Semantic Web Rule Language (SWRL) J

Vahid Karimi

June 2008

|
Outline

0 Introduction
@ OWL-DL
@ RuleML
© SWRL Syntax
e SWRL Semantics
@ Rules and Safety
e Implementation and Applications

@ Prior and Related Works

/37

SWRL

Semantic Web Rule Language (SWRL) [HPSB*04]:

@ A proposal to combine ontologies and rules:
¢ Ontologies: OWL-DL
e Rules: RuleML

SWRL = OWL-DL + RuleML
@ OWL-DL: variable free
e corresponding to SHOZN (D)

@ RuleML: variables are used.

Background
Why Do We Need a Rule Language?

A rule language is needed for several reasons [PSG*05]:
@ The existing rule sets can be reused.

@ Expressivity can be added to OWL

o Although expressivity always comes with a price, i.e.,
o Decidability

@ It is easier to read and write rules with a rule language.
e Rules are called syntactic sugar;

e True in some cases but not in all situations

4/37

ST Ol
SHOIN

SHOIN =8 + H+ O +I + N = ALCRLHOIN [Str07]

S ALC with transitive roles R+

AL:C,D — T|L|A|CNn D|-A|3RT|VR.C
C : Concept negation, —=C. Thus, ALC = AL+ C
R, : transitive role, e.g., trans(isPartOf)

H : Role inclusion axioms, R1 C R2, e.g., isComponentOf C isPartof
O : Nominals (singleton class), {a}, e.g., 3hasChild.{mary}
7 : Inverse role, R—, e.g., isPartOf = hasPart~

N : Number restrictions, (> n R) and (< n R), e.g.,
(> 3 hasChild) (has at least 3 children)

SHOIN with concrete domain: SHOZN (D) corresponding to OWL-DL

RuleML
Rules and RuleML

RuleML, the datalog sublanguage of Horn clause [BGTO05]:

@ Datalog, syntactically, a subset of Prolog:

e Function-free: P(f(2),5) not allowed

@ Horn clause (a disjunction of literals with at most one positive),
e.g.,
e .pV—-QqV...Vvatvu can be written as,
e pAQAIldots At—u
only conjunctions (not disjunctions) of atoms

Gl
An Example of a RuleMLs Rule

A relation can be n-ary (n=0, 1, 2, ...) in RuleML.

Example: A customer is gold if her purchasing has been minimum 200
dollars in the previous year.

head (a unary relationship): A customer is gold.
body (a 3-ary relationship): Her purchasing ...

head body

e A

gold customer purchasing customer min 200 dollors previous year
Rel Var Rel Var Ind Ind

RuleML
Rules with Multiple Atoms in Antecedent

Rules with and-ing multiple atoms in the body are common, e.qg.:

@ The discount for a customer on a product is 5% if the customer is
gold and the product is seasonal.

head body

discount
Rel

customer
Var

product 5 percent
Var Ind

B

customer
Var

seasonal product
Rel Var

|

37

Rules of RuleML in SWRL

@ A restricted version of RuleML
@ i.e., only unary/binary relations

e The previous slide’s RuleML example is not a valid SWRLSs rule.
e n-ary relations are divided into binary relations.

Rules with and-ing multiple atoms in the body are common, e.g.:
@ The discount for a customer on a product is 5% if the customer is
gold and the product is seasonal.
Rules with and-ing multiple atoms in the consequent:
@ Lloyd-Topor transformation:
translate the rule into multiple rules

SWRL Syntax

SWRL atoms are defined as follows:

Atom — C(i)| D(v) | R(i,j) | U(i,v) | builtin(p, v1, ..., vp) | i =j|i #j
C = Class D = Data type
R = Object Property U = Data type Property

i,j = Object variable names or
Object individual names

v1,...Vy, = Data type variable names or
Data type value names

p = Built-in names

10/37

SWRL Syntax (contd)

The SWRL rule syntax follows:

a< by,....bp where,

a: head (an atom) bs: body (all atoms)

A SWRL knowledge base (k) is defined as follows:
k=(>_,P) where,
>~ = Knowledge base of SHOZN (D)

P = A finite set of rules

11/37

SWRL Semantics

let /= (A!,AP,.! D) where,
I = interpretation
A = Object Interpretation domain
AP = Datatype Interpretation domain
. = Object Interpretation function
.D = Datatype Interpretation function
ANAD =90
such that Viy — P(A') Vpx — P(AP) where,

Vix = object variables Vpx = datatype variables

P = the powerset operator

12/37

SWRL Semantics

SWRL Semantics (cont’d)

The following table shows Binding B(l) for the SWRL atoms:

SWRL Atoms Condition on Interpretation
C(i) i"e C

R(i,)) (" j)eR

u(i, v) (i vPye U

D(v) vPeDP

builtin(p, vi, ..., va) | (VP,...,vE e pP)

i=j ir=j

I#] i"#]J

13

37

SWRL Semantics (cont’d)

SWRL atoms in the antecedent are satisfied,
@ if it is empty (trivially true)
@ or every atom of it is satisfied
SWRL atom in the consequent is satisfied,
o if it is not empty
@ and it is satisfied
A rule is satisfied by an interpretation of | iff

@ every binding B(l) that satisfies the antecedent

@ B(l) satisfies the consequent

14/37

A SWRL Example

In a table format, the SWRL terms follow:

| ¢(i) | RG.j) | D(v) [Ui | buittin(p, vi, ..., va)

i=j|i#i]

Variable are indicated by prefixing them with question marks in rules.
Example of a rule asserting a fast computer:

FastComputer(?c) «— Computer(?c) A hasCPU(?c, ?cpu)A
hasSpeed(?cpu, ?sp) N HighSpeed(?sp)

FastComputer(?c): C(i) term of table above

hasCPU(?c, ?cpu): R(i, j) term of table above

15/37

Rules in SWRL and DL
Expressing Rules without Using SWRL

It is possible to express some rules using only DL:
@ i.e., rules are syntactic sugar in these cases

The previous SWRLs Rule:

FastComputer(?c) — Computer(?c) A hasCPU(?c, ?cpu)A
hasSpeed(?cpu, ?sp) N HighSpeed(?sp)

The above rule using only DL can be expressed as follows:

Computer M 3hasCPU.3hasSpeed.HighSpeed C FastComputer

The translating of rules from SWRL to DL,

@ depends on the number of variables based on shared variables
between the consequent and antecedent

16/37

Rules |n SWRL and DL
Translating Rules from SWRL to DL

The number of variables shard between consequent and antecedent:

@ translating is possible, if O variable is shared, but at least one
individual is shared

@ translating is possible, if 1 variable is shared

@ translating not possible, if 2 or more variables are shared

37

Rules in SWRL and DL
Translating Process from SWRL to DL

The Translation Procedure:

@ The consequent and antecedent become two conjunctive queries.

@ The resulting queries are translated into class expressions.

e using the rolling-up technique

© The antecedent becomes the subclass of the consequent.

18/37

Rules in SWRL and DL
Translating Rules from SWRL to DL (Example)

FastComputer(?c) — Computer(?c) A hasCPU(?c, ?cpu)A
hasSpeed(?cpu, ?sp) N HighSpeed(?sp)

1. The consequent and antecedent become two conjunctive queries:
@ 1a) ?c : FastComputer

@ 1b) ?7c: Computer N (?c,?cpu) : hasCPU A
(?cpu,?sp) : hasSpeed N ?sp : HighSpeed

@ Conjunctive terms a directed graph:
e each node is a variable or a named individual
e each edge is a relation
e aquery graph, e.g.,

hasCPU hasSpeed

e 7c: Computer ?sp : HighSpeed

cpu

19/37

Rules in SWRL and DL
Example (cont’d)

2. The rolling-up technique applies to query graphs, e.g.,

hasCPU hasSpeed

?c : Computer

cpu ?sp : HighSpeed
@ each outgoing edge is presented as an existential quantifier
@ edges are presented as restrictions

@ each outgoing edge (?x, ?y) : R transfers to

@ expression of JR.Y

e Y is the named class restriction on ?y

JhasCPU.3hasSpeed. HighSpeed

20/37

Rules in SWRL and DL
Example (cont’d)

The named class of target variable ?c : is Computer
@ Intersection with the named class Computer

Rolling-up result: Computer 1 3hasCPU.3hasSpeed.HighSpeed

The named class of target 7c¢ variable for the consequent,

@ 7c: FastComputer transforms to

3. Make the antecedent the subclass of the consequent, i.e.,

Computer1 3hasCPU.3hasSpeed.HighSpeed

21/37

Rules in SWRL and DL
A Rule in SWRL but not in DL

Some non-trivial rules can be translated from SWRL into DL, but
@ SWRL can express some rules that DL cannot
Example:

hasUncle(?nephew, ?uncle) —
hasParent(?nephew, ?parent) N\ hasBrother(?parent, ?uncle)

The above rule cannot be translated into DL:

@ two different variables in the consequent
@ generating a subsumption for each variable not enough

@ the above rule, not syntactic sugar

22/37

Rules in SWRL and DL
A Rule in SWRL but not in DL (cont'd)

Although cannot infer hasUncle(Bob, Bill) from
@ hasParent(Bob, Mary) and hasBrother(Mary, Bill),

@ hasUncle relation can be used explicitly or implicitly

Example: People whose uncles are all lawyers,
with explicit use of hasUncle: YhasUncle.Lawyer

with implicit use of hasUncle: YhasParent.v¥hasBrother.Lawyer

can even express uncle without explicit use of it:
JhasBrother—.3hasParent. T

DL-Safe SWRL Rules

The safety condition for SWRL rules means,
@ to add additional expressive power and
@ to maintain decidability at the same time

A combined knowledge base:
Knowledge base of SHOZN (D) = >
A finite set of rules = P
combined knowledge base = (>, P)

Both OWL-DL and datalog are decidable:
@ The goal is for their combinations to be decidable too.

24/37

DL-Safe SWRL Rules (cont'd)

A Datalog Safe Rule Definition:

@ Arule is safe if every variable in the consequent also appears in
the antecedent.

DL-safety Restrictions:

@ more restriction than Datalog safety
@ conditions on the combination of DL and Datalog

@ restrictions on variable uses in DL-atoms of Datalog rules

DL — Atom — C(i)| D(v) | R(i,j)| U(i, v)

25/37

DL-Safe SWRL Rules (cont'd)

Strong DL-Safety (Definition): Let ¥ be an OWL-DL ontology and P a
Datalog program. A rule r in P is strongly DL-safe if each variable in r
occurs in a non-DL atom in the rule body. The program P is strongly DL-safe
if all its rules are strongly DL-safe.

Weak DL-Safety (Definition): Let ¥ be an OWL-DL ontology and P a
Datalog program. A rule r in P is weakly DL-safe if each variable in r occurs
in a non-DL atom in the rule. The program P is weakly DL-safe if all its rules
are weakly DL-safe.

26/37

Role Safety

Definition of Role Safety: Let ¥ be an OWL-DL ontology and P a datalog
program. A rule rin P is role safe if, for each DL-atom p with arity 2 in the
antecedent of r at least one variable in p also appears in a non-DL atom g in

the antecedent of r and q never appears in the consequent of any rule in the
program P.

Example: discountAvailable(?cust, ?printer) «

previouslyBought(?cust, ?comp) A sameBrand(?comp, ?printer) A
hasPrice(?comp, ?price) A Customer(?cust) A Printer(?printer) A
Computer(?comp) A HighPrice(?price)

=l iz
Adding Built-ins

Built-ins are special symbols, e.g.,
@ > > <<
@ for concrete domain (e.g., integers, strings)

@ tobe usedinarule

Datalog Example: SmallMonitor(?monitor) «—
Monitor(?monitor) A hasScreenSize(?monitor, ?size)\?size <= 15

DL Example: Monitor 11 3hasScreenSize. <= 15 C SmallMonitor

28/37

SWRLTab, Pellet, and RacerPro
Reasoner Supports for SWRL

Examples of some existing reasoners supporting SWRL:

@ SWRLTab
e SWRL rules in Protege-OWL (open source)

Q Pellet
e An open source OWL DL reasoner in Java

© RacerPro
e A commercial product

29/37

Application of Rules
Rules and Policies

One application of rules is for expressing policies:
@ far beyond some provided examples, e.g., hasUncle

@ various areas of policies: access control, . ..

Example: Allowing certain services, related to certain projects, to the
individuals who are members of an organization participating in a
project.

hasPermission(?person, ?service) «— relatedTo(?service, ? project) A
jointProject(?project) A participates(?org, ?project) A
memberOf(?person, ?0rg)

The above rule cannot be expressed using only DL.

30/37

Examples of Prior Work: 1. AL-Log
Prior Work on Integrating DL and Datalog

Two main research papers using DL and datalog:

1. AL-Log [Donini, Lenzerini, Nardi, and Schaerf, 1998]

e Description Logic: ALC
e Rules: Datalog rules

Integration of DL and datalog:

@ DL as the structural component; datalog as the relational
component

@ DL concepts: constraints on the rule bodies of datalog rules

Example: convenient(?cust,?serv) — livesin(?cust,?loc) A
fastDelivery(?serv,?loc) A Customer(?cust) A SalesService(?serv)

DL concepts: Customer and SalesService constraints on
@ fastDelivery and livesin defined in datalog.

31/37

Examples of Prior Work: 2. CARIN
Prior Work on Integrating DL and Datalog (cont’d)

2. CARIN [Levy and Rousset, 1998]
e Description Logic: ALCN'R
Integration of DL and datalog:
@ DL: the structural and relational components
@ Datalog: the relational component

@ DL concepts and roles: constraints on the rule bodies of datalog
rules

Example: discountAvailable(?cust, ?printer) «—

previouslyBought(?cust, ?comp) A sameBrand(?comp, ?printer) A
hasPrice(?comp, ?price) A Customer(?cust) A Printer(?printer) A
Computer(?comp) A HighPrice(?price)

32/37

SWRL Decidable Combinations

Summary of Decidable Combinations

AL-Log CARIN CARIN General Case
Unary DL-Atoms in Antecedent V4 Vv Vv Strongly DL-safe
Unary DL-Atoms in Consequent X X X Strongly DL-safe
Binary DL-Atoms in Antecedent X role-safe v Strongly DL-safe
Binary DL-Atoms in Consequent X X X Strongly DL-safe
n-ary non-DL atoms Va v Vv v
Most expressive OWL subset SHOIN (D) | SHZ(D) | DL-Lite™ SHOZIN (D)

Table: Decidable Combinations

33

37

A Related Proposal Description Logic Programs

Description Logic Programs (DLP) [GHVDO03]:

@ A related suggestion for including rules to an ontology

@ Intersection of Horn logic and OWL

First-Order Logic

@ Rules in DL or datalog

Description
Logic

Horn Logic
Program

@ DLP part of DL, then
@ why do we need it?
e reuse criterion

e pragramatic criterion

e not applicable: expressivity

34/37

Comparison between SWRL and DLP
Description Logic Programs (DLP) (cont 'd)

Comparison of SWRL and DLP, according to Parsia et al. [PSG*05]:
@ SWRL.: (roughly) the union of Horn logic and OWL

@ DLP: Intersection of Horn logic and OWL
e An inexpressive language

Description Logics for SWRL and DLP:

e For DLP: SHOZQ(D)

e Q : Qualified Number restrictions, (> n R.C) and (< n R.C), e.g.,
(> 3 hasChild.Adult) (has at least 3 adult children)

@ For SWRL: SHOZN (D)

e N : Number restrictions, (> n R) and (< n R), e.g.,
(> 3 hasChild) (has at least 3 children)

35/37

1. Answer Set Programming with Description Logics
One Other Approach
The rule component of SWRL is restricted to datalog

@ not very expressive

Another approach to overcome this drawback:

@ Combining answer set programming with description logics

Answer Set Programming:
@ declarative programming

@ decidable

Description Logics:
@ SHOZIN (D) (OWL-DL) or

o SHIF(D) (OWL-lite)

36/37

SWRL Extension

SWRL Extension towards First-Order Logic (SWRL-FOL):

@ addition of function-free first-order formula over unary and binary
predicates

RuleML is a family of languages.
@ SWRL uses the kernel RuleML sub-language of datalog.

@ FOL-RuleML uses another language of the family.
e includes FOL operators,

@ or, not, implies, equivalent, forall, exists

e FOL operators are used to describe rules

Bibliography

[@ Harold Boley, Benjamin Grosof, and Said Tabet. RuleML Tutorial.
Available at http://www.ruleml.org/papers/tutorial-ruleml-20050513.html,
May 2005.

[§ Benjamin Grosof, lan Horrocks, Raphael Volz, and Stefan Decker.
Description logic programs: combining logic programs with description
logic. In Proceedings of the Twelfth International World Wide Web
Conference (WWW) ACM 2003, Budapest, Hungary, May 2003.

ﬁ lan Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grosof, and Mike Dean. SWRL: A Semantic Web Rule
Language Combining OWL and RuleML. Available at
http://www.w3.org/Submission/SWRL/, May 2004.

[d Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau, Edna Ruckhaus, and
Daniel Hewlett. Cautiously approaching SWRL. Preprint submitted to
Elsevier Science, 2005.

[§ Umberto Straccia. From OWL to Description Logics. Available at
http://www.cs.uwaterloo.ca/ gweddell/cs848/OWLToDL.pdf, 2007.

37/37

	Introduction
	
	OWL-DL
	
	RuleML
	

	SWRL Syntax
	SWRL
	

	SWRL Semantics
	SWRL
	

	Rules and Safety
	SWRL
	
	
	
	

	Implementation and Applications
	
	

	Prior and Related Works
	SWRL
	
	
	

	A Related Proposal
	
	

	Other Approaches
	
	

	Bibliography

