these queries
more aggressively, but most interesting optimizations require
the usage of bypass plans [52] or other non tree-structured
execution plans, which is beyond the scope of this work. And
these optimizations would only pay off for complex queries;
when the disjunctive elements are simple, our nested transla-
tion and optimization scheme produces the optimal solution.

4.3 Preserving result cardinality

The standard SPARQL semantic requires that the right num-
ber of variable bindings are produced, even if many of them

are duplicates. However, from a processing point of view, one
should avoid the additional work for producing and keeping
duplicates.

We solve this issue by tracking the multiplicity of each
tuple during query processing. Scans over unaggregated
indexes always produce a multiplicity of 1, while aggregated
indexes report the number of duplicates as multiplicity. Join
operators multiply the multiplicities to get the number of
duplicates of each output tuple. Note that we can optionally
switch off the multiplicity tracking if we can statically derive
that it has to be 1 in a subplan. When the result is presented to
the application/user, the output operator interprets the multi-
plicities according to the specified query semantics (distinct,
reduced, or standard).

4.4 Implementation issues

Our run-time system includes the typical set of algebraic
operators (merge-join, hash-join, filter, aggregation, etc.).
One notable difference to other systems is that our run-time
system is very RISC-style: most operators merely process
integer-encoded ids, consume and produce streams of id
tuples, compare ids, etc. Besides simplifying the code, this
reduced complexity allows neat implementation tricks.

For example, consider an index-scan operator that uses a
B+-tree iterator to access the physical data, comparing a tri-
ple pattern against the data. Each entry in the triple is either an
id attribute that must be produced or bound to a literal, which
affects start/stop condition if it is in the prefix or implies a
selection if unbound entries come first. Instead of check-
ing for these different conditions at run-time, we can handle
them at query compilation time. Each entry is either an id
attribute or a literal. There are three entries in a triple, which
means there are eight possible combinations. With a single
method interface that has eight different implementations of
the index scan operator, we can greatly reduce the number
of conditional branches in the system code. Besides being
faster, each specialized operator is much simpler as it now
implements just the logic required for its setting. Note that
we only need to specialize the step logic, which is less than
ten lines of code for each specialization.

This RISC-style combination of simplified type sys-
tem and simple, fast operators leads to very good CPU
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(a) (b)

(c)

Fig. 5 Execution plans with estimated CPU costs for LibraryThing query B1. a Original query, b Plan constructed by minimum-selectivity-ordering,
c Fully optimized plan

performance. In our evaluation in Sect. 8 we include warm-
cache times to demonstrate these effects. We realize that these
kinds of code-tuning issues are often underappreciated, but
are crucial for high performance on modern hardware.

5 Query optimization

5.1 Requirements and example plans

The key issue for optimizing SPARQL execution plans is join
ordering. There is a rich body of literature on this problem,
with solutions typically based on various forms of dynamic
programming (DP) or randomization (e.g., [15,18,35,48]).
However, the intrinsic characteristics of RDF and SPARQL
create join queries with particularly demanding properties,
which are not directly addressed by prior work:

1. SPARQL queries tend to contain multiple star-shaped
subqueries, for combining several attribute-like proper-
ties of the same entity, that are joined together. Thus, it is
essential to use a strategy that can create bushy join trees
(rather than focusing on left-deep or right-deep trees).

2. These star joins occur at various nodes of long join paths,
often at the start and end of a path. SPARQL queries can
easily lead to ten or more joins between triples (see, for
example, our benchmark queries in Sect. 8). So, exact
optimization either requires very fast plan enumeration
and cost estimation or needs to resort to heuristic approx-
imations.

3. We would like to leverage the particular strengths of our
triple indexes, which encourage extensive use of merge
joins (rather than hash or nested-loop joins), but this
entails being very careful about preserving interesting
orders in the generation of join plans.

The first requirement rules out methods that cannot gener-
ate all possible star-chain combinations. The second require-
ment strongly suggests a fast bottom-up method rather
than transformation-based top-down enumeration. The third
requirement rules out sampling-based plan enumeration (or
randomized optimization methods), as these are unlikely to
generate all order-preserving plans for queries with more than
10 joins. In fact, we expect that the most competitive execu-
tion plans have a particular form: they would use order-pre-
serving merge-joins as long as possible and switch to hash-
joins only for the last few operators.

These requirements are illustrated in Fig. 5, which shows
the (slightly simplified) query B1 from Sect. 8.4, its query
graph (a), and two possible execution plans (b and c). The
query consists of two small stars centered around the enti-
ties u and f which are joined together. The two operator
trees show the estimated CPU costs (in the cost units of our
estimator) for each node, using the actual (i.e., measured)
cardinalities of intermediate results.

A seemingly natural way of constructing a suitable
execution plan would be based on a greedy minimum-
selectivity heuristics: pick joins in ascending order of selec-
tivity (while avoiding Cartesian products). This leads to the
left-deep operator tree shown in Fig. 5b. This execution plan
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(a) (b) (c) (d)

Fig. 6 Example for reasoning using attribute equivalence classes. a Triple patterns, b Scan operators, c Possible joins, d Possible join tree

includes fairly expensive hash-table build and probe oper-
ations. In contrast, the most efficient way to execute this
query (using the RDF-3X operators) is to join each star indi-
vidually using merge-joins, and then joining the two stars
together using a hash-join, resulting in a bushy execution plan
(Fig. 5c). The patterns in a star are semantically related and
are selective only in combination, which mandates the bushy
plans. Furthermore, the triple patterns within each star join
on the same subject, which makes the merge-joins extremely
efficient. This greatly reduces the CPU overhead compared
to hash-joins. During an actual execution the greedy plan
causes CPU costs of 3,325 hash-table operations, while the
optimal plan requires just 258 hash-table operations and
the costs of merge-joins are negligible relative to those of
the hash-table operations. The actually measured warm-
cache run-times were 1 and 2 ms, respectively. This query
structure with multiple stars (connected by other relation-
ships) is very common in SPARQL queries.

5.2 DP-based plan enumeration

Our solution to finding optimal (or near-optimal) execution
plans is based on the bottom-up dynamic-programming (DP)
framework of [35]. It organizes a DP table by subgraphs of
the query graph, maintaining for each subgraph the optimal
plan and the resulting output order. If there are multiple plans
for a subgraph none of which dominates the other, all of them
are kept in the DP table. This happens when good plans pro-
duce different output orders.

The optimizer seeds its DP table with scans for the base
relations, in our case the triple patterns. The seeding is a two-
step process. First, the optimizer analyzes the query to check
which variable bindings are used in other parts of the query.
If a variable is unused, it can be projected away by using
an aggregated index (see Sect. 3.3). Note that this projec-
tion conceptually preserves the cardinality through the count
information in the index (see Subsect. 4.3). In the second step
the optimizer decides which of the applicable indexes to use.
There are two factors that affect the index selection. When
the literals in the triple pattern form the prefix of the index
key, they are automatically handled by the range scan. Other-
wise, too many tuples are read and additional selections are
required. On the other hand, a different index might produce

the triples in an order suitable for a subsequent merge-join
later on, which may have lower overall costs than reading
too many tuples. The optimizer therefore generates plans for
all indexes and uses the plan pruning mechanism to decide
if some of them can be discarded early on.

Pruning the search space of possible execution plans is
based on estimated execution costs. The optimizer calls the
cost model for each generated plan and prunes equivalent
plans that are dominated by cheaper alternatives. This prun-
ing mechanism relies on order optimization [51] to decide if
a plan is dominated by another plan. As the optimizer can use
indexes on all triple permutations, it can produce tuples in
an arbitrary order, which makes merge joins very attractive.
Thus, some plans are kept even if they are more expensive
but produce an interesting ordering that can be used later
on. Note that orderings are not only created by index scans
but also by functional dependencies induced by selections;
therefore, the order optimization component is non-trivial
[51]. We utilize the techniques of [38] for this purpose.

Starting with the seeds, larger plans are created by joining
optimal solutions of smaller problems. During this process,
all attribute-handling logic for comparing values is imple-
mented as reasoning over equivalence classes of variables
instead of individual variable bindings. Variables that appear
in different triple patterns are equivalent if they must have the
same bindings to values in the final result of the query. These
equivalence classes are determined at compile-time. It is suf-
ficient that an execution plan produces at most one binding
for each equivalence class (and no bindings for variables that
do not appear in the query output). This simplifies implicit
projections that precede pipeline breakers (e.g., hash-table
build for a hash-join) and also allows for automatic detection
of transitive join conditions (e.g., a = b ∧ b = c ⇒ a = c).

An example for this reasoning is shown in Fig. 6. It shows
a query with three triple patterns (Fig. 6a) and joins on the
common attribute a between the patterns. The first transla-
tion step creates index scans for the three patterns (Fig. 6b),
producing attributes a1, b, a2 ,c, a3, and d. Note that the ai

are really different from each other in terms of their value
bindings; we named them similarly to show the connection
to the original query variable. We can derive three join oper-
ators from the query graph (Fig. 6c), but in the final join tree
(Fig. 6d) we use only two of them. The canonical translation
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Table 2 Optimization times for
queries with x patterns in two
stars connected by a path of
length y

6-triples 8-triples 10-triples
Star patterns (ms) Star patterns (ms) Star patterns (ms)

Path length 5 0.7 2.4 6.4

Path length 10 2.0 4.6 17.3

Path length 20 3.5 13.0 56.6

would add another σa2=a3 , but we can deduce that a1 and a2

are in the same equivalence class, thus the ��a1=a3 is suffi-
cient. Note that equivalence classes are derived from equality
conditions, not only from join-variable names. We could per-
form the same reasoning if the three patterns had no variable
in common but instead joined via FILTER conditions.

Starting with the index scans seeds, larger plans are cre-
ated by joining optimal solutions of smaller problems that
are adjacent in the query graph [35]. When the query con-
tains additional selections due to FILTER predicates, they
are placed greedily as soon as possible, as they are usually
inexpensive to evaluate. If a selection is really expensive, it
could be better to integrate it into the DP operator placement
as proposed in [11], but we did not investigate this further.
The DP method that we implemented along these lines is very
fast and is able to compute the exact cost-optimal solution
for join queries with up to 20 triple patterns. We measured
optimization times (in milliseconds) for a typical SPARQL
scenario with two entities selected by star-shaped subqueries
and connected by a chain of join patterns. The results are
shown in Table 2. Note that the resulting plans are always
optimal relative to the estimates by the cost model.

6 Selectivity estimates

The query optimizer relies upon its cost model in finding
the lowest-cost execution plan. In particular, estimated car-
dinalities (and thus selectivities) have a huge impact on plan
generation. While this is a standard problem in database sys-
tems, the schema-free nature of RDF data complicates sta-
tistics generation. We propose two kinds of statistics. The
first one, specialized histograms, is generic and can handle
any kind of triple patterns and joins. Its disadvantage is that it
assumes independence between predicates, which frequently
does not hold in tightly coupled triple patterns. The second
statistics therefore computes frequent join paths in the data,
and gives more accurate predictions on these paths for large
joins. During query optimization, we use the join-path cardi-
nalities when available and otherwise assume independence
and use the histograms.

6.1 Selectivity histograms

While triples conceptually form a single table with three col-
umns, histograms over the individual columns are not very

useful as most query patterns touch at least two attributes of a
triple. Instead, we harness our aggregated indexes, which are
perfectly suited for the calculation of triple-pattern selectivi-
ties: for each literal or literal pair, we can get the exact num-
ber of matching triples with one index lookup. Unfortunately,
this is not sufficient for estimating join selectivities. Also, we
would like to keep all auxiliary structures for the cost model
in main memory. Therefore, we aggregate the indexes even
further such that each index fits into a single database page
and includes information about join selectivity.

Just like the aggregated indexes we build six different sta-
tistics, one for each order of the entries in the triples. Starting
from the aggregated indexes, we place all triples with the
same prefix of length two in one bucket and then merge the
smallest two neighboring buckets until the total histogram is
small enough. This approximates an equi-depth histogram,
but avoids placing bucket boundaries between triples with
the same prefix (which are expected to be similar).

For each bucket we then compute the statistics shown in
Fig. 7. The first three values—the number of triples, number
of distinct 2-prefixes, and number of distinct 1-prefixes—are
used to estimate the cardinality of a single triple pattern. Note
that this only gives the scan cardinality, i.e., the number of
scanned triples, which determines the costs of an index scan.
The true result cardinality, which affects subsequent oper-
ators, could actually be lower when literals are not part of
the index prefix and are tested by selections later on. In this
case, we derive the result cardinality (and obtain exact pre-
dictions) by reordering the literals such that all literals are in
the prefix.

Fig. 7 Structure of a histogram bucket
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The next values are the numbers of join partners (i.e., the
result cardinality) if the triples in the bucket were joined to
all other triples in the database according to the specified join
condition. As there are nine ways to combine attributes from
two triples, we precompute nine cardinalities. For example,
the entry o = s is effectively

|{b|b ∈ current bucket} ��b.object=t.subject {t |t ∈ all triples}|.
These values give a perfect join-size prediction when joining
a pattern that exactly matches the bucket with a pattern with-
out literals. Usually, this is not the case; we therefore assume
independence between query conditions and multiply the
selectivities of the involved predicates. Such independence
assumptions are standard in state-of-the-art query optimiz-
ers for tractability. Note that these values can be computed
efficiently by two merge-joins with the one-value indexes
(S, P, O), as these directly return the number of triples with
a certain subject, predicate, or object.

6.2 Frequent paths

The histograms discussed above have decent accuracy, and
are applicable for all kinds of predicates. Their main weak-
ness is that they assume independence between predicates.
Two kinds of correlated predicates commonly occur in
SPARQL queries. First, “stars” of triple patterns, where a
number of triple patterns with different predicates share the
same subject. These are used to select specific subjects (i.e.,
entities based on different attributes of the same entities).
Second, “chains” of triple patterns, where the object of the
first pattern is the subject of the next pattern, again with given
predicates. These chains correspond to long join paths (across
different entities). As both of these two cases are common, we
additionally build specialized statistics to have more accurate
estimators for such queries.

To this end, we precompute the frequent paths in the data
graph and keep exact join statistics for them. Frequency here
refers to paths with the same label sequence. Note that we use
the term path both for chains and stars as the constructions
are similar in the two cases. We characterize a path P by
the sequence of predicates p1, . . . , pn seen in its traversal.
Using SPARQL syntax, we define a (chain) path Pp1,...,pn as

Pp1,...,pn := select r1rn+1 where {(r1 p1r2).

(r2 p2r3). . . . (rn pnrn+1)}
Star paths are defined analogous; the p1, . . . , pn are

unsorted in this case. We compute the most frequent paths,
i.e., the paths with the largest cardinalities, and materialize
their result cardinalities and path descriptions p1, . . . , pn .
Using this information we can exactly predict the join cardi-
nality for the frequent paths that occur in a query. Again, we
want to keep these statistics in main memory and therefore

Fig. 8 Frequent path mining algorithm

compute the most frequent paths such that they still fit on
a single database page. In our experiments we could store
about 1,000 paths on one 16 KB page.

Finding the most frequent paths requires some care. While
it may seem that this is a standard graph-mining issue, the
prevalent methods in that line of research [19,59,67], e.g.,
based on the well-known Apriori frequent-itemset mining
algorithm, are not directly applicable.

Unlike the Apriori setting, a frequent path in our RDF-
path sense does not necessarily consist of frequent subpaths.
Consider a graph with two star-shaped link clusters where all
end-nodes are connected to their respective star centers by
predicates (edge labels) p1 and p2, respectively. Now con-
sider a single edge with predicate p3 between the two star
centers. In this scenario, the path Pp3 will be infrequent,
while the path Pp1,p3,p2 will be frequent. Therefore, we can-
not simply use the Apriori algorithm.

Another problem in our RDF setting are cycles, which
could lead to seemingly infinitely long, infinitely frequent
paths. We solve this problem by two means. First, we require
that if a frequent path P is to be kept, all of its subpaths
have to be kept, too. This is required for query optimization
purposes anyway, as we may have to break a long join-path
into smaller joins, and it simplifies the frequent-path compu-
tation. Second, we rank the frequent paths not by their result
cardinalities but by their number of distinct nodes. In a tree
these two are identical, but in the presence of cycles we do
not count nodes twice. This approach is similar in spirit to
computing maximal patterns in data mining [5].

The pseudo-code of the path mining algorithm is shown in
Fig. 8. It starts from frequent paths of length one and enlarges
them by appending or prepending predicates. When a new
path is itself frequent and all of its subpaths are still kept,
we add it. We stop when no new paths can be added. Note
that, although the pseudo-code shows a nested loop for ease
of presentation, we actually use a join and a group-by oper-
ator in the implementation. For the datasets we considered
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in our experiments the 1,000 most frequent paths could be
determined in a few minutes.

6.3 Estimates for composite queries

For estimating the overall selectivity of an entire composite
query, we combine the histograms with the frequent paths sta-
tistics. A long join chain with intermediate nodes that have
triple patterns with object literals is decomposed into sub-
chains of maximal lengths such that only their end nodes
have triple patterns with literals. For example, a query like

?x1 a1 v1. ?x1 p1 ?x2. ?x2 p2 ?x3. ?x3 p3 ?x4.
?x4 a4 v4. ?x4 p4 ?x5. ?x5 p5 ?x6. ?x6 a6 v6

with attribute-flavored predicates a1, a4, a6, literals v1, v4,
v6, and relationship-flavored predicates p1 through p5 will be
broken down into the subchains for p1-p2-p3 and for p4-p5

and the per-subject selections a1-v1, a4-v4, and a6-v6. We use
the frequent paths statistics to estimate the selectivity of the
two join subchains, and the histograms for selections. Then,
in the absence of any other statistics, we assume that the dif-
ferent estimators are probabilistically independent, leading
to a product formula with the per-subchain and per-selection
estimates as factors. If instead of a simple attribute-value
selection like ?x6 a6 v6 we had a star pattern such as ?x6 a6

u6. ?x6 b6 v6. ?x6 c6 w6 with properties a6, b6, c6 and corre-
sponding object literals u6, v6, w6, we would first invoke the
estimator for the star pattern, using the frequent paths statis-
tics for stars, and then combine them with the other estimates
in the product form.

6.4 Estimation accuracy

To assess the accuracy of our estimation techniques, we com-
puted the estimates for the benchmark queries that we will
use in Sect. 8 for comprehensive performance evaluation. We
compare three techniques: a) a baseline which uses standard
single-dimensional histograms on each of the three attributes
S, P, and O, b) our notion of RDF-specific selectivity histo-
grams developed in Subsect. 6.1 but without any frequent-
paths information, and c) the full-fledged combination of the
new type of histograms and the frequent-paths statistics of
Subsect. 6.2.

Table 3 gives the relative estimation errors |actual−estimated|
actual

of pattern cardinalities, averaged over all queries in each of
the three query benchmarks. The queries over the Barton

data set are relatively simple, and accordingly the selectivity
estimates are very accurate here. The single-dimensional his-
tograms give the best accuracy on this dataset as they require
less space per bucket and thus have more fine-grained buck-
ets, compared to the RDF histograms. However, our tech-
niques perform only slightly worse, still yielding very good
accuracy. This is very different for the other two datasets,
where both the data and the queries are more complex. In
these two cases, the single-dimensional histograms perform
very poorly, while our RDF synopses are much more accu-
rate. The frequent-paths statistics further improve accuracy,
in particular for the Librarything dataset.

7 Managing updates

So far, we have solely considered static RDF databases that
are bulk-loaded once and then repeatedly queried. The cur-
rent RDF and SPARQ standards [61,62] do not discuss any
update operations, but an RDF database should support data
changes and incremental loading as well.

In designing the management of updates for RDF-3X, we
make the following assumptions about typical usage patterns:

1. Queries are far more frequent than updates, and also
much more resource consuming.

2. Updates are mostly insertions of new triples. Overwrit-
ing existing triples (updates-in-place) are rarely needed;
rather new versions and annotations would be created.

3. Updates can usually be batched, boiling down to incre-
mental loading.

4. It is desirable that (batched) updates can be performed
concurrently with queries, but there is no need for full-
fledged ACID transactions.

Based on these assumptions, we have designed and imple-
mented a differential indexing method for RDF-3X that sup-
ports both individual update operations and entire batches.
The key idea is that updates are initially applied to small
differential indexes, deferring the actual updates to the main
indexes. The differential indexes can be easily integrated into
the query processor, and are thus transparent to application
programs. Periodically, or after reaching a certain size, differ-
ential indexes are merged into the main indexes in a batched
manner. This overall architecture for managing updates in
RDF-3X is illustrated in Fig. 9.

Table 3 Average relative
estimation errors for query
patterns from Sect. 8

Barton Yago Librarything

Single-dimensional histograms 0.44 2.18 15.74

RDF selectivity histograms 0.73 0.86 0.88

+ Frequent paths 0.57 0.78 0.54
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Fig. 9 Differential indexes in RDF-3X

In Subsects. 7.1 and 7.2 we first discuss the insertion of
new triples, introducing our additional data structures, and
the deletion of existing triples. Updates to existing triples, if
ever needed, must be expressed as a pairs of deletions and
insertions. Although full ACID transactions are beyond our
current scope, we do provide rudimentary support for atomic
batches of operations. This will be discussed in Subsect. 7.3.

7.1 Insert operations

Inserting new triples into a database is a performance chal-
lenge because of the aggressive indexing on which RDF-3X
is based. In principle, the indexes can be easily updated as
they are standard B+-trees, but each new triple would incur
access to 15 indexes. Furthermore, the updates are compu-
tationally more expensive than usual due to the compressed
leaf pages. This makes direct updates to indexes unattractive.

To avoid these costs, we use a staging architecture with
deferred index updates. All updates are first collected in
workspaces, and all their triples are indexed separately from
the main database in differential indexes. Periodically, or
when the size of the differential indexes exceeds a speci-
fied limit, all staged changes are integrated into the main
indexes described in Sect. 3. During query processing, the
query compiler adds additional merge joins with the, usu-
ally very small, differential indexes to transparently integrate
deferred updates if they satisfy query conditions. The princi-
ples of this architecture resemble the rationale of the multi-
component LSM-tree [40] and similar data structures with
batched updates such as [16,37,29,47]. In the following, we
present more details on (1) workspace management, (2) dif-
ferential indexes, and (3) extended query processing.

Workspace management. Each application program that
interacts with the RDF-3X engine has a private workspace
in memory. We expect that the following is the most typical

update pattern: a program loads a new RDF file into the data-
base, generating a large number of new triples without any
queries. Additionally, but much less frequently, programs can
mix updates and queries, deriving new triples from existing
ones. But in this case, we expect that the number of generated
triples is much smaller.

With consideration to these two usage patterns, we index
the new triples lazily. Initially, we just store them in an in-
memory heap as they arrive. Only when we need a certain
triple ordering for query processing, we generate the desired
index by sorting the triples in the workspace. For programs
that interleave queries and updates, we expect bursts of inser-
tions (i.e., many new triples derived from a query result).
Therefore, we do not maintain the indexes but simply inval-
idate the indexes after a new update and rebuild them from
scratch when needed for a later query. When the program
terminates (or at a program-specified “commit point”, see
below), we build indexes for all six triple orderings and
merge them into the corresponding differential indexes that
are shared across all programs. In addition, the workspace
manager for each program also maintains a string dictionary
for new strings. We generate temporary string ids for each
program, which are later resolved into final ids during the
merge with the differential index. This technique avoids the
need for concurrency control on the globally shared string
dictionary, and is safe as the ids are not visible at the appli-
cation level.

Differential indexes. The differential indexes, which are
shared by all programs, are an intermediate layer between
the programs’ private workspaces and the full indexes of
the main database. This intermediate indexing allows us to
improve update throughput by aggregating many new tri-
ples into bulk operations against the main indexes. We keep
differential indexes in main memory in our implementation,
which simplifies their maintenance. When they exhaust a
given memory budget, we initiate a merge process into the
main indexes to release memory. For recoverability after soft
crashes that lose memory content, newly created triples are
written to a disk-resident log file in their plain form (i.e., only
once, not in six different orders). Alternatively, we could store
the differential indexes in flash RAM.

The differential indexes are B+-trees for the different tri-
ple orderings, similar to the main indexes of Sect. 3. However,
there are some differences. First, we only build the six full
indexes for the different attribute permutations; there is no
need for building the binary or unary aggregation indexes.
As all data are in main memory, we can inexpensively con-
struct aggregated indexes on the fly when needed, by using
sort-based group-by operators. Furthermore, the indexes are
not compressed, as we want to be able to modify them as
fast as possible. Finally, we use a read-copy-update (RCU)
mechanism [22] to allow queries to perform scans on the
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differential indexes without any concurrency control. This is
similar to Blink-tree-style techniques [32] but simpler and not
as powerful. When a tree page is modified, we first copy the
page, modify the page, and then change all pointers to the
old page to point to the new page. Note that this only max-
imizes concurrency for read operations; write operations on
the tree have to latch pages to protect the tree from becoming
inconsistent because of concurrent writers. Further note that
while the RCU mechanism allows for concurrent operations,
it does not provide transaction isolation. Similar to the work-
space management, the differential index management also
includes maintaining a string dictionary for new strings, but
here the string ids are already the final ones that will later be
used in the disk-resident main indexes. The string dictionary
also uses an RCU mechanism to allow lock-free reads, so
queries are never blocked.

Merging the six differential indexes into the corresponding
main indexes of the database is I/O-intensive and thus expen-
sive, but relatively simple. Some care is needed because of the
compression in the main indexes, but as compressed pages
are self-contained and never need any other pages for uncom-
pression, we can perform the merge page by page. Each of
the six index merges can be performed independently. Over-
all, the merge process works pretty much like a standard bulk
insertion of sorted data into a B+-tree.

The string dictionary of the main database is updated as
well, but here the merging is even simpler because of the
absence of compression and the monotonicity of string ids
(which means that without deletions new entries are always
appended).

Query processing. All queries are run on the union of the
main indexes, the differential indexes, and the workspace of
the program that invokes the following query:

SPOquery = SPO ∪ SPOdiff ∪ SPOprog

As all three indexes are sorted in the same way, we use merge-
joins with union semantics (��merge

∪ ) to combine the indexes.
For example, the triple pattern (90, ?a, ?b) would be trans-
lated into the following expression:

(σS=90(SPO)) ��
merge
∪ (σS=90(SPOdiff))

��
merge
∪ (σS=90(SPOprog))

These join operators are very cheap and require no addi-
tional memory, but cause some small CPU overhead due to
additional comparisons. This is slightly troublesome, as each
triple pattern in a query generates two of these extra joins.
Most of these joins will turn out to be unnecessary, namely,
whenever there are no new triples in the differential indexes
or workspace that match a given triple pattern. The RDF-3X
system therefore tries to eliminate unnecessary joins of this
kind. One way to detect unnecessary scans of the differential

indexes is to check for relevant triples during query compi-
lation, as the differential indexes are in main memory any-
way. Unfortunately, this approach faces complications when
queries contain selections that are pushed down below joins
by the query optimizer. Instead, we implemented the ��

merge
∪

operator such that at query execution time it removes itself
from the execution plan once one of its inputs (differential
index or workspace) is or becomes empty.

7.2 Delete operations

The algorithms for handling deletions and for running queries
in the presence of deletions are very similar to the described
case of insertions. When deleting a triple, we “insert” the tri-
ple into the workspace and differential indexes with a dele-
tion flag. During queries, the ��

merge
∪ operator interprets this

flag and behaves like an anti-join when encountering deleted
triples, eliminating matching triples on the other side. When
merging the differential indexes into the main indexes, triples
marked for deletion cause the deletion of their counterparts
in the main indexes and are discarded after the entire merge
completes.

While deleting the triples themselves is simple, maintain-
ing a compact string dictionary is more challenging. Ideally
we want to eliminate strings that are no longer referenced
by any triple, to avoid monotonic growth of the dictionary.
When deleting a single triple we do not know a priori if
the strings used by the triple occur in any other triples. We
can find this out by checking the fully aggregated indexes of
RDF-3X, which implicitly give the number of occurrences
for each string, but checking these for each triple would be
expensive. Fortunately, we do not have to check for each tri-
ple, but only when we eliminate an entry from an aggregated
unary index. Assume that we want to delete the SPO triples
(1, 2, 3) and (1, 4, 5). When merging the corresponding dif-
ferential index entries into the main indexes, the aggregated
unary index for S will be looked up with value S = 1. The
count entry for 1 is decreased by two to reflect two elimi-
nated triples. Only if the count reaches zero the whole entry
is eliminated, and only in this case do we check if the value
1 occurs in the other two unary indexes for P and O . If none
of the unary indexes signals the presence of the value 1, we
can remove 1 from the dictionary.

Alternatively to the immediate checking of all unary
indexes, we could periodically run a garbage collector to
eliminate strings with zero references. This can be imple-
mented by a single merge scan over the three unary aggre-
gation indexes and the string dictionary. It depends on the
data and the update behavior whether this is more efficient
or not. If we assume that deletions are very infrequent, it
is cheaper to perform the checks immediately as described
above.
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7.3 Support for atomicity and weak isolation

The above procedures provide proper isolation between indi-
vidual operations, but no transactional ACID guarantees for
entire blocks of operations. While full-fledged transactions
are beyond the scope of this paper, we have successfully
added support for the atomicity of programs and a weak form
of isolation level among concurrent program executions.

In the first stage of our staging architecture, programs that
contain only update operations (and no queries) are automati-
cally isolated by using their private workspaces. A program’s
termination can thus be easily viewed as a “commit point”.
Alternatively, a program can specify multiple commit points
during its run-time; each commit point prompts a merge with
the globally shared differential indexes. During merges with
the differential indexes and with the main indexes, the con-
sistency of the index trees is guaranteed by latching and the
RCU mechanism. When a program merges its workspace
into a differential index, it latches index leaf pages in a lock-
coupling manner, always holding latches for two successive
leaf pages at the same time. As all write programs have the
very same page access order during such a merge, the lock-
coupling technique guarantees serializability between such
write-only programs. The merges are naturally idempotent,
so we obtain crash-resilience for free: an interrupted merge
can simply be restarted and would then ignore inserted triples
that are already present in the merge target.

Programs that issue only queries can run against both the
differential indexes and the main indexes without any lock-
ing or latching (even the latter is avoided because of the
RCU mechanism for concurrent writers). Of course, it is
impossible to guarantee transactional serializability between
readers and writers this way, and even snapshot isolation
is not feasible this way. However, no query will ever see a
non-committed update, as merges from workspaces into dif-
ferential indexes start only after commit points. Thus, our
staging architecture provides the read-committed isolation
level, which seems sufficient for many applications outside
enterprise-business IT. This property also holds for programs
that mix queries and updates: all their queries see committed
data and their updates are properly serialized against concur-
rent read-write programs.

Overall, the deferred update handling has the following
salient properties:

1. Query execution times are unaffected if there are no
updates that satisfy any triple patterns in the query, and
have very small overhead otherwise.

2. Updates to the main indexes are aggregated into efficient
bulk operations.

3. We provide support for atomic batches of update oper-
ations. Queries never have to wait; they run at the

read-committed isolation level (which is weaker than
serializability or snapshot isolation).

We will report on performance measurements for updates in
Sect. 8.5.

8 Evaluation

8.1 General setup

For evaluating the performance of RDF-3X, we used three
large datasets with different characteristics and compared
the query run-times to other approaches (discussed below).
All experiments were conducted on a Dell D620 PC with a
2 Ghz Core 2 Duo processor, 2 GBytes of memory, and run-
ning a 64-bit Linux 2.6.24 kernel. For the cold-cache experi-
ments we used the /proc/sys/vm/drop_caches ker-
nel interface to drop all filesystem caches before restarting the
various systems under test. We repeated all queries five times
(including the dropping of caches and the system restart) and
took the best result to avoid artifacts caused by OS activity.
For warm caches we ran the queries five times without drop-
ping caches, again taking the best run-time.

Our primary comparison is against the column-store-
based approach presented in [1], which has already been
shown to be highly superior to all other DBMS-based
approaches in that paper. We implemented the approach as
described in [1], but used MonetDB 5.2.0 [36] as a back-
end instead of C-Store, because C-Store is no longer main-
tained and does not run on our hardware/OS platform. The
C-Store web page [10] suggests using MonetDB instead, and
MonetDB worked fine. Note that our setup uses substantially
weaker hardware than [1]; in particular the hard disk is about
a factor of 6 slower than the very fast RAID used in [1],
transferring ca. 32 MB/s in sequential reads. Taking this fac-
tor of 6 into account, the performance numbers we got for
MonetDB are comparable to the C-Store numbers from [1].
For one query (Q6) MonetDB was significantly faster than
a factor of 6 (14s vs. 10s), while for another (Q7) signifi-
cantly slower (61s vs. 1.4s), but overall MonetDB performed
as expected given the slower hard disk.

As a second opponent to RDF-3X, we used PostgreSQL
8.3 as a triple store with indexes on the string dictionary and
on (subject, predicate, object), (predicate, subject, object),
and (predicate, object, subject). This emulates a Sesame-style
[9] storage system. We also tried out the current release of a
leading commercial database system with built-in RDF sup-
port, but could not obtain acceptable performance anywhere
near the run-times of the other systems. When using its own
RDF query language and despite trying several of its auto-
tuning options, it performed significantly slower than the
PostgreSQL triple store even for simple queries, and failed to
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Table 4 Database load after
triple construction Barton Yago Librarything

Load time DB size Load time DB size Load time DB size
( min) (GB) ( min) (GB) (min) (GB)

RDF-3X 13 2.8 25 2.7 20 1.6

MonetDB 11 1.6 21 1.1 4 0.7

PostgreSQL 30 8.7 25 7.5 20 5.7

Table 5 Query run-times in seconds for the Barton dataset

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Geom. mean

Cold caches

RDF-3X 0.14 3.10 31.49 11.57 18.82 2.75 32.61 5.9

MonetDB 5.66 11.70 54.66 34.77 80.96 14.14 61.52 26.4

PostgreSQL 28.32 181.00 291.04 224.61 199.07 207.72 271.20 167.8

Warm caches

RDF-3X 0.001 1.17 2.22 1.58 0.49 1.20 1.26 0.4

MonetDB 0.65 1.41 3.63 9.59 77.53 1.86 2.48 3.8

PostgreSQL 8.15 174.41 286.76 26.80 8.77 206.46 231.79 64.3

execute more complex queries in reasonable time. We there-
fore omitted it from the presentation.

In addition to these DBMS-based opponents, we tried sev-
eral systems from the semantic web community that are avail-
able as open-source code. Unfortunately, none of them scaled
to the dataset sizes that we used. We first tried the popular
Jena2 system [64] which came out of the HP Labs Semantic
Web Programme. We used Jena version 2.5.5 with the SDB
1.0 wrapper and Apache Derby 10.3.2.1, but were unable to
import any of our three datasets in 24 h. Judging from the file
growth, the system became continuously slower and did not
seem to terminate in a reasonable time. We also tried Yars2
[23,66], but again were unable to import any of our datasets in
24 h. Finally, we tried Sesame 2.0 [9,41], which is supposed
to be one of the fastest semantic web systems. Sesame 2.0
was able to import the Barton dataset in 13 h, but then needed
ca. 15 min for each of the first two queries and crashed due
to excessive memory usage for the more complex queries.

Note that both MonetDB and RDF-3X could import the
data sets in less than half an hour, and could run the que-
ries in the order of seconds. Other semantic web approaches
usually assume that the RDF data fits into main mem-
ory, which is not the case here. All experiments below
therefore only consider RDF-3X, the column-stored-based
approach on top of MonetDB, and the PostgreSQL-based
triples store.

Independently of the database system, each of the data-
sets discussed below is first brought into a factorized form:
one file with RDF triples represented as integer triples
and one dictionary file mapping from integers to liter-
als. All three systems use the same files as inputs, load-

ing them into fact table(s) and dictionary. The load times
of this second phase and the database sizes are shown in
Table 4. The MonetDB sizes are the initial sizes after loading.
After running the benchmark the sizes were 2.0/2.4/6.9 GB.
Apparently, MonetDB builds some index structures on
demand.

8.2 Barton dataset

For the first experiment we used the Barton Library dataset
and the queries proposed as a benchmark in [1]. We pro-
cessed the data as described in [1], converting it into tri-
ple form using the Redland parser and then imported the
triples into our RDF-3X system. In [1] the authors pruned
the data due to C-Store limitations (they dropped all triples
containing strings longer than 127 bytes and some triples
with a huge number of join partners). We left the complete
data as it was and imported it directly into all three systems.
Overall the data consists of 51,598,328 distinct triples, and
19,344,638 distinct strings. The original data was 4.1 GB in
RDF (XML) format, 7.7 GB in triple form, and 2.8 GB in
our RDF-3X store including all indexes and the string dic-
tionary.

We used the queries from [1] for our experiment, but as
they were given in SQL we had to reformulate them in SPAR-
QL for RDF-3X. Appendix A shows all queries. The results
of our measurements are shown in Table 5. We include also
the geometric mean of the query set, which is often used as a
workload-average measure in benchmarks (e.g., TPC) and is
more resilient to extreme outliers than the arithmetic average.
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Table 6 Query run-times in seconds for the Yago dataset

A1 A2 A3 B1 B2 B3 C1 C2 Geom. mean

Cold caches

RDF-3X 0.29 0.28 1.20 0.28 0.99 0.33 2.23 4.23 0.73

MonetDB 43.55 44.13 55.49 62.94 182.39 72.22 101.66 157.11 78.29

PostgreSQL 1.62 6.31 5.46 3.04 117.51 4.71 29.84 59.64 10.66

Warm caches

RDF-3X 0.02 0.02 0.02 0.01 0.05 0.01 0.61 1.44 0.04

MonetDB 36.92 32.96 34.72 49.95 64.84 52.22 84.41 131.35 54.62

PostgreSQL 0.08 0.43 0.20 0.11 7.33 0.12 0.31 50.37 0.56

The first observation is that RDF-3X performs much bet-
ter than MonetDB for all queries, and MonetDB itself per-
forms much better than PostgreSQL (as reported in [1]). We
first discuss the results for RDF-3X versus MonetDB. When
comparing the cold-cache times and the warm-cache times, it
becomes clear that disk I/O has a large impact on the overall
run-times. RDF-3X simply reads less data due to its highly
compressed index structures, therefore outperforming Mone-
tDB in the cold-cache case by a typical factor of 2–5, and
sometimes by more than 10. In the warm-cache case, the dif-
ferences are typically smaller but still substantial (factor of 2,
sometimes much higher). An interesting data point is query
Q4, which is relatively expensive in terms of constructed join
pairs, and where RDF-3X performs very well even in CPU-
dominated warm-cache case. Furthermore, we observe that
a third critical aspect besides I/O and CPU usage is memory
consumption. Query Q5 has a very large intermediate result.
MonetDB apparently materializes parts of these intermediate
results in main memory. As a consequence only few database
pages can be buffered, which significantly hurts warm-cache
behavior.

PostgreSQL has problems with this dataset due to the
nature of the queries for this benchmark. Nearly all queries
are aggregations queries (usually aggregating by predicate),
and the result cardinality is large which entails expensive
dictionary lookups. For other, more natural, kinds of RDF
queries, PostgreSQL performs much better, as we will see in
the next two subsections.

To get an idea how a Yars2-style system could scale,
we experimentally disabled all aggregated indices. This
increased the geometric means to 9.52 s (cold) and 1.04 s
(warm), which is significantly slower than RDF-3X. This is
still much faster than the other systems, though, in particular
due to our runtime system and query optimizer.

8.3 Yago dataset

The Barton dataset is relatively homogeneous, as it describes
library data. As a second dataset we therefore used Yago [55]

which consists of facts extracted from Wikipedia (exploit-
ing the infoboxes and category system of Wikipedia) and
integrated with the WordNet thesaurus. The Yago dataset
contains 40,114,899 distinct triples and 33,951,636 distinct
strings, consuming 3.1 GB as (factorized) triple dump. RDF-
3X needs 2.7 GB for all indexes and the string dictionary.
As queries we considered three different application scenar-
ios–entity-oriented, relationship-oriented, and queries with
unknown predicates—and derived eight benchmark queries,
shown in Appendix A. These queries are more “natural” than
the Barton queries, as they are standard SPARQL without
any aggregations and with explicitly given predicates. On
the other hand, the queries are much larger (requiring more
many-to-many joins) and thus more difficult to optimize and
execute.

The results are shown in Table 6. Again, RDF-3X clearly
outperforms the other two systems for both cold and warm
caches, by a typical factor of 5–10. Here PostgreSQL per-
formed much better than MonetDB. This is most likely
caused by the poor join orderings in MonetDB. The warm-
cache run-times are nearly as high as the cold-cache times,
which indicates that MonetDB creates large intermediate
results.

In general, this dataset is much more challenging for the
query optimizer, as queries are more complex and selectivity
estimates are important. While testing our system, we noticed
that selectivity mis-estimations can easily cause slowdown
by a factor of 10-100 on this dataset. RDF-3X shows excel-
lent performance regarding both the run-time execution and
the choice of execution plans by the optimizer.

8.4 LibraryThing dataset

As a third dataset we used a partial crawl of the Library-
Thing book-cataloging social network [31]. It consists of
9,989 users, 5,973,703 distinct books (personally owned by
these users), and the tags that the users have assigned to these
books. Overall, the dataset consists of 36,203,751 triples and
9,352,954 distinct strings, consuming 1.8 GB in its original
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Table 7 Query run-times in seconds for the LibraryThing dataset

A1 A2 A3 B1 B2 B3 C1 C2 Geom. mean

Cold caches

RDF-3X 0.28 1.01 21.85 0.14 0.34 4.17 0.28 1.21 0.89

MonetDB 2.14 1.41 1220.09 1.63 2.20 * 1.66 >15 min/* >8.16

PostgreSQL 20.78 1.43 715.64 0.88 2.13 >8 h 5108.01 1031.63 >93.91

Warm caches

RDF-3X 0.05 0.15 0.95 0.01 0.12 1.61 0.03 0.26 0.13

MonetDB 0.82 0.77 1171.82 0.56 0.63 * 0.59 >15 min/* >4.39

PostgreSQL 12.31 0.05 611.41 0.02 0.66 >8 h 5082.34 1013.01 >30.43

* System crashed, see description

form and 1.6 GB in RDF-3X. One particularity of this data-
set is that is has a heterogeneous link structure. In our RDF
representation, each tag is mapped to a predicate, linking the
user to the book she tagged. As the number of different tags is
very large, the dataset contains 338,824 distinct predicates,
whereas the other two datasets contained only 285 and 93
distinct predicates, respectively. While other mappings onto
RDF may be possible, we used this extremely non-schematic
approach as a stress test for all competing systems.

These data make compression more difficult for RDF-3X,
and causes serious problems for MonetDB. MonetDB was
unable to handle 338,824 tables, creating millions of files
in the file system and swapping all the time. We therefore
used a hybrid storage scheme for MonetDB for this dataset.
We partitioned the 1,000 most commonly used predicates as
described in [1], and placed the remaining triples (ca. 12%) in
one big triples table. We again constructed three kinds of que-
ries: book-oriented, user-oriented, and navigating book and
user chains (see Appendix A). In contrast to the Yago data-
set, there were few predicates that occurred in millions of
triples, which lowered the impact of join-ordering decisions.
On the other hand, the data itself is very inhomogeneous so
that selectivities are more difficult to predict.

The results are shown in Table 7. RDF-3X performs very
well, outperforming the opponents by a typical factor of at
least 5 and more than 30 in some cases. Between MonetDB
and PostgreSQL there is no clear winner. Overall, MonetDB
seems to perform better, but it crashed two times. It refused to
execute query B3 (“too many variables”), probably because
it included three patterns with variable predicates (and thus
at least 3000 scans). In query C2 it crashed after 15 min due
to lack of disk space, as it had materialized a 20 GB inter-
mediate result (which is more than ten times the size of the
whole database).

The query A3 stands out by its high run-times. It per-
forms many joins with relatively unselective predicates (book
authors, etc.), which are expensive. The other “difficult” que-
ries (B3, C1, C2) are not that difficult per se, they just require
the right choice of execution plans. B3, for example, finds all

users with books tagged as English, French, and German.
PostgreSQL starts this query by collecting all pairs of books
a user has, which is prohibitively expensive. The optimizer of
RDF-3X, on the other hand, chooses a plan that collects for
each tag the users with such books and then joins the results,
which is much more efficient.

8.5 Updates

We studied the update performance by “steady state” mea-
surements as follows. Inserting new triples into an empty or
very small database is clearly cheap as the merge is trivial and
the database fits into main memory. We therefore took the full
database for the Barton dataset, which does not fit into the
available memory on our test machine, and initiated insert
operations for all triples of the dataset. As these very same
triples already exist in the main indexes, the merge process
actually discards the new triples. But initially, the new triples
are added to a workspace and the differential indexes. More-
over, the attempted merging into the main indexes touches
the entire database, causes a recomputation of every index
page, and we even force the writing of the “modified” pages
back to disk. This way, we emulate a heavy upload load,
while keeping the overall database size constant.

We ran this experiment with a single (single-threaded)
program and varied two parameters: (1) the batch size, i.e.,
the number of inserted triples after which we periodically
generate a “commit point” and merge the workspace into the
differential indexes, and (2) the maximum differential index
size at which we a force a merge into the main indexes (mea-
sured in numbers of indexed triples). Note that having a batch
size larger than the maximum differential index hardly ever
makes sense (and would only cause additional merges but no
fundamental change of disk I/O behavior), so we ignore it
here.

The throughput results of this experiment are shown in
Table 8. We consistently achieved a sustained throughput of
more than 20,000 inserts per second, which is remarkably
high given that RDF-3X is primarily designed and optimized
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Table 8 Insertion rates in triples/second for varying batch and differ-
ential index sizes

Batch size Max. differential index size

100,000 500,000 1,000,000

100,000 23,059 25,391 24,701

500,000 25,972 23,407

1,000,000 23,490

Table 9 Effect of updates on warm-cache query performance

No updates Irrelevant updates Relevant updates

1 thread 0.63 s 0.63 s 0.69 s

2 threads – 0.64 s 0.70 s

for queries. The differences in insertion rates for different
parameter settings are not that large, but exhibit trends that we
confirmed by additional experiments on different machines.
First, increasing the maximum differential index size obvi-
ously tends to improve the performance. Second and also
unsurprisingly, inserting in larger batches tends to be faster
than inserting in many smaller batches. But there are excep-
tions to these trends: in our specific setup, a maximum differ-
ential index size of 500,000 triples outperformed the index
with 1,000,000 triples. The reason for this is memory pres-
sure. Both the differential index and the page buffer manager
require memory; by increasing the size of the differential
index we reduce the available buffer space and thus incur
more disk I/O’s during index merges. The optimal size of
the differential index depends on the machine resources and
configuration. In experiments on a machine with more main
memory, the larger index was indeed faster, but as the dif-
ferences are not that large one can select a conservative size
(e.g., 100,000 triples) and obtain good performance without
affecting the rest of the system. Ideally the buffer manager
would keep track of the I/O rate and adjust the space available
for the differential index dynamically, but such auto-tuning
is beyond the scope of this work.

Overall, the insertion rates in Table 8 are fairly good. For
comparison, the insertion rates reached by our initial data-
base bulk load are about 80,000 triples per second, which
is a factor of 3–4 better. But our setting here is much more
complex than the initial bulk load, as we have to integrate the
changes into the existing database (which has to be read for
the integration and does not fit into main memory). Therefore,
a slowdown by 3× seems acceptable. Note that our exper-
iment is a stress test, as every inserted triple already exists
and we therefore have to read and touch everything. Inserting
completely new data that are just appended and not combined
with the existing triples is much faster and achieves more or
less the same throughput as the initial bulk load procedure.

Next, we studied the effect of updates on query perfor-
mance. The first observation is that the differential index has

nearly no impact on the cold-cache case, as the queries are
then dominated by I/O costs and the differential index is in
main memory. We therefore concentrate on the warm-cache
case. We ran the query (?a,type,?b), (?a,type,?c) (a simplified
version of the query Q2 of the Barton benchmark) in differ-
ent scenarios. We used a relatively simple query, as in more
complex queries the CPU costs of joins and aggregations
potentially hide the differences that we want to measure.

The first scenario is the static database, running the query
without any updates. In the second scenario, we performed
updates in parallel to the query, but ensured that the updates
do not match any condition of the query. In the third and
last scenarios, we inserted query-relevant triples (which sat-
isfy at least one query condition). The new triples used ids
that follow those of any existing triple in the sort order,
thus forcing the merge joins with workspaces and differen-
tial indexes to continue to the end. For all three scenarios,
we ran a single-threaded and a two-threaded experiment (on
a two-cores machine with true parallelism). With a single
thread, query and update operations are alternated over a
long time period. With two threads, one thread keeps repeat-
ing the query while the other performs update operations in
parallel. The single-thread experiment studies the overhead
of having to consider workspaces and differential indexes by
additional merge joins in query processing. The two-threads
experiment additionally reflects the overhead of maintaining
differential indexes in parallel to ongoing queries. The batch
size and maximum differential index size were set to 500,000.
We report the median of the measured response times.

The results are shown in Table 9. Our extended query pro-
cessor discussed in Sect. 7.1 performs extremely well in the
case of query-irrelevant updates. The first two scenarios have
almost identical run-times. The third scenario, on the other
hand, exhibits slightly increased query response times. How-
ever, the overall CPU overhead of merge joins with the differ-
ential indexes is small. Although queries never have to wait
for locks or latches, there is some moderate amount of CPU
and I/O contention that leads to query response times increas-
ing by about 10 percent. This is a very moderate overhead
for a fairly demanding stress-test experiment.

9 Conclusion

This paper has presented the RDF-3X engine, a RISC-style
architecture for executing SPARQL queries over large repos-
itories of RDF triples. As our experiments have shown, RDF-
3X outperforms the previously best systems by a large mar-
gin. In particular, it addresses the challenge of schema-free
data and, unlike its opponents, copes very well with data
that exhibits large diversity of property names. The salient
features of RDF-3X that lead to these performance gains
are (1) exhaustive but very space-efficient triple indexes that
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eliminate the need for physical-design tuning, (2) a stream-
lined execution engine centered around very fast merge joins,
(3) a smart query optimizer that chooses cost-optimal join
orderings and can do this efficiently even for long join paths
(involving 10 to 20 joins), and (4) a selectivity estimator
based on statistics for frequent paths that feeds into the opti-
mizer’s cost model. In addition, although RDF database are
most likely query-intensive, RDF-3X provides decent sup-
port of updates, for both incremental loading in batched mode
and individual insert or delete operations. This is achieved
by a staging architecture with deferred index maintenance,
provides good update throughput, and incurs only small over-
head on concurrent queries.

Our future work includes various extensions and optimi-
zations. First, we plan to further improve the query processor
and optimizer (e.g., based on magic sets) and provide support
for RDF search features that go beyond the current SPARQL
standard. Along the latter lines, one direction is to allow more
powerful wild-card patterns for entire paths, in the spirit of
the XPath descendants axis but for graphs rather than trees.
Proposals for extending SPARQL have been made [3], but
there is no implementation yet. Second, we are interested
in providing ranked query results, based on application-spe-
cific scoring models. This calls for top-k query processing
and poses challenging issues for algorithms and query opti-
mization. Third, full SPARQL support requires some addi-
tional information, in particular typing information. We feel
that this can be included in the dictionary, but determining
the best encoding relative to runtime performance and com-
pression rate needs more work. Fourth and last, we believe
that our current support for atomicity and read-committed
isolation can be further extended towards transactional guar-
antees. In particular, we want to pursue adding versioning
and snapshot isolation to the RDF-3X engine.

Appendix A: SPARQL queries

For completeness, we include the SPARQL queries used in
our evaluation.

Barton Dataset. As the queries in [1] were given in SQL, we
had to reformulate them in SPARQL. We abbreviate some
constants here, the queries are discussed in [1]. We had to
extend the SPARQL projection clause a bit to get equiva-
lent queries. count is like distinct but includes the number of
occurrences. duplicates is like count but only returns bind-
ings that are produced at least twice.

Q1: select count ?c where { ?a a ?c }
Q2: select count ?bp where { ?as a <Text>; ?bp ?bo. filter

(?bp in <predicate list>)}
Q3: select duplicates ?bp ?bo where { ?as a <Text>; ?bp

?bo. filter (?bp in <predicate list>) }

Q4: select duplicates ?bp ?bo where { ?as a <Text>; ?bp
?bo; <language> <iso639-2b/fre>. filter (?bp in <predicate
list>) }

Q5: select ?as ?co where { ?as <origin> <marcorg/DLC>;
<records> ?bo. ?bo a ?co. filter (?co != <Text>) }

Q6: select count ?ap where { {?as a <Text>} union {?as
<records> []; a <Text>} ?as ?ap []. filter (?ap in <predicate
list>)}

Q7: select ?as ?bo ?co where { ?as <point> ”end”; <encod-
ing> ?bo; a ?co }

Yago Dataset. We grouped the queries thematically into
three groups. The first group consists of oriented facts, e.g.,
”scientists from Switzerland with a doctoral advisor from
Germany” (A1). The second group is relationship oriented,
e.g., ”two actors from England playing together in the same
movie” (B1). The third group examines relationships with
unknown predicates, e.g., ”two scientists related to the same
city” (C1).

A1: select ?gn ?fn where { ?gn <givenNameOf> ?p. ?fn
<familyNameOf> ?p. ?p <type> ”scientist”; <bornInLoca-
tion> ?city; <hasDoctoralAdvisor> ?a. ?a <bornInLocation>
?city2. ?city <locatedIn> ”Switzerland”. ?city2 <locatedIn>
”Germany”. }

A2: select ?n where { ?a <isCalled> ?n; <type> ”actor”;
<livesIn> ?city; <actedIn> ?m1; <directed> ?m2. ?city <lo-
catedIn> ?s. ?s <locatedIn> ”United_States”. ?m1 <type>
”movie”; <producedInCountry> ”Germany”. ?m2 <type>
”movie”; <producedInCountry> ”Canada”. }

A3: select distinct ?n ?co where { ?p <isCalled> ?n. {
?p <type> ”actor” } union { ?p <type> ”athlete” } ?p <bor-
nInLocation> ?c. ?c <locatedIn> ?s. ?s <locatedIn> ?co. ?p
<type> ?t. filter(?t reaches ”politician” via <subClassOf>) }

B1: select distinct ?n1 ?n2 where { ?a1 <isCalled> ?n1;
<livesIn> ?c1; <actedIn> ?movie. ?a2 <isCalled> ?n2; <live-
sIn> ?c2; <actedIn> ?movie. ?c1 <locatedIn> ”England”. ?c2
<locatedIn> ”England”. filter (?a1 != ?a2) }

B2: select ?n1 ?n2 where { ?p1 <isCalled> ?n1; <bornIn-
Location> ?city; <isMarriedTo> ?p2. ?p2 <isCalled> ?n2;
<bornInLocation> ?city. }

B3: select distinct ?n1 ?n2 where { ?n1 <familyNa-
meOf> ?p1. ?n2 <familyNameOf> ?p2. ?p1 <type> ”scien-
tist”; <hasWonPrize> ?award; <bornInLocation> ?city. ?p2
<type> ”scientist”; <hasWonPrize> ?award; <bornInLoca-
tion> ?city. filter (?p1 != ?p2) }

C1: select distinct ?n1 ?n2 where {?n1 <familyNameOf>
?p1. ?n2 <familyNameOf> ?p2. ?p1 <type> ”scientist”; []
?city. ?p2 <type> ”scientist”; [] ?city. ?city <type> <site>
filter (?p1 != ?p2) }

C2: select distinct ?n where { ?p <isCalled> ?n; [] ?c1. []
?c2. ?c1 <type> <village>; <isCalled> ”London”. ?c2 <type>
<site>; <isCalled> ”Paris”. }
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LibraryThing Dataset. Similar to the Yago setting we used
three query groups. First queries on books (e.g., A1 ”books
tagged with romance, love, suspense, mystery”), second que-
ries on users (e.g., B1 ”users who like crime novels and
Arthur Conan Doyle and have friends who like romances
and Jane Austen”), and third queries with chains over books
and users (e.g., C1 ”books tagged with romance by users who
have friends or friends of friends who have tagged books with
documentary which have also been tagged with thriller”).

A1: select distinct ?title where { ?b <hasTitle> ?title. []
<romance> ?b. [] <love> ?b. [] <suspense> ?b. [] <mystery>
?b. }

A2: select distinct ?title where { ?b <hasTitle> ?title. ?u
<romance> ?b; <love> ?b; <suspense> ?b. }

A3: select distinct ?title where { ?b <hasTitle> ?title; <has-
Author> ?a. ?u <mystery> ?b; <romance> []. ?b2 <hasAu-
thor> ?a. [] <children> ?b2. }

B1: select distinct ?u where { ?u <crime> []; <hasFa-
voriteAuthor> ”Arthur Conan Doyle”; <hasFriend> ?f. ?f
<romance> []; <hasFavoriteAuthor> ”Jane Austen”. }

B2: select distinct ?u where { { ?u <documentary> ?b1;
<suspense> ?b1 } union { ?u <biography> ?b2; <suspense>
?b2 } union { ?u <documentary> ?b3; <mystery> ?b3 } union
{ ?u <biography> ?b4; <mystery> ?b4 } }

B3: select distinct ?u where { ?u [] ?b1; [] ?b2; [] ?b3. []
<english> ?b1. [] <german> ?b2. [] <french> ?b3. }

C1: select distinct ?u where { { ?u <romance> ?b1; <has-
Friend> ?f1. ?f1 <biography> ?b2. [] <thriller> ?b2. } union
{ ?u <romance> ?b1. <hasFriend> ?f1. ?f1 <hasFriend> ?f2.
?f2 <biography> ?b2. [] <thriller> ?b2. } }

C2: select distinct ?u ?u2 where { ?u <hasFavoriteAu-
thor> ?a1; <america> []; <hasInterestingLibrary> ?u2. ?b1
<hasAuthor> ?a1. [] <europe> ?b1. ?u2 <hasFavoriteAu-
thor> ?a2; <europe> []. ?b2 <hasAuthor> ?a2. [] <america>
?b2. }
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