
Semantic Web Rule Language (SWRL)

Vahid Karimi

June 2008

1 / 37

Outline

1 Introduction
OWL-DL
RuleML

2 SWRL Syntax

3 SWRL Semantics

4 Rules and Safety

5 Implementation and Applications

6 Prior and Related Works

2 / 37

Introduction Background

SWRL

Semantic Web Rule Language (SWRL) [HPSB+04]:

A proposal to combine ontologies and rules:

• Ontologies: OWL-DL

• Rules: RuleML

SWRL = OWL-DL + RuleML

OWL-DL: variable free

• corresponding to SHOIN (D)

RuleML: variables are used.

3 / 37

Introduction Background

Why Do We Need a Rule Language?

A rule language is needed for several reasons [PSG+05]:

The existing rule sets can be reused.

Expressivity can be added to OWL

• Although expressivity always comes with a price, i.e.,

• Decidability

It is easier to read and write rules with a rule language.
• Rules are called syntactic sugar;

• True in some cases but not in all situations

4 / 37

Introduction S +H + I +O +N

SHOIN

SHOIN = S + H+O + I +N = ALCR+HOIN [Str07]

S : ALC with transitive roles R+
AL : C, D → > | ⊥ | A | C u D | ¬A | ∃R.> | ∀R.C
C : Concept negation, ¬C. Thus, ALC = AL+ C
R+ : transitive role, e.g., trans(isPartOf)

H : Role inclusion axioms, R1 v R2, e.g., isComponentOf v isPartof
O : Nominals (singleton class), {a}, e.g., ∃hasChild.{mary}
I : Inverse role, R−, e.g., isPartOf = hasPart−

N : Number restrictions, (≥ n R) and (≤ n R), e.g.,
(≥ 3 hasChild) (has at least 3 children)

SHOIN with concrete domain: SHOIN (D) corresponding to OWL-DL

5 / 37

Introduction RuleML

Rules and RuleML

RuleML, the datalog sublanguage of Horn clause [BGT05]:

1 Datalog, syntactically, a subset of Prolog:

• Function-free: P(f(2),5) not allowed

2 Horn clause (a disjunction of literals with at most one positive),
e.g.,

• ¬p ∨ ¬q ∨ . . .∨ ¬t ∨ u can be written as,

• p ∧ q ∧ ldots ∧ t→ u

only conjunctions (not disjunctions) of atoms

6 / 37

Introduction RuleML

An Example of a RuleML’s Rule

A relation can be n-ary (n= 0, 1, 2, . . .) in RuleML.

Example: A customer is gold if her purchasing has been minimum 200
dollars in the previous year.

head (a unary relationship): A customer is gold.
body (a 3-ary relationship): Her purchasing . . .

head body

AtomAtom

min 200 dollors
Ind

gold
Rel

customer
Var

purchasing
Rel

customer
Var

Implies

previous year
Ind

7 / 37

Introduction RuleML

Rules with Multiple Atoms in Antecedent

Rules with and-ing multiple atoms in the body are common, e.g.:

The discount for a customer on a product is 5% if the customer is
gold and the product is seasonal.

head body

Implies

Atom
And

Atom

product
Var

seasonal
Rel

Atom

customer
Var

gold
Rel

discount
Rel

customer
Var

product
Var

5 percent
Ind

8 / 37

Introduction Rules

Rules of RuleML in SWRL

A restricted version of RuleML

i.e., only unary/binary relations

• The previous slide’s RuleML example is not a valid SWRL’s rule.

• n-ary relations are divided into binary relations.

Rules with and-ing multiple atoms in the body are common, e.g.:

The discount for a customer on a product is 5% if the customer is
gold and the product is seasonal.

Rules with and-ing multiple atoms in the consequent:

Lloyd-Topor transformation:

translate the rule into multiple rules

9 / 37

SWRL Syntax

SWRL Syntax

SWRL atoms are defined as follows:

Atom← C(i) |D(v) |R(i , j) |U(i , v) |builtIn(p, v1, . . . , vn) | i = j | i 6= j

C = Class D = Data type

R = Object Property U = Data type Property

i , j = Object variable names or

Object individual names

v1, . . . vn = Data type variable names or

Data type value names

p = Built-in names

10 / 37

SWRL Syntax

SWRL Syntax (cont’d)

The SWRL rule syntax follows:

a← b1, . . . , bn where,

a : head (an atom) bs: body (all atoms)

A SWRL knowledge base (k) is defined as follows:

k = (
∑

, P) where,∑
= Knowledge base of SHOIN (D)

P = A finite set of rules

11 / 37

SWRL Semantics

SWRL Semantics

let I = (∆I , ∆D, .I , .D) where,

I = interpretation

∆I = Object Interpretation domain

∆D = Datatype Interpretation domain

.I = Object Interpretation function

.D = Datatype Interpretation function

∆I ⋂ ∆D = ∅

such that VIX → P(∆I) VDX → P(∆D) where,

VIX = object variables VDX = datatype variables

P = the powerset operator

12 / 37

SWRL Semantics

SWRL Semantics (cont’d)

The following table shows Binding B(I) for the SWRL atoms:

SWRL Atoms Condition on Interpretation
C(i) i I ∈ C I

R(i , j) (i I , j I) ∈ RI

U(i , v) (i I , vD) ∈ U I

D(v) vD ∈ DD

builtIn(p, v1, . . . , vn) (vD
1 , . . . , vD

n ∈ pD)

i = j i I = j I

i 6= j i I 6= j I

13 / 37

SWRL Semantics

SWRL Semantics (cont’d)

SWRL atoms in the antecedent are satisfied,

if it is empty (trivially true)

or every atom of it is satisfied

SWRL atom in the consequent is satisfied,

if it is not empty

and it is satisfied

A rule is satisfied by an interpretation of I iff

every binding B(I) that satisfies the antecedent

B(I) satisfies the consequent

14 / 37

SWRL

A SWRL Example

In a table format, the SWRL terms follow:

C(i) R(i , j) D(v) U(i,v) builtIn(p, v1, . . . , vn) i = j i 6= j

Variable are indicated by prefixing them with question marks in rules.

Example of a rule asserting a fast computer:

FastComputer(?c)← Computer(?c) ∧ hasCPU(?c, ?cpu)∧
hasSpeed(?cpu, ?sp) ∧ HighSpeed(?sp)

FastComputer(?c): C(i) term of table above

hasCPU(?c, ?cpu): R(i, j) term of table above

15 / 37

SWRL Rules in SWRL and DL

Expressing Rules without Using SWRL

It is possible to express some rules using only DL:

i.e., rules are syntactic sugar in these cases

The previous SWRL’s Rule:

FastComputer(?c)← Computer(?c) ∧ hasCPU(?c, ?cpu)∧
hasSpeed(?cpu, ?sp) ∧ HighSpeed(?sp)

The above rule using only DL can be expressed as follows:

Computer u ∃hasCPU.∃hasSpeed .HighSpeed v FastComputer

The translating of rules from SWRL to DL,

depends on the number of variables based on shared variables
between the consequent and antecedent

16 / 37

SWRL Rules in SWRL and DL

Translating Rules from SWRL to DL

The number of variables shard between consequent and antecedent:

translating is possible, if 0 variable is shared, but at least one
individual is shared

translating is possible, if 1 variable is shared

translating not possible, if 2 or more variables are shared

17 / 37

SWRL Rules in SWRL and DL

Translating Process from SWRL to DL

The Translation Procedure:

1 The consequent and antecedent become two conjunctive queries.

2 The resulting queries are translated into class expressions.

• using the rolling-up technique

3 The antecedent becomes the subclass of the consequent.

18 / 37

SWRL Rules in SWRL and DL

Translating Rules from SWRL to DL (Example)

FastComputer(?c)← Computer(?c) ∧ hasCPU(?c, ?cpu)∧
hasSpeed(?cpu, ?sp) ∧ HighSpeed(?sp)

1. The consequent and antecedent become two conjunctive queries:

1a) ?c : FastComputer

1b) ?c : Computer ∧ (?c, ?cpu) : hasCPU ∧
(?cpu, ?sp) : hasSpeed ∧ ?sp : HighSpeed

Conjunctive terms a directed graph:
• each node is a variable or a named individual

• each edge is a relation

• a query graph, e.g.,

• ?c : Computer hasCPU−−−−−→ ?cpu
hasSpeed−−−−−−→ ?sp : HighSpeed

19 / 37

SWRL Rules in SWRL and DL

Example (cont’d)

2. The rolling-up technique applies to query graphs, e.g.,

?c : Computer hasCPU−−−−−→ ?cpu
hasSpeed−−−−−−→ ?sp : HighSpeed

each outgoing edge is presented as an existential quantifier

edges are presented as restrictions

each outgoing edge (?x , ?y) : R transfers to

expression of ∃R.Y

• Y is the named class restriction on ?y

∃hasCPU.∃hasSpeed .HighSpeed

20 / 37

SWRL Rules in SWRL and DL

Example (cont’d)

The named class of target variable ?c : is Computer

Intersection with the named class Computer u

Rolling-up result: Computer u ∃hasCPU.∃hasSpeed .HighSpeed

The named class of target ?c variable for the consequent,

?c : FastComputer transforms to FastComputer

3. Make the antecedent the subclass of the consequent, i.e.,

Computer u ∃hasCPU.∃hasSpeed .HighSpeed v FastComputer

21 / 37

SWRL Rules in SWRL and DL

A Rule in SWRL but not in DL

Some non-trivial rules can be translated from SWRL into DL, but

SWRL can express some rules that DL cannot

Example:
hasUncle(?nephew , ?uncle)←

hasParent(?nephew , ?parent) ∧ hasBrother(?parent , ?uncle)

The above rule cannot be translated into DL:

two different variables in the consequent

generating a subsumption for each variable not enough

the above rule, not syntactic sugar

22 / 37

SWRL Rules in SWRL and DL

A Rule in SWRL but not in DL (cont’d)

Although cannot infer hasUncle(Bob, Bill) from

hasParent(Bob, Mary) and hasBrother(Mary , Bill),

hasUncle relation can be used explicitly or implicitly

Example: People whose uncles are all lawyers,

with explicit use of hasUncle: ∀hasUncle.Lawyer

with implicit use of hasUncle: ∀hasParent .∀hasBrother .Lawyer

can even express uncle without explicit use of it:

∃hasBrother−.∃hasParent−.>

23 / 37

SWRL Safety

DL-Safe SWRL Rules

The safety condition for SWRL rules means,
1 to add additional expressive power and
2 to maintain decidability at the same time

A combined knowledge base:

Knowledge base of SHOIN (D) =
∑

A finite set of rules = P

combined knowledge base = (
∑

, P)

Both OWL-DL and datalog are decidable:

The goal is for their combinations to be decidable too.

24 / 37

SWRL Safety

DL-Safe SWRL Rules (cont’d)

A Datalog Safe Rule Definition:

A rule is safe if every variable in the consequent also appears in
the antecedent.

DL-safety Restrictions:

more restriction than Datalog safety

conditions on the combination of DL and Datalog

restrictions on variable uses in DL-atoms of Datalog rules

DL− Atom← C(i) |D(v) |R(i , j) |U(i , v)

25 / 37

SWRL Safety

DL-Safe SWRL Rules (cont’d)

Strong DL-Safety (Definition): Let Σ be an OWL-DL ontology and P a
Datalog program. A rule r in P is strongly DL-safe if each variable in r
occurs in a non-DL atom in the rule body. The program P is strongly DL-safe
if all its rules are strongly DL-safe.

Weak DL-Safety (Definition): Let Σ be an OWL-DL ontology and P a
Datalog program. A rule r in P is weakly DL-safe if each variable in r occurs
in a non-DL atom in the rule. The program P is weakly DL-safe if all its rules
are weakly DL-safe.

26 / 37

SWRL Role Safety

Role Safety

Definition of Role Safety: Let Σ be an OWL-DL ontology and P a datalog
program. A rule r in P is role safe if, for each DL-atom p with arity 2 in the
antecedent of r at least one variable in p also appears in a non-DL atom q in
the antecedent of r and q never appears in the consequent of any rule in the
program P.

Example: discountAvailable(?cust , ?printer)←
previouslyBought(?cust , ?comp) ∧ sameBrand(?comp, ?printer) ∧
hasPrice(?comp, ?price) ∧ Customer(?cust) ∧ Printer(?printer) ∧
Computer(?comp) ∧ HighPrice(?price)

27 / 37

SWRL Built-ins

Adding Built-ins

Built-ins are special symbols, e.g.,

>,≥,≤, <

for concrete domain (e.g., integers, strings)

to be used in a rule

Datalog Example: SmallMonitor(?monitor)←
Monitor(?monitor) ∧ hasScreenSize(?monitor , ?size)∧?size <= 15

DL Example: Monitor u ∃hasScreenSize. <= 15 v SmallMonitor

28 / 37

Implementation and Applications SWRLTab, Pellet, and RacerPro

Reasoner Supports for SWRL

Examples of some existing reasoners supporting SWRL:

1 SWRLTab
• SWRL rules in Protege-OWL (open source)

2 Pellet
• An open source OWL DL reasoner in Java

3 RacerPro
• A commercial product

29 / 37

Implementation and Applications Application of Rules

Rules and Policies

One application of rules is for expressing policies:

far beyond some provided examples, e.g., hasUncle

various areas of policies: access control, . . .

Example: Allowing certain services, related to certain projects, to the
individuals who are members of an organization participating in a
project.

hasPermission(?person, ?service)← relatedTo(?service, ?project)∧
jointProject(?project) ∧ participates(?org, ?project) ∧
memberOf (?person, ?org)

The above rule cannot be expressed using only DL.

30 / 37

SWRL Examples of Prior Work: 1. AL-Log

Prior Work on Integrating DL and Datalog

Two main research papers using DL and datalog:

1. AL-Log [Donini, Lenzerini, Nardi, and Schaerf, 1998]
• Description Logic: ALC
• Rules: Datalog rules

Integration of DL and datalog:

DL as the structural component; datalog as the relational
component
DL concepts: constraints on the rule bodies of datalog rules

Example: convenient(?cust , ?serv)← livesIn(?cust , ?loc) ∧
fastDelivery(?serv , ?loc) ∧ Customer(?cust) ∧ SalesService(?serv)

DL concepts: Customer and SalesService constraints on

fastDelivery and livesIn defined in datalog.

31 / 37

SWRL Examples of Prior Work: 2. CARIN

Prior Work on Integrating DL and Datalog (cont’d)

2. CARIN [Levy and Rousset, 1998]
• Description Logic: ALCNR

Integration of DL and datalog:

DL: the structural and relational components

Datalog: the relational component

DL concepts and roles: constraints on the rule bodies of datalog
rules

Example: discountAvailable(?cust , ?printer)←
previouslyBought(?cust , ?comp) ∧ sameBrand(?comp, ?printer) ∧
hasPrice(?comp, ?price) ∧ Customer(?cust) ∧ Printer(?printer) ∧
Computer(?comp) ∧ HighPrice(?price)

32 / 37

SWRL Decidable Combinations

Summary of Decidable Combinations

AL-Log CARIN CARIN General Case

Unary DL-Atoms in Antecedent
√ √ √

Strongly DL-safe

Unary DL-Atoms in Consequent x x x Strongly DL-safe

Binary DL-Atoms in Antecedent x role-safe
√

Strongly DL-safe

Binary DL-Atoms in Consequent x x x Strongly DL-safe

n-ary non-DL atoms
√ √ √ √

Most expressive OWL subset SHOIN (D) SHI(D) DL-Lite− SHOIN (D)

Table: Decidable Combinations

33 / 37

A Related Proposal Description Logic Programs

DLP

Description Logic Programs (DLP) [GHVD03]:

A related suggestion for including rules to an ontology

Intersection of Horn logic and OWL

Rules in DL or datalog

DLP part of DL, then
why do we need it?
• reuse criterion

• pragramatic criterion

• not applicable: expressivity

First-Order Logic

Horn Logic
Program

Description

Logic

 DLP

34 / 37

A Related Proposal Comparison between SWRL and DLP

Description Logic Programs (DLP) (cont ’d)

Comparison of SWRL and DLP, according to Parsia et al. [PSG+05]:

SWRL: (roughly) the union of Horn logic and OWL

DLP: Intersection of Horn logic and OWL
• An inexpressive language

Description Logics for SWRL and DLP:

For DLP: SHOIQ(D)
• Q : Qualified Number restrictions, (≥ n R.C) and (≤ n R.C), e.g.,

(≥ 3 hasChild.Adult) (has at least 3 adult children)

For SWRL: SHOIN (D)
• N : Number restrictions, (≥ n R) and (≤ n R), e.g.,

(≥ 3 hasChild) (has at least 3 children)

35 / 37

Other Approaches 1. Answer Set Programming with Description Logics

One Other Approach

The rule component of SWRL is restricted to datalog

not very expressive

Another approach to overcome this drawback:

Combining answer set programming with description logics

Answer Set Programming:

declarative programming

decidable

Description Logics:
SHOIN (D) (OWL-DL) or

SHIF(D) (OWL-lite)

36 / 37

Other Approaches 2. SWRL Extension

SWRL Extension

SWRL Extension towards First-Order Logic (SWRL-FOL):

addition of function-free first-order formula over unary and binary
predicates

RuleML is a family of languages.

SWRL uses the kernel RuleML sub-language of datalog.

FOL-RuleML uses another language of the family.

• includes FOL operators,

or, not, implies, equivalent, forall, exists

• FOL operators are used to describe rules

37 / 37

Bibliography

Harold Boley, Benjamin Grosof, and Said Tabet. RuleML Tutorial.
Available at http://www.ruleml.org/papers/tutorial-ruleml-20050513.html,
May 2005.

Benjamin Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker.
Description logic programs: combining logic programs with description
logic. In Proceedings of the Twelfth International World Wide Web
Conference (WWW) ACM 2003, Budapest, Hungary, May 2003.

Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grosof, and Mike Dean. SWRL: A Semantic Web Rule
Language Combining OWL and RuleML. Available at
http://www.w3.org/Submission/SWRL/, May 2004.

Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau, Edna Ruckhaus, and
Daniel Hewlett. Cautiously approaching SWRL. Preprint submitted to
Elsevier Science, 2005.

Umberto Straccia. From OWL to Description Logics. Available at
http://www.cs.uwaterloo.ca/ gweddell/cs848/OWLToDL.pdf, 2007.

37 / 37

	Introduction
	
	OWL-DL
	
	RuleML
	

	SWRL Syntax
	SWRL
	

	SWRL Semantics
	SWRL
	

	Rules and Safety
	SWRL
	
	
	
	

	Implementation and Applications
	
	

	Prior and Related Works
	SWRL
	
	
	

	A Related Proposal
	
	

	Other Approaches
	
	

	Bibliography

