
Cautiously Approaching SWRL

Bijan Parsiaa , Evren Sirinb , Bernardo Cuenca Graua ,
Edna Ruckhausa , Daniel Hewlettb

aUniversity of Maryland, MIND Lab, 8400 Baltimore Ave,
College Park MD 20742, USA

bUniversity of Maryland, Computer Science Department,
College Park MD 20742, USA

Abstract

The Semantic Web Rules Language (SWRL) has recently been proposed as the basic rules
language for the Semantic Web. SWRL is unusual in being an undecidable superset of a
very expressive description logic - OWL DL (SHOIN (D)) and a simple rules language,
Datalog. In this paper, we attempt to evolve OWL DL toward SWRL, but cautiously and
carefully. We strive to retain practical decidability. We seek to meet identifiable needs as
simply as possible. We also attempt to make use of existing work on integrating rules
systems, especially Datalog, with expressive description logics. We want to build a rules
system that people with a large commitment to OWL will find understandable and useful.
With such an aim, we explore different ways to give the users what they want, while staying
“close” to OWL, and “cautiously far” from the full expressivity of SWRL.

Key words: Rules, Datalog, SWRL, Conjunctive ABox Query

1 Introduction

In Semantic Web circles it is commonly acknowledged that “rules are next,” per-
haps shortly after query (although, of course, rules and query are tightly connected).
Since the Semantic Web is widely acknowledged to be a standards oriented initia-
tive — with prime custodianship belonging to the World Wide Web Consortium
(W3C) — there is a sense that the agenda is set, that capital-R Rules are urgently

Email addresses:bparsia@isr.umd.edu (Bijan Parsia),evren@cs.umd.edu
(Evren Sirin),bernardo@mindlab.umd.edu (Bernardo Cuenca Grau),
ruckhaus@ldc.usb.ve (Edna Ruckhaus),dhewlett@wam.umd.edu (Daniel
Hewlett).

Preprint submitted to Elsevier Science 23 February 2005

needed to “make progress” according to popular notions of Semantic Web “Archi-
tecture”, and that their moment is now (or soon). That is, there is a plan, there is a
need, and the time is now for a standard rules language for the Semantic Web.

There is also a sense of it being past time; of belatedness. Harold Boley’s call to the
logic programming community (1) is nearing its first decade. DAML-L(ogic) never
materialized, but is a specter hanging over much of the DARPA Agent Markup
Language program, with traces still visible in briefings, reports, and long neglected
action items. Semantic Web Services (SWS) researchers complain of lacking criti-
cal expressivity.

The Resource Description Framework (RDF) and Web Ontology Language (OWL),
now W3C recommendations, themselves complicate the landscape. For all their
problems, oversights, and omissions,1 they are firmly ensconced as the core Se-
mantic Web languages. On certain views of Semantic Web architecture, OWL (in
its various species) is (and was required to be) “layered” on RDF(S). Subsequent
more (or other) expressive languages should be at least layered on RDF(S), and
probably on OWL as well.2 Even if the layering requirement is lifted, there will
presumably be a great deal of RDF(S) and OWL knowledge bases, tools, experi-
ence, and mindshare to deal with. A rules proposal which does not take these into
account essentially starts the Semantic Web effort over again. Unfortunately, while
RDF(S) is perhaps inexpressive enough to be compatible with most rules proposals
in some form or another, the OWL species are far too expressive to coexist with ease
with standard rules systems. While there has historically been some work on inte-
grating description logic systems with rules (e.g., production, a.k.a. “trigger” rules
in Classic) it is only recently that effort has been made in understanding the various
possible relationships between highly expressive description logics like OWL DL
(roughly,SHOIN (D)) and, e.g., Datalog or Horn logic in general (3) (4) (5).

Consider two recent proposals coming from the Semantic Web community for in-
tegrating rules and OWL: Description Logic Programs(6) (DLP) and the Semantic
Web Rules Language(7) (SWRL). These proposals embody diametrically opposed
integration approaches. DLP is theintersectionof Horn logic and OWL, where as
SWRL is (roughly) theunionof them. In DLP, the resultant language is a very pe-
culiar looking description logic and rather inexpressive language overall. It’s hard
to see the restrictions are either natural or satisfying. Contrariwise, SWRL retains
the full power of OWL DL, but at the price of decidability and practical implemen-
tations. In general, we find the intersection approach to be a non-starter. Users tend,
wisely or not, to use expressivity that is offered to them. For example, it tends to

1 Commonly cited on the expressivity front as missing are, for RDF and OWL Full, literals
in the subject position, and, for OWL overall, qualified number restrictions. In the rules
community, the loudest complaint seems to be the lack of non-monotonicity. The Web
Services Modeling Ontology initiative has abandoned RDF and OWL, at least to begin
with, for the seemingly more rule friendly F-Logic.
2 See the RDFS thesis in (2).

2

require a fair bit of discipline to stay within the OWL Lite species, and even within
OWL DL. For OWL DL, the advantage is clear (decidability and excellent practical
complete reasoners) over OWL Full. For OWL Lite, much use seems driven by im-
plementation considerations, and often rather confused one (e.g., not recognizing
the expressive implication of General Concept Inclusions axioms (GCIs)). If a rules
language is to fit in with OWL, it has to minimize the compromises on the OWL
side. Thus, we come at the rules problem as OWL people looking for something
more, an expressive enhancement to our current, heavily OWL based toolkit. This
is the natural perspective of an important chunk of the Web rules audience.

Thus, we take SWRL as our starting point. SWRL is our overarching framework in
these investigations as it adds “a simple form of Horn-style rules” to OWL DL “in
a syntactically and semantically coherent manner.” As we are most concerned with
preserving OWL knowledge bases and human expertise, SWRL is a natural fit. We
would also like to reuse as much as our current infrastructure as possible, e.g., we
have a DL reasoner (Pellet) and we do not really want to build a new from scratch
(again). We want toincrementallyadd features from SWRL to OWL DL in such a
way that our tools remain practical and useful for each extension. In our experience,
without good tool support it isvery difficult to really appreciate the capabilities
and appropriate use of a Web knowledge representation (or any KR) language.
Also, as a central theme — perhaps the dominant theme — of the Semantic Web
is securing widespread adoption (a.k.a., “web scalability”), deployable systems are
not a luxury, even in the exploratory stages.

We attempt to evolve OWL DL toward SWRL, but cautiously and carefully. We
strive to retain practical decidability. We seek to meet identifiable needs as simply
as possible. We also attempt to make use of existing work on integrating rules
systems, especially Datalog, with expressive description logics. We want to build a
rules system that people with a large commitment to OWL will find understandable
and useful.

1.1 Some Desiderata for a Web Rules Language

While building on OWL is a core requirement for us (and, we believe, any future
W3C Rules working group), there are a number of other, sometimes conflicting,
desiderata articulated for a Web Rules Language. One criterion is the mirror image
of our OWL requirement: People want to reuse their existing rulesets, implementa-
tions, and expertise. Call this the “reuse” criterion. Another is to add expressivity
to OWL, for example, n-ary predicates, or role value maps, Call this, the “expres-
sivity” criterion. Finally, people attribute certain desirable pragmatic features to
rules, e.g., that they are easier to write and read and understand, or that they mesh
better with our ways of thinking about certain problems, and so on. Call this the

3

“pragmatics” criterion.3

The pragmatics criterion is particularly interesting. OWL is averyexpressive lan-
guage, and description logics have, historically, claimed a number of pragmatic
advantages for their notation (e.g., variable free syntax and counting quantifiers
are obvious wins). But it is also our experience that even seasoned logicians and
knowledge representation experts find description logics perplexing, misleading,
and simply confusing, especially when it comes to what they can or cannot ex-
press. A clear win, then, would be to provide some sort of rule syntactic sugar for
OWL DL axioms. We discuss one such approach in section 3. This approach has
the advantage of remaining decidable, indeed, remaining entirely in OWL DL. No
fundamental revision of reasoners required to process such rules, although the af-
fordances of knowledge bases developed under the influence of rule sugar might
require novel optimizations. The disadvantage, of course, is that no new expres-
sivity is added. We discuss the use of conjunctive ABox query (8) as a means for
supplying rule sugar in Section 3.3.

We can address the reuse criterion and the expressivity criterion together, and retain
decidability, if we can loosely combine OWL ontologies with Datalog databases. In
4 we provide a framework for analyzing a number of proposals for combining de-
scription logics and Datalog, and relate them to SWRL. This family of formalisms,
as subsets of SWRL, do add significant expressivity to OWL, and allow for an num-
ber of plausible techniques for integrating rule knowledge bases with terms from
OWL ontologies.

In 5, we address some ways of dealing with the extensive set of SWRL built-in
predicates, many of which would be useful in OWL right now.

Finally, in 6, we do a preliminary analysis of one of the most commonly cited
applications of a rules language — policies, in particular, for Web Services.

1.2 Some Non-desiderata

A prominent use case for rule systems has been for theimplementationof OWL it-
self. Seven out of thirteen OWL reasoner implementations listed in the Web Ontol-
ogy Working Group’s implementation report (9) are axiomatic, that is, “rule based”.

3 Note that the much of the pragmatics criterion can be seen as an aspect of the reuse
criterion. For example, if I have a lot of skill in writing Prolog-like rules and a deep un-
derstanding of how they work, these are infrastructural advantages for Prolog-like rules.
However, that experience, skill, and understanding contributes to the transparency and fa-
miliarity of Prolog-like rules for notable populations. We shall remain neutral on whether
there are inherent psychological advantages to rules, or whether any pragmatic benefit is
merely due to prior exposure and training.

4

(This list does not include the venerable, oft cited and used DAML/OWLJessKB.
(10)) There is a lot of debate about this general approach to implementing OWL
reasoning, but the general flavor is ofimplementinga reasoner using logic pro-
gramming (often in Turing complete logic programming languages) rather than a
translation of OWL into a more or equi-expressive formalism, with the appropriate
additional background axioms (that is, they are very unlike the two uses of full first
order logic reasoners listed in the report). We donot take it as a criterion that a Se-
mantic Web Rules Language should be able to model or express OWL semantics,
or to implement a decision procedure for OWL.

We also do not address non-monotonicity, defaults, conflict resolution, procedural
attachments, or similar logic programming features. SWRL is a fragment of first
order logic with first order semantics, as are RDF(S) and OWL, so there is momen-
tum in that direction. Here, we are more concerned with seeing what wecan do
with simple (first order) extensions to OWL.

2 OWL DL and SWRL

OWL-DL corresponds to the expressive Description LogicSHOIN (D). In this
section, we briefly define the syntax and semantics of OWL-DL and of SWRL, as
an extension of it.

Definition 1 (Syntax ofSHOIN (D))

Let VC , VIP , VDP , VD, VI , VDV be countable and pair-wise disjoint sets of class,
object property, datatype property, datatype, individuals, and datatype value names
respectively. An object property is either an object property name or its inverse,
Ri ∪ {R−|R ∈ VIP}. An object property axiom is either an inclusion axiom of
the formR1 v R2, for R1, R2 object properties, or a transitivity axiom of the
form Trans(R), for R ∈ VIP . A datatype property axiom is an axiom of the form
T v U , whereT, U ∈ VDP . A role box< is a finite set of object or datatype
property axioms. An object propertyR is simple if it is not transitive and none of
its sub-properties are transitive. Finally, a datatypeD is either a datatype name in
VD or an enumeration of datatype values{d1, ..., dm}, di ∈ VDV .

The set ofSHOIN (D) classes is the smallest set such that:

(1) Every class nameA ∈ VC is a class
(2) If C, D are classes andR is an object property,S is a simple object property,

o ∈ VI is an individual name,D ∈ VD is a datatype,T is a datatype property,
d ∈ VDV is a datatype value andn is a non-negative integer, then the following
are also classes:
• ¬C (Negation),C uD(Conjunction),C tD (Disjunction),{o} (Nominals)

5

Construct Name OWL Syntax DL Syntax& Semantics

Atomic Class A(URI) AI ⊆ ∆I

Universal Class owl:Thing >I = ∆I

Object Property R (URI) RI ⊆ ∆I ×∆I

Datatype Property U (URI) UI ⊆ ∆I ×∆D

Datatype Name D (URI) DD ⊆ ∆D

Data Range OneOf(d1, ..., dn) {d1, ..., dn}D = {dD
1 } ∪ ... ∪ {dD

n }

Conjunction intersectionOf(C,D) (C uD)I = CI ∩DI

Disjunction unionOf(C,D) (C tD)I = CI ∪DI

Negation ComplementOf(C) (¬C)I = ∆I/CI

someValues Restr. restriction(R someValuesFrom(C)) (∃R.C)I = {x ∈ ∆I |∃y ∈ ∆I , (x, y) ∈ RI , y ∈ CI}

allValues Restr. restriction(R allValuesFrom(C)) (∀R.C)I = {x ∈ ∆I |∀y ∈ ∆I , (x, y) ∈ RI → y ∈ CI}

Transitive Prop. ObjectProperty(R [Transitive]) I |= Trans(R) ↔ RI = (RI)+

Object Prop. Hierarchy subPropertyOf(R1, R2) I |= (R1 v R2) ↔ RI
1 ⊆ RI

2

Dat. Prop. Hierarchy subPropertyOf(U1, U2) I |= (U1 v U2) ↔ UI
1 ⊆ UI

2

Inverse Property ObjectProperty(Q [inverseOf(R)]) (Q)I = {(x, y)|(y, x) ∈ RI}

Nominals OneOf(o1,, on) {o1, ..., on}D = {oI
1} ∪ ... ∪ {oI

n}

Func. Object Prop. ObjectProperty(R [Functional]) I |= Funct(R) ↔ ∀a, b, c ∈ ∆I ,

RI(a, b) ∧RI(a, c) → b = c

Func. Data. Prop. DatatypeProperty(U [Functional]) I |= Funct(U) ↔ ∀a ∈ ∆I ∧ ∀b, c ∈ ∆D ,

UI(a, b) ∧ UI(a, c) → b = c

Cardinality restriction(S minCardinality(n)) (≥ nS)I = {x ∈ ∆I , ||y, (x, y) ∈ SI || ≥ n}

Restrictions restriction(S maxCardinality(n)) (≤ nS)I = {x ∈ ∆I , ||y, (x, y) ∈ SI || ≤ n}

someValues Restr. restriction(U someValuesFrom(C)) (∃U.D)I = {x ∈ ∆I |∃y ∈ ∆D, (x, y) ∈ RI , y ∈ DI}

allValues Rest. restriction(U allValuesFrom(C)) (∀U.D)I = {x ∈ ∆I |∀y ∈ ∆D, (x, y) ∈ RI → y ∈ DI}

Cardinality restriction(U minCardinality(n)) (≥ nS)I = {x ∈ ∆I , ||y, (x, y) ∈ UI || ≥ n}

Restrictions restriction(U maxCardinality(n)) (≤ nS)I = {x ∈ ∆I , ||y, (x, y) ∈ UI || ≤ n}

Table 1 OWL-DL Syntax and Semantics

• ∃R.C (someValues restriction),∀R.C (allValues restriction)
• ∃T.D (someValues restriction),∀T.D (allValues restriction)
• ≥ nS, ≥ nU (minCardinality restriction),≤ nS,≤ nU (maxCardinality

restriction)

We use> as an abbreviation forAt¬A, and⊥ as an abbreviation forAu¬A. Let
C, D be classes, then the expressionC v D is called a general concept inclusion
axiom (GCI). A TBox,T is a finite set of GCIs. An ABoxA is a finite set of assertions
of the formC(a), R(a, b), U(a, d), a = b, a 6= b, wherea, b ∈ VI . A SHOIN (D)
knowledge base (equivalent to an OWL-DL ontology) consists of a TBoxT , an
RBoxR and an ABoxA.

Definition 2 (Semantics)

An interpretationI is tupleI = (∆I , ∆D, .I , .D), where∆I , ∆D are the object and
datatype interpretation domains, which are disjoint∆I ∩∆D = ∅. The interpreta-

6

tion functions.I and .D map each class nameA ∈ VC to a subsetAI of ∆I , each
datatype nameD ∈ VD to a subsetDD of ∆D, each object property nameR to
a subsetRI of ∆I × ∆I , and each datatype property nameU to a subsetU I of
∆I ×∆D

The interpretation functions can be inductively extended to complex constructs as
shown in Table 1.

An interpretationI satisfies an object property inclusion axiomR1 v R2 iff RI
1 ⊆

RI
2, it satisfies a datatype property inclusion axiomU1 v U2 if U I

1 ⊆ U I
2 , it satisfies

a transitivity axiomTrans(R) iff RI = (RI)+, and it satisfies the GCIC v D iff
CI ⊆ DI . The interpretationI satisfies the ABox assertionC(a) if aI ∈ CI , the
assertionR(a, b) if (aI , bI) ∈ RI , the assertionU(a, d) if (aI , dD) ∈ U I , and the
assertionsa = b(a 6= b) if aI = bI(aI 6= bI). The interpretationI is a model of the
knowledge base iff it satisfies all the axioms in the RBox, TBox and ABox.

Throughout the paper we will use an example ontology that describes computers,
monitors, computer accessories, and so on. As we go along and describe different
methods for combining ontology and rule languages we will provide additional
definitions for services that sell computers, preferences of customers who want to
buy computers, and so on.

Here we provide the basic axioms that will help the reader understand the examples
presented in later sections4 :

Computer v Product
Monitor v Product
Computer v ∃hasCPU.CPU
CPU v ∃hasSpeed.CPUSpeed

Customer v Person
SalesService ≡ Service u ∃sells.Product
ExpensiveComputer = Computer u ∃hasPrice.HighPrice

Definition 3 (SWRL syntax) LetVC , VIP , VDP , VD, VI , VDV be countable and pair-
wise disjoint sets of class, object property, datatype property, datatype, individuals,
and datatype value names respectively.

LetVIX , VDX be a set of object and datatype variables respectively and letVBuilt−In

a set of built-in names.

A SWRL object termis either an object variable name or an individual name.
Analogously, aSWRL datatype termis either a datatype value name or a datatype

4 The complete ontology is available at [http://www.mindswap.org/dav/ontologies/computer]

7

variable name.

Let C, R, U, D be aSHOIN (D) class, object property, datatype property and
datatype respectively. Leti, j be SWRL object terms, andv, v1, ..., vn be SWRL
datatype terms and letp be a built-in name. Then, the set ofSWRL atomsis defined
by the following grammar:

Atom← C(i)|D(v)|R(i, j)|U(i, v)|builtIn(p, v1, ..., vn)|i = j|i 6= j

Leta andb1, ..., bn be SWRL atoms. ASWRL ruler is an expression of the form:

a← b1, ..., bn

The atoma is the head of the rule, denoted byH(r), while b1, ..., bn is the body or
antecedent ofr, denoted byA(r).

Let Σ be aSHOIN (D) knowledge base andP a set of SWRL rules. ASWRL
Knowledge Baseis a pairK = (Σ, P)

Definition 4 (SWRL semantics)

Let I = (∆I , ∆D, .I , .D) be aSHOIN (D) interpretation; abinding B(I) is a
SHOIN (D) interpretation that extends the interpretation functions.I and.D such
that:

VIX → P (∆I) ; VDX → P (∆D)

WhereP is the powerset operator.

A BindingB(I) satisfies the SWRL atoms according to Table 2, whereC, R, U, D
are aSHOIN (D) class, object property, datatype property and datatype respec-
tively, i, j are SWRL object terms,v is a SWRL datatype term andp is a built-in
name.

A BindingB(I) satisfies the antecedentA(r) of the ruler if it is empty orB(I)
satisfies every atom inA(r). A Binding satisfies the consequentH(r) if H is not
empty andB(I) satisfies the atom in it. A rule is satisfied by an interpretationI iff
for every bindingB such thatB(I) satisfies the antecedent,B(I) also satisfies the
consequent.

3 Rules as Syntactic Sugar

In this section we define a method of representing a subset of SWRL directly in
OWL, while preserving its semantics. We do this by utilizing techniques used in

8

SWRL atom Condition on Interpretation

C(i) iI ∈ CI

R(i, j) (iI , jI) ∈ RI

U(i, v) (iI , vD) ∈ U I

D(v) vD ∈ DD

builtIn(p, v1, ..., vn) (vD
1 , ..., vD

n) ∈ pD

i = j iI = jI

i 6= j iI 6= jI

Table 2 SWRL atoms

the processing of conjunctive ABox queries to transform rules into class axioms
in DL. This approach allows for some rules to be treated as syntactic sugar for
complex DL class expressions and axioms, but it imposes significant restrictions
on the structure of these rules.

3.1 ABox Conjunctive Query

A conjunctive query is composed of a conjunction of terms, each of the formx : C
or 〈x, y〉 : R, wherex is either a variable or a named individual,y is a variable
or a named individual, or literal value,C is a named concept, andR is a role. For
example, the following query asks for all the people who own a fast computer:

?x : Person ∧ 〈?x, ?y〉 : owns∧?y : FastComputer

This conjunction of terms can also be considered as a directed graph where each
node is a variable, named individual, or literal value, and each edge is a role relation.
This conception of the query is needed to describe the rolling-up technique. The
graph representation of the query above is:

3.2 Rolling-up: Transforming Queries into Classes

Like other operations in DL systems, the answering of conjunctive queries can
be reduced to KB satisfiability problem. The rolling-up technique is a procedure
to generate a DL class expression that contains the constraints placed on a single
variable?x in a conjunctive query(8). This class expression is called the rolled-
up class for?x. In the case of boolean queries, it is checked if the rolled-up class
is satisfiable in every model of the KB. If we want to get the bindings for the

9

variables, we can replace the variables with individual names from the KB, and add
that binding to the answer set if the resulting boolean query is a logical consequence
of the KB.

Each application of the rolling-up technique has a target variable. The rolled-up
class will capture the conditions placed on this target variable by the query graph.
Using the example above, the class generated by rolling-up to the variable?x would
bePerson u ∃owns.FastComputer.

The rolling-up technique works by traversing the query graph and representing
each edge as an existential restriction. This traversal begins at the target variable,
and moves outward in a depth-first manner. Each outgoing edge〈?x, ?y〉 : R is
transformed into the class expression∃R.Y , whereY is the conjunction of the
named class restrictions on?y in the query and the class generated by rolling-up all
other edges into and out of?y. If ?y has no class restrictions and no unprocessed
edges,Y is simply>. This recursive process results in a single, complex class
expression that incorporates all of the edges and class restrictions in the original
query graph.

In order for the rolling-up technique to be applicable, constraints must be imposed
on the query graph. The primary condition is that the query graph must be acyclic.
There are more sophisticated methods that handle some cycles, such as cycles in-
volving individual constants, that are beyond the scope of our approach (11).

3.3 Transforming Rules into Class Axioms

The rolling-up technique used in answering conjunctive queries can also be applied
to a subset of SWRL, to gain some of the syntactic expressivity of rules without
extending the semantic expressivity of OWL-DL. In this approach, the antecedent
and consequent of a rule are each treated as a conjunctive query, and transformed
into DL class expressions using the rolling-up technique. The addition of the as-
sertion that the antecedent class expression is a subclass of the consequent class
expression ensures the intended rule semantics.

This method exploits an overlap of OWL and SWRL expressivity. For rules where
the antecedent and consequent both consist only of a single class expression ap-
plied to a shared variable, the rule is equivalent to a DL axiom asserting that the an-
tecedent class is a subclass of the consequent class. Thus, the ruleComputer(x) :
−FastComputer(x) is equivalent to the DL axiomFastComputer v Computer.
For this reason, rules of this form are often considered trivial within the DL context.
However, when the class expressions involved are complex, the resulting axioms
become non-trivial.

There are two ways to exploit this intersection of rule and DL expressivity. The first

10

would be to create, in DL, named classes that are equivalent to complex expressions
in DL, and use these named classes in rules. However, after creating the complex
rules within DL, the work required to create the subclass relation is trivial, making
the rule formulation useless in general. Our approach is to create these complex
classes dynamically from the rule definition, through the following process: First,
the antecedent and consequent of the rule are each transformed into a conjunctive
query, with the same single distinguished variable. Second, the resulting queries are
transformed into class expressions using the rolling-up technique. Finally, these
classes are added to the DL KB with the assertion that the antecedent class is a
subclass of the consequent class. Consider the following rule, which describes a set
of conditions that imply a given computer is a fast computer.

FastComputer(?c) : −
Computer(?c), hasCPU(?c, ?cpu), hasSpeed(?cpu, ?sp), HighSpeed(?sp).

The initial step, the transformation of the rule into two conjunctive queries, is
straightforward. For the consequent and antecedent, each predicate in the rule maps
directly to a conjunctive query term by the mapping below:

C(?x)→?x : C
R(?x, ?y)→ 〈?x, ?y〉 : R

Applying this mapping to the consequent of the example rule above simply yields
?c:FastComputer. However, for the more complex antecedent, we obtain the fol-
lowing query:

?c : Computer∧〈?c, ?cpu〉 : hasCPU∧〈?cpu, ?sp〉 : hasSpeed∧?sp : HighSpeed

Applying the rolling-up technique to each of the queries will yield the class ex-
pressions needed to represent the rule in DL. Both queries contain the variable?c,
so this will be the only distinguished variable in each of the queries. Rolling-up
the consequent produces the simple class expressionFastComputer. Rolling-up
the antecedent query to this variable generates the class expressionComputer u
∃hasCPU.∃hasSpeed.HighSpeed. To complete the representation of the original
rule, we simply need to add the following subclass axiom to the KB:

Computer u ∃hasCPU.∃hasSpeed.HighSpeed v FastComputer

Note that, in SWRL semantics, an empty consequent is defined to be trivially false
and an empty antecedent is defined to be trivially true. For these cases, we simply
generate the expressions⊥ and>, respectively.

We must define the set of rules (subset of SWRL) that can be translated directly
into DL class axioms using this technique. Since the rolling-up technique is to be
applied to both the antecedent and consequent, it is clear that each must satisfy the
requirements of a conjunctive query, described above. However, further conditions

11

must be imposed to ensure that the subclass relation between the two resulting
classes will have its intended semantics. These conditions are the following, de-
pending on the number of variables shared between the consequent and antecedent:

• If 0 variables are shared, then the rule can be represented in OWL if at least one
individual is shared. All variables in each query are undistinguished.

• If 1 variable is shared, then the rule can be represented in OWL. Only the shared
variable is distinguished, and so is used as the target of rolling-up.

• If 2 or more variables are shared, then the rule can not be represented directly in
OWL.

To understand the need for this condition, consider that a single application of the
rolling-up technique results in a class expression. Classes are essentially one-place
predicates that describe the conditions placed on a single variable. No single class
can describe the conditions placed on multiple variables. It is for this reason that
one class must be generated for each distinguished variable in a query.

3.4 Beyond Syntactic Sugar: Representing More Complex Rules

While the restrictions above still allow for the expression of non-trivial rules, a
large subset of SWRL remains. Consider one of the generic examples that is used
to show the use of rules, that is the definition of thehasUncle property:

hasUncle(?nephew, ?uncle) : −
hasParent(?nephew, ?parent), hasBrother(?parent, ?uncle).

We cannot simply use the above technique in this case because there are two dis-
tinguished variables in the head of the rule. Generating one subsumption axiom for
each variable is not sufficient, because the resulting axioms will, even when taken
collectively, not result in semantics equivalent to that of the original rule. For the
hasUncle example, treating both shared variables,?nephew and?uncle, as dis-
tinguished and applying the rolling-up technique yields the following class axioms,
respectively:

For ?nephew: ∃hasParent.∃hasBrother.> v ∃hasUncle.>
For ?uncle: ∃hasBrother−.∃hasParent−.> v ∃hasUncle−.>

These axioms are not sufficient to inferhasUncle(Bob, Bill) from a KB that has
the assertions{hasParent(Bob, Mary), hasBrother(Mary, Bill)}. Therefore,
it is not possible to treat the definition ofhasUncle property as syntactic sugar.
However, this does not mean that we cannot express any of the definitions related
to uncles. The following table shows some definitions that use thehasUncle
property and which can be transformed into semantically equivalent OWL axioms
that do not use hasUncle property explicitly:

12

Definition With explicit Without explicit
hasUncle property hasUncle property

People who are uncles∃hasUncle−.> ∃hasBrother−.∃hasParent−.>

People who have a ∃hasUncle.Funny ∃hasParent.∃hasBrother.Funny
funny uncle

People whose uncles ∀hasUncle.Lawyer ∀hasParent.∀hasBrother.Lawyer
are all lawyers

Bob has an uncle Bill 〈Bob,Bill〉:hasUncle Bob:∃hasParent.∃hasBrother.{Bill}

If the only reason for defining the hasUncle relation was to express these ax-
ioms then it is obvious that we do not need the power of rules to achieve that.
It seems plausible to automate these transformations so a wider range of rules
can be treated as syntactic sugar. As a preprocessing step, we could examine the
rules in the ontology, find the rules that have a similar form to hasUncle defi-
nition and then transform all the axioms that involve these properties as shown
above. The same transformation would also be done when a query is being an-
swered so that the queryhasUncle(Bob, ?uncle) can automatically be expanded
to hasParent(Bob, ?parent), hasBrother(?parent, ?uncle).

It is possible that some ontologies that use the hasUncle definition can be handled
this way while others cannot. If the given ontology has the subproperty assertion
hasUncle v hasRelative then transformation is not possible because we cannot
express this axiom without using the explicit hasUncle name. Another example
would be the use of number restrictions. For example, the definition for “all the
people who have exactly two uncles” can be written as= 2hasUncle. It is not
generally possible to transform such number restrictions to the expanded version
– there could be arbitrary number of parents (considering step parents) and each
parent may have arbitrary number of brothers. The preprocessing step described
above needs to detect such definitions and should apply the transformation only if
it is possible to transform all the definitions.

4 Combining Ontology and Rules Languages

In this section we review the different approaches for combining rules formalisms
and Description Logics. We present a general framework for combining Descrip-
tion Logics and Datalog. We show that SWRL, as well as many other proposals for
combining DLs and Datalog are within this framework. Finally, we compare these
“SWRL-compatible” approaches with other proposals (3) that define a different se-
mantics for the coupling between the rules and the Description Logics components
and discuss their advantages and drawbacks.

13

4.1 Combining Description Logics and Datalog

In this section, we provide a common framework, which includes many of the
most prominent proposals for combining rules and Datalog, such as AL-Log (12)
CARIN (4) , DL-safe rules (5) and, most importantly, SWRL. We show that, un-
der certain conditions, families of combined formalisms, like AL-Log and CARIN
languages, can be seen as fragments of SWRL.

All the proposals analyzed in this section are based on the same simple idea,
namely, that the coupling between a DL Knowledge BaseK and a Datalog pro-
gramP is achieved by allowing the use of classes, object and datatype properties
defined inK (called DL-atoms) in the Datalog rules inP . Different formalisms,
with different expressivity and computational properties, can be defined by:

• Changing the expressivity of the DL language: For certain combinations, the
use ofSHOIN (D)(OWL-DL) will result in a decidable language, whereas for
others decidability can only be achieved if a less expressive DL language is used.

• Restricting the places where the DL-atoms can be used in the Datalog rules: For
example, one may allow DL-atoms only in the antecedent of the Datalog rules

• Restricting the way variables can be combined in the Datalog rules using the
so-calledsafety conditions. For example, one may require that all variables ap-
pearing in a DL-atom must also appear in a non-DL atom of the same rule.

• Restricting the use of predicates in the Datalog rules with a certain arity. For
example, as in SWRL, one may disallow the use of predicates with arity greater
than 2.

Different choices in the above points will yield to different combination languages.
This way of combining DLs and Datalog does not provide a robust decidability of
the combination; in other words, although the DL language being used and Datalog
are decidable logics, the combination using this approach may (and frequently will)
result in an undecidable formalism.

All the approaches described in this section are based on Datalog. Datalog (13) is
a simple rule-based language, defined as follows:

Definition 5 (Datalog Syntax)

Let VX be a set of variables,Vcons a set of constants, andVRP a set of predicate
symbols. ADatalog termis any variable fromVX or constant symbol fromVcons.
A Datalog atomis of the formq(t1, ..., tn), whereq is a predicate symbol of arity
n ≥ 0 in VRP andt1, ..., tn are datalog terms. A ruler is of the form:

a← b1, ..., bk

Wherea, b1, ..., bk are datalog atoms. The atoma is the head (consequent) of the

14

rule, denoted byH(r), while b1, ..., bk is the body (antecedent) ofr, denoted by
A(r). A Datalog programP is a finite set of rules.

Datalog can be given a model-theoretic semantics by means ofinterpretations. An
interpretation, in the context of Datalog, assigns meaning to constants and predi-
cates. Rules are interpreted as true or false under different interpretations. In case
a ruler is evaluated as true under the interpretationI, we say thatI satisfiesr,
denoted byI |= r. In the case of Datalog, it is often more convenient not to define
the semantics in terms of arbitrary interpretations, but to use only Herbrand inter-
pretations5 , which in case of Datalog Programs, have a finite domain, called the
Herbrand interpretation of the program.

Definition 6 (Semantics)

An interpretation is a pairI = (∆I , .I), where∆I is a non-empty set, called the
domain and.I is the interpretation function, which maps each constanta ∈ Vcons to
itself (aI = a ∈ ∆I), each variablex ∈ VX to an element of the domain (xI ∈ ∆I),
and each predicate symbolq of arity n to an n-ary relation over the domain∆I

(pI ⊆ ∆I × .n..∆I).

An interpretationI satisfies a Datalog atomq(t1, ..., tn), wherep is an n-ary Dat-
alog predicate symbol and theti are Datalog terms, if(tI1, ..., t

I
n) ∈ pI . The inter-

pretationI satisfies the antecedentA(r) if it is empty orI satisfies every Datalog
atom inA(r). The interpretationI satisfies the consequentH(r) if H is non-empty
andI satisfies every Datalog atom inH. The interpretationI satisfies the Datalog
rule r iff wheneverI satisfies the antecedent, it also satisfies the consequent.

The Herbrand Base of a Datalog programP , denoted byHBP is the set of all
ground atoms with predicate and constant symbols appearing inP . We denote by
ground(P) the grounding ofP w.r.t.HBP . An (Herbrand) InterpretationI relative
to P is a subset of the Herbrand Base. A model of a programP is an interpretation
I ⊆ HBP such thatA(r) ⊆ I implies H(r) ∈ I for everyr ∈ ground(P).
An answer set is the least model ofP w.r.t. set inclusion. Note that two different
Herbrand interpretations share the same domain (which is finite in the case of
Datalog) and only differ in the interpretation of the predicate symbols.

Now that we have defined the Description LogicSHOIN (D) and Datalog, we
can define a general formalism that combines both as follows:

Definition 7 Let VC , VIP , VDP , VD, VI , VDV be countable and pair-wise disjoint
sets of class, object property, datatype property, datatype, individuals, and datatype
value names respectively. LetVRP be a set of predicate symbols.

Let VIX , VDX be a set of object and datatype variables respectively and letVX =

5 This can always be done due to Herbrand Theorem

15

VIX ∪ VDX

An object termis either an object variable name or an individual name. Analo-
gously, adatatype termis either a datatype value name or a datatype variable
name. Aterm is either an object term or a datatype term.

Let C, R, U, D be aSHOIN (D) class, object property, datatype property and
datatype respectively. Leti, j be object terms, andv, v1, ..., vn be datatype terms
Then, the set ofDL atomsis defined by the following grammar:

DL− Atom← C(i)|D(v)|R(i, j)|U(i, v)

A Datalog atomis of the formq(t1, ..., tn), whereq is a predicate symbol of arity
n ≥ 0 in VRP andt1, ..., tn are terms. Anatom is either a DL or a Datalog atom.

Leta andb1, ..., bn be atoms. Arule r is an expression of the form:

a← b1, ..., bn

The atoma is the head of the rule, denoted byH(r), while b1, ..., bn is the body or
antecedent ofr, denoted byA(r).

Let Σ be aSHOIN (D) knowledge base andP a finite set of rules. Acombined
Knowledge Baseis a pairK = (Σ, P).

There are two equivalent ways for defining the semantics of the combined formal-
ism. First, DL interpretations can be extended in order to deal with explicit variables
and Datalog predicates of arbitrary arity. Another way to go would be to consider
a DL interpretation for the DL KB and the DL-atoms in the rules, and an Herbrand
Datalog interpretation for the Datalog rules, without considering the DL-atoms.

Definition 8 (Semantics) LetI = (∆I , ∆D, .I , .D) be aSHOIN (D) interpreta-
tion; a Binding B(I) is aSHOIN (D) interpretation that extends the interpreta-
tion functions.I and .D such that:

VIX → P (∆I) ; VDX → P (∆D) ; VX → P (VDX ∪ VIX)

qI ⊆ ∆× ..n..×∆, q ∈ VRP with arity n

WhereP is the powerset operator and∆ = ∆I ∪∆D.

A BindingB(I) satisfies the DL-atoms according to Table 2, whereC C,R,U, D
are aSHOIN (D) class, object property, datatype property and datatype respec-
tively, i, j are object terms,v is a datatype term. A BindingB(I) satisfies the Dat-
alog atomq(t1, ..., tn) if (tI1, ..., t

I
n) ∈ qI

A BindingB(I) satisfies the antecedentA(r) of the ruler if it is empty orB(I)

16

satisfies every atom inA(r). A Binding satisfies the consequentH(r) if H is not
empty andB(I) satisfies the atom in it. A rule is satisfied by an interpretationI iff
for every bindingB such thatB(I) satisfies the antecedent,B(I) also satisfies the
consequent.

An equivalent way to define the semantics of the combination is as follows. LetI be
a SHOIN (D) interpretation. LetK = (Σ, P) be a combined KB andPD be the
set of Datalog clauses obtained from the clauses inP by deleting in each clause all
the DL atoms. LetVI(K), VDV (K), VRP (K) be respectively the set of individual,
data value and Datalog predicate names appearing inK. The Herbrand Base of
PD, denoted byHBPD

is the set of all Datalog atoms of the formq(c1, ..., cn),
whereci ∈ VI(K) ∪ VDV (K), q ∈ VRP (K). Let H be a Herbrand interpretation
with domainHBPD

. An InterpretationJ for K is the union of aSHOIN (D)
interpretationI for Σ and d interpretationH for PD. The interpretationJ = (I, H)
is a model ofK if I |= Σ and for each rule inP , and for each of its ground instances
either there exists one DL atom that is not satisfied byJ or the rule obtained by
suppressing the DL-atoms is satisfied byJ .

4.1.1 Hybrid Systems: AL-Log and CARIN

In the mid and late 90s, many proposals for combining DLs and Datalog were
presented under the name of “Hybrid Systems”. The most prominent ones are AL-
Log (12) and CARIN (4) . Here, we show that both can be seen as subsets of the
general language presented above, and hence can be studied and understood within
our framework.

AL-Log was originally conceived as an Hybrid Knowledge Representation com-
bining the Description LogicALC and Datalog. The interaction between the sub-
systems is done through the specification of “constraints” in the Datalog rules,
which are expressed in terms ofALC classes.AL-Log constraints can be sim-
ply seen as unary DL atoms in our framework, and henceAL-Log results in one
of the simplest combined formalisms we can define. Here, we will slightly gener-
alizeAL-Log in two ways: first, we will useSHOIN (D) instead ofALC on the
DL side, and secondly we will also allow the use of OWL datatypes, and SWRL
built-ins in the antecedent of Datalog rules.

Definition 9 LetK = (Σ, P) be a combined KB. We say thatK is anAL-Log KB
if DL atoms inP (if any) appear only in the antecedent of the rules, and are only of
the formC(t), D(v), or builtIn(q, v1, ..., vn), whereC is aSHOIN (D) class,D
an OWL datatype,q is a built-in predicate,t is an object term andv, v1, ..., vn are
datatype terms.

Example 1 (AL-Log rule) Suppose that we want to define the set of services that
are convenient for a customer as the set of services that provide fast delivery
to the location the customer lives in. The following rule describes the predicate

17

convenient and refers to theCustomer andSalesService concepts from the
DL component and uses thelivesIn andfastDelivery predicates that are defined
in the Datalog component.

convenient(?cust, ?serv) : −
livesIn(?cust, ?loc), fastDelivery(?serv, ?loc),
Customer(?cust), SalesService(?serv).

CARIN was presented as a Hybrid formalism that allowed the use of both classes
and object properties in the antecedent of the Datalog rules, and hence it represents
the most natural extension ofAL-Log. Here, we will also slightly extend CARIN
by allowing OWL datatypes, OWL datatype properties and SWRL built-ins in the
antecedent of the Datalog rules

Definition 10 Let K = (Σ, P) be a combined KB. We say thatK is a CARIN
KB if DL atoms inP (if any) appear only in the antecedent of the rules, and are
only of the formC(t), D(v), R(t1, t2), U(u1, u2), builtIn(q, v1, ..., vn), whereC
is a SHOIN (D) class,D an OWL datatype,R is an OWL object property,U
is an OWL datatype property,q is a built-in predicate,t is an object term and
u1, u2, v, v1, ..., vn are datatype terms.

Example 2 (Carin rule) Consider a rule that says a customer will get a discount
on printers if he/she has previously bought an expensive computer of the same
brand. This rule can be defined as:

discountAvailable(?cust, ?printer) : −
previouslyBought(?cust, ?comp), sameBrand(?comp, ?printer),
hasPrice(?comp, ?price), Customer(?cust), P rinter(?printer),
Computer(?comp), HighPrice(?price).

Although, this rule looks quite similar to theAL-Log rule note that we are now
referring tohasPrice property which was defined in the DL component. InAL-
Log it was not allowed to use DL roles in the rule body.

4.1.2 SWRL

Definition 11 Let K = (Σ, P) be a combined KB. We say thatK is a SWRL KB
if the rules contain only DL-atoms.

An AL-Log or a CARIN Knowledge Base can be seen as a SWRL Knowledge
Base, provided that all the Datalog predicates it contains have at most arity 2 and
that there is no binary predicate in the Datalog rules of the formp(u, t), whereu is
a datatype term andt is an object term.

In this case, the unary Datalog predicates can be seen either as atomic classes or

18

datatypes, while the binary Datalog predicates could be treated as atomic object or
datatype properties, or as built-ins. The Datalog facts concerning those predicates
can then be handled as ABox assertions.

4.1.3 Safety Conditions

Safety conditions restrict the way variables can be combined within a Datalog rule.
These restrictions are used in order to ensure the decidability of certain combina-
tions. Safety conditions, when applied to a certain combined formalism,do restrict
its expressive power. The most useful safety conditions are those that provide a con-
venient trade-off between the expressivity and computational properties, i.e. those
that provide an additional expressive power useful for applications, while keeping
the decidability of the formalism.

The first condition we define isDatalog safety, which is commonly appended to
the definition of Datalog itself, since it ensures that the set of logical consequences
of a Datalog program will always be finite. We willalwaysassume this condition
along the paper.

Definition 12 (Datalog safety) LetP be a Datalog program. A ruler in P is Dat-
alog safe if every variable appearing in the head of the rule also appears in the
body.

DL-safety conditions restrict the way variables can be used in DL-atoms in the
Datalog rules. Thus, these conditions impose restrictions in the way the coupling
between the DL and the Datalog components can be done in a combined KB. We
distinguish three different safety conditions: the conditions we callstrong DL safety
andweak DL safetywere originally defined in (5) and (12) respectively; finally,
role-safetywas used in (4) to ensure the decidability in some CARIN languages.

Definition 13 (Strong DL-safety)

LetΣ be an OWL-DL ontology andP a Datalog program. A ruler in P is strongly
DL-safe if each variable inr occurs in a non-DL atom in the rule body. The pro-
gramP is strongly DL-safe if all its rules are strongly DL-safe.

Definition 14 (Weak DL-safety)

Let Σ be an OWL-DL ontology andP a datalog program. A ruler in P is weakly
DL-safe if each variable inr occurs in a non-DL atom in the rule. The programP
is weakly DL-safe if all its rules are weakly DL-safe.

Note that strong DL-safety implies weak DL-safety, i.e.weakDL-safety is less
restrictive thanstrongDL-safety.

19

AL-Log CARIN CARIN General Case

Unary DL-Atoms in Antecedent
√ √ √

strongly DL-safe

Unary DL-Atoms in Consequent × × × strongly DL-safe

Binary DL-Atoms in Antecedent × role-safe
√

strongly DL-safe

Binary DL-Atoms in Consequent × × × strongly DL-safe

n-ary non-DL atoms
√ √ √ √

Most expressive OWL subset SHOIN (D) SHI(D) DL-Lite− SHOIN (D)

Table 3 Decidable Combinations

Definition 15 (Role safety)

LetΣ be an OWL-DL ontology andP a datalog program. A ruler in P is role safe
if, for each DL-atomp with arity 2 in the antecedent ofr at least one variablein p
also appears in a non-DL atomq in the antecedent ofr andq never appears in the
consequent of any rule in the programP

The decidability of a combined formalism depends on the DL language used, the
places where DL-atoms are allowed in rules and the safety conditions imposed. Ta-
ble 3 summarizes the decidability results.AL-Log is decidable even if no safety
condition is required. If role-safety is imposed, thenCARIN is decidable for
SHI(D). In (4) it was shown that, under DL-safety,CARINwas decidable for the
logicALCNR. We argue, that the decision procedure presented in (4) as a proof
of decidability can be adapted toSHI(D). The reason is that, on the one hand, the
tableau expansion used in (4) forALCNR can be replaced by the known tableau
expansion forSHI(D), and, on the other hand, the finite canonical interpretation
for each tableau completion can be constructed using the techniques presented in
(4), sinceSHI(D) enjoys the finite model property.

If role-safety is not imposed, in order to regain decidability, the expressivity of the
DL component must be restricted in CARIN. As a direct consequence of the re-
sults presented in (4), it is straightforward to show that CARIN would be decidable
for DL-Lite, a sub-boolean DL with nice computational properties and very inter-
esting expressivity for Semantic Web applications presented in (14), if functional
properties are disallowed.

Finally, in (5) it was shown that if DL atoms are allowed at any position of the rules,
but strong DL-safety is required, then query answering is decidable for OWL-DL.

20

4.2 Implementation

We have implemented a prototype ofAL-Log. The reasoner computes answers to
queries based on the specification of both components and is based on the notion of
constrained SLD-derivationandconstrained SLD-refutation, as presented in (12).
The system has been implemented in Prolog, coupled to our OWL reasoner Pel-
let. (15). We have tried two different strategies for the implementation, which are
amenable to different kinds of optimizations:

• “Pre-processing approach”: The key idea of this implementation is to pre-process
all of the DL atoms that appear in the Datalog rules, and include them as facts in
the relational subsystem. In order to cover all the possible models, if two or more
rules have the same (obviously non-DL) atom in the head, and they also share a
DL-atom in the body, whose (single) variable appears in the same argument of
the head in the rules, then the disjunction of all those (unary) DL-atoms must
also be computed and realized by the DL reasoner. Once the pre-processing is
done, any query can be answered by the relational component using any of the
known techniques for Datalog query evaluation.

• “On-the-fly” approach: This mode of implementation follows the query answer-
ing method described in (12). We have a meta-interpreter that models the compu-
tation process of a constrained SLD-refutation. For all of the constrained empty
clauses in a constrained SLD-refutation of a query Q, disjunctions of classes may
be constructed, and queries are processed using the Pellet reasoner. The deriva-
tion terminates once all the queries are processed.

The first approach shows that the procedure is independent of the DL language un-
der consideration, and only relies on the existence of a decision procedure for such
a DL. This shows thatAL-Log is decidable when combined with any decidable
DL.

4.3 Alternatives to SWRL

We have seen so far that many of the approaches for combining rules with De-
scription Logics can be seen as fragments of SWRL. However, one of the main
drawbacks of SWRL and its fragments is that they are not robustly decidable, i.e,
any tiny extension of a decidable fragment of SWRL can easily result in an unde-
cidable combination. Another major drawback of SWRLisms is that, although the
DL component is very expressive, the rules component is not, since it is restricted
to Datalog.

It would be desirable to investigate a more flexible and robust way for combining
DLs and rule languages. In (3) a new method is suggested for combining logic pro-
gramming under the answer set semantics with the Description LogicsSHIF(D)

21

(OWL-Lite) andSHOIN (D)(OWL-DL). This method provides atechnical sepa-
ration between the inferences in the Description Logic and the Logic Programming
components, which result in formalisms that are robustly decidable, even in the case
where the rules language is far more expressive than Datalog.

The combinations that can be defined using this methodcannotbe seen neither as
supersets nor as subsets of SWRL or of any of its fragments, since the semantics of
the coupling between the Description Logics and the rules components isdifferent
andincompatible withthe semantics of SWRL.

In order to compare SWRL and DL-Programs, let us define the following DL-
Program formalism:

Definition 16 A DL atomQ(t) is either an expression of the formC(t) or ¬C(t),
whereC is a concept andt is an object term, or an expression of the formR(t1, t2),
whereR is an object property andt1, t2 are object terms. A DL-rule has the form:

a← b1, ..., bk

A Datalog rule where anybi may be a DL-atom. A DL-ProgramKB = (Σ, P)
consists of a DL KB and a finite set of DL rulesP

Syntactically, this language can also be seen as the (undecidable) CARIN fragment
of SWRL. The difference is in the definition of the semantics:

Definition 17 Let KB = (Σ, P) a DL program. The Herbrand Base ofP is the
Herbrand Base ofP ignoring the DL atoms. An interpretationI relative toP is a
subset ofHBP . We say thatI is a model ofl ∈ HBP iff l ∈ I. We denote this by
I |=Σ l

I is a model of a ground DL atoma = Q(c) underΣ iff Σ |= Q(c). We denote this
I |=Σ a. We say thatI is a model of a DL-ruler iff I |=Σ H(r) wheneverI |=Σ l
for all l ∈ B(r) (any of the atoms inB(r) can be a DL atom).I is a model of a
DL-ProgramKB = (Σ, P) (I |= KB) iff I |=Σ r for all r ∈ ground(P)

The problem of determining whether a DL program has an answer set is decidable
for the DLsSHIF(D) andSHOIN (D).

Lemma 1 Let K = (Σ, P) be a DL-Program. LetMod1(K), Mod2(K) be re-
spectively the set of models ofK under DL-programs and SWRL semantics. Then
Mod1(K) ⊆Mod2(K)

The lemma is a consequence of the fact that, under DL-programs semantics, in
order for a ruler in P to be satisfied, whenever the consequent is satisfied,all the
models ofΣ mustsatisfy all the DL-atoms inr. Under SWRL semantics, however,
it suffices that at least one model ofΣ satisfies the DL atoms inr.

22

The following lemma is a direct consequence of the above:

Lemma 2 Let Q = q1, ..., qn be a query composed of a conjunction of atoms. Let
S1, S2 be respectively the set of correct answers toQ w.r.t the knowledge base
K = (Σ, P) under DL-programs and SWRL semantics, thenS1 ⊆ S2

This implies that, when using the DL-programs semantics, we are missing in gen-
eral some answers to a given query. Let’s illustrate this with an example. Consider
the combined knowledge base shown in Figure 1 that has definitions for a com-
puter sales services follows. The conceptHQS reads asHigh Quality Sales
Service , while DCS refers to aDiscount Computer Sales Service
which sells computers at low prices and does not have high ratings. The values 500
and 900 belong to LowPrice, 4000 is a HighPrice, 5 is a HighRating, and 2 is a
LowRating.

SalesService = Service u ∃sells.Product
CompSalesService = Service u ∃sells.Computer
HQS = SalesService u ∃hasRating.HighRating
DCS = CompSalesService u ∃sells.∃hasPrice.LowPrice

u ¬hasRating.HighRating

Computer(compX), Computer(compY), Computer(compZ),
Customer(custA), Customer(custB),
Service(serv1), Service(serv2),
hasPrice(compX, 500), hasPrice(compY, 900),
hasPrice(compZ, 4000), sells(serv1, compX),
sells(serv2, compY), sells(serv2, compZ),
hasRating(serv1, 5), hasRating(serv2, 2).

convenient(?c, ?s) : −
livesIn(?c, ?l), fastDelivery(?s, ?l),
Customer(?c), SalesService(?s).

prefers(?c, ?s) : −
convenient(?c, ?s), DCS(?s), Customer(?c).

prefers(?c, ?s) : −HQS(?s), Customer(?c).

livesIn(custA, DC), livesIn(custB, V a),
fastDelivery(serv1, DC), fastDelivery(serv2, DC),
fastDelivery(serv2, V a).

(DL component) (Datalog component)

Fig. 1. A combined knowledge base for a computer sales services

Notice that in theAL-log semantics, according to the second clause ofprefers,
both customers preferserv1 because it has a high rating. However, no single rule
for prefers entails that customers preferserv2. Customers preferserv2 in ei-
ther the set of modelsMod1 where it is true that it has a high rating, or the set
of modelsMod2 where it is a convenient discount computer sales service. There-
fore,prefer(custA, serv2) andprefer(custB, serv2) are entailed in the models
Mod1 ∪Mod2 although both ground facts can not be entailed in any single set of
models ofK (serv2 sells low price computers, and it has a low rating, but it can
not be entailed thatall of its rating values are not high).
On the other hand, in the Answer Set and DL Combination semantics, we would
only entailprefer(custA, serv1) andprefer(custB, serv1) which are true in all
of the models ofΣ, therefore some of the ground facts are missed.

23

5 Adding Builtins

5.1 Built-ins in Datalog

Built-in predicates are special predicate symbols, like>,<,≤,≥, =, 6=, +, for con-
crete domains, such as integers and strings, that may occur in the body of a rule.
Built-ins have a predefined logical meaning (a fixed interpretation) and can be con-
sidered as dynamically evaluated predicates, since they are implemented as pro-
cedures which are evaluated during the execution of a Datalog program. Built-in
predicates are not evaluated until all its arguments are bound to constants.

The use of built-in predicates may compromise the safety of the rules, since they
may yield to infinite relations. Safety can be ensured by requiring that each variable
occurring as an argument in a built-in predicate has to appear in an “ordinary”
predicate in the body of the rule, or it must be bound by an equality.

Built-in predicates can be used to define restrictions on single values:

SmallMonitor(?monitor) : −
Monitor(?monitor),
hasScreenSize(?monitor, ?size),
?size <= 15

or can be used to define a relation between two different values:

WideScreenMonitor(?monitor) : −
Monitor(?monitor),
hasWidth(?monitor, ?width), hasHeight(?monitor, ?height),
?height/?width < 0.75

5.2 Built-ins in DL’s and OWL

The built-in datatype predicates can be used in DLs that support concrete datatypes.There
are two basic ways proposed to combine concrete domains with DLs, theconcrete
domainapproach proposed by Baader and Hanschke (16) and thetype systemap-
proach proposed by Horrocks and Sattler (17).

Thetype systemapproach provides an easy way to combine DLs with XML Schema
datatypes and closest to how OWL is combined with XML Schema datatypes. In
this approach, datatypes are considered to be unary predicates over a universal con-
crete domain which is disjoint from the abstract domain (domain of individuals).
Built-in predicates such as>,<,≤,≥, = are considered to be part of the type sys-

24

tem that are used to derive new datatypes from existing ones. In this approach there
is a separate datatype reasoner that checks if a conjunction of (possibly negated)
datatypes is satisfiable or not. For example, the conjunctionxsd:PositiveInteger ∧
xsd:NegativeInteger is not satisfiable because there are no common values
between two datatypes.

In OWL it is possible to use arbitrary XML Schema datatypes on datatype property
restrictions. For example, we can say thathasScreenSize property is allowed
to take values only fromxsd:PositiveInteger datatype with the following
global restriction> v ∀hasScreenSize.xsd:PositiveInteger . It is also
possible to have the functionality of some of the built-in datatype predicates by
using the constructors provided in XML Schema. In XML Schema, it is possible
to derive new datatypes by defining restrictions onfacets. For example, it is pos-
sible to define the set of positive integers less than 15 by defining a restriction on
theminInclusive facet ofxsd:PositiveInteger . Then, the definition for
SmallMonitor predicate above can be expressed as:

Monitor u ∃hasScreenSize.<=15 v SmallMonitor

where<=15 is the corresponding derived XSD datatype description. Unfortunately,
XSD facets are limited to express min and max value restrictions and regular ex-
pression based patterns for strings.

It is easy to extend the OWL DL reasoners with more built-in datatype predicates,
especially when predicates are unary because it is a straightforward extension to
XSD support. Note that the way XSD allows to define restrictions on datatypes
effectively makes the built-in predicate, e.g. “<=”, unary because all but one of
the arguments of the built-in predicate are constant values, e.g. “<= 15”. It is
also easy to implement these extensions on existing reasoners because in thetype
systemapproach datatype reasoning is done by a separate datatype reasoner that
can be modified without changing the reasoning procedure for the abstract domain.

It is also possible to have support for multi-arity datatype predicates in OWL by us-
ing extensions such as the one proposed inSHOQ(Dn) (18).SHOQ(Dn) extends
theSHOQ(D) DL by allowing the use of n-ary predicates over concrete datatypes.
Reasoning withSHOQ(Dn) is similar toSHOQ(D) but now we have the abil-
ity to express concepts where a relation between two datatype values is stated. For
example, we can define theWide Screen Monitorrule from previous section as:

Monitor u ∃hasHeight, hasWidth.divide< 0.75 v WideScreenMonitor

In the current specification of OWL and XML Schema, it is not possible to write
such expressions but proposals like OWL-E show how OWL can be extended to
allow such expressive datatype expressions.

25

5.3 Difference between built-ins in Datalog and DL

Although the semantics of built-ins in Datalog and DL’s look quite similar there is
a fundamental difference between two approaches. The Datalog approach applies
built-in predicates only to existing values while DL reasoners can do reasoning with
datatypes without any existing value. Therefore, DL reasoners can infer additional
information even though there is no asserted value for a datatype property. Lets
illustrate this with an example: Suppose that the monitors whose screen size is less
than 20 inches are eligible for standard shipping (whereas heavier items need to be
shipped with priority shipping). In Datalog, this fact would be with the following
rule:

EligibleForStandardShipping(?monitor) : −
Monitor(?monitor),
hasScreenSize(?monitor, ?size),
?size <= 20

which can be equivalently expressed in OWL with the following axiom:

Monitor u ∃hasScreenSize.<=20 v EligibleForStandardShipping

A Datalog reasoner can infer that a monitor is eligible for standard shipping only
if the value of the screen size for the monitor is known. On the other hand, if
a DL reasoner knows thatSmallMonitor(monitor) is true then it can infer
EligibleForStandardShipping(monitor) is also true without knowing
the exact value for the screen size. This is because the conjunction of the datatype
expressionsize <= 15 (used in the definition of theSmallMonitor) and the
datatype expressionsize > 20 (the negation of the expression used in the definition
of theEligibleForStandardShipping) is not satisfiable. Thus, the DL rea-
soner can infer that there is no possible value for thehasScreenSize property
such that a monitor is aSmallMonitor) but notEligibleForStandardShipping .

6 Policies

Policies on the Web are important because it is required to have access and security
control on the resources in the distributed environment of the Web.

One area where policies are considered to be essential is the Web Services context.
It is necessary to specify the conditions under which a user is allowed to invoke a
service. It is generally argued that “rules” are essential for expressing policies. Let
us examine one simple example to investigate this issue in more detail: There is a
research lab in a university that performs astronomical observations and provides

26

the data via several different Web Services, S1, S2, S3,. . .. The access policy for S1
says that only lab members, the employees of the lab’s university or an employee
of an organization which funds the lab can use the services. These conditions can
be expressed with the following rules:

hasPermission(?p, S1) : −memberOf(?p, Lab).
hasPermission(?p, S1) : −

hasAffiliation(?p, ?univ), hasSubOrganization(?univ, Lab).
hasPermission(?p, S1) : −employeeOf(?p, ?funder), funds(?funder, Lab).

As we have already shown in Section 3, these rules can easily be expressed with
the following OWL axioms:

∃memberOf.{Lab} v ∃hasPermission.{S1}
∃hasAffiliation.∃hasSubOrganization.{Lab} v ∃hasPermission.{S1}
∃employeeOf.∃funds.{Lab} v ∃hasPermission.{S1}

Although both representations encode exactly the same semantics, the rule repre-
sentation looks more intuitive to humans than the OWL representation. It should
also be noted that trying to write such policy rules in OWL is much harder. For
example, one would be inclined to write the following axiom to encode the same
policy rule:

{S1} v ∀hasPermission−.(∃memberOf.{Lab} t
∃hasAffiliation.∃hasSubOrganization.{Lab} t
∃employeeOf.∃funds.{Lab})

This axiom obviously has a different meaning since it only specifies the necessary
conditions for having the permission but does not specify them as sufficient condi-
tions.

Treating rules as syntactic sugar for OWL lets us to have easier to understand poli-
cies and write while still using the sound and complete reasoners designed for OWL
to evaluate the conditions in the policy. This approach also has a potential use for
dealing with conflicting rules. A policy has a conflict if there is one rule giving
permission to someone to perform a specific action and yet there is another rule
prohibiting the same person performing that action6 . Such conflicts would easily
be detected by a DL reasoner as unsatisfiable concept descriptions. And theoreti-
cally, with the help of explanation/debugging tools being developed for OWL, the
information about which two rules conflict can be computed and presented to users.

Despite the advantages of mapping the rule syntax to OWL axioms as we have
discussed already discussed in Section 3 the rules that can be handled with this ap-

6 These kind of conflicts are called “Conflicts of Modality” and there may be other kinds of
conflicts if the policy language allows constructs to express obligations and dispensations

27

proach are limited. For example, we might want to write more generalized policy
rules to specify permissions on a set of services. The research lab may be collab-
orating with other organizations on certain projects. The members of such partner
organizations would be given access only to the services related to the specific joint
project. The following rule encodes this policy:

hasPermission(?person, ?service) : −
relatedTo(?service, ?project), JointProject(?project),
participates(?org, ?project), memberOf(?person, ?org).

This rule cannot be directly mapped to OWL axioms but can easily be handled
by the hybrid DL-Datalog systems. The consequence is that, in the hybrid system,
thehasPermission property needs to be defined as a Datalog predicate which
means no restrictions on this property can be defined in the DL side.

7 Conclusion

It is a common belief in the Semantic Web community that rules are needed for
prominent Semantic Web applications, such as Web Services and Policies. The
Semantic Web Rules Language (SWRL) can be roughly seen as the union of two
decidable, yet orthogonal in expressivity, fragments of First Order Logic: OWL-DL
(SHOIN (D)) and Datalog. However, the expressive power provided by SWRL
comes at the price of decidability, and hence of practical, sound and complete rea-
soning, which can be a critical requirement for the very same applications SWRL
was designed for.

In this paper, we have shown that many of the user’s needs can be satisfied without
even getting close to the full expressivity of SWRL. We have shown that, actually,
many of the rules that modelers would like to be able to write can be expressed
in plain OWL-DL. However, although in these cases rules would be just “syntac-
tic sugar” for OWL, the equivalent OWL expressions may become quite complex
and counter-intuitive. We have presented the rolling-up technique as a method for
transforming these rules into OWL class expressions in a way that can be imple-
mented in OWL-based tools. We have shown that, even in the case where a certain
property, such ashasUnclecannot be expressed in OWL, some of the restrictions
in which such a property is used can still be expressed in OWL, without the need of
defining such a property. Again, the resulting class expression can be non-obvious,
since DLs were not originally conceived for such kind of modeling.

However, there are situations in which OWL-DL does not suffice anymore. We
have presented a framework in which many of the most prominent proposals for
integrating Description Logics and Datalog, including SWRL, can be expressed
and understood. We have refined some of the existing decidability results for such

28

formalisms and developed a new technique for implementingAL-Log formalisms
using our DL reasoner Pellet. We have shown that many rules do actually fall within
decidable formalisms, with the right modeling decisions.

In case more expressivity is required, even if more than plain Datalog is needed in
the rules component, there are still ways to get along. We have compared SWRL
semantics with the semantics presented in (3). We have shown that robust decid-
ability and ease of implementation comes at a price of missing entailments, i.e,
of incompleteness. For many applications the missing entailments may be critical,
while for others they may not be.

Finally, we have shown the differences between the way a DL and a Datalog rea-
soner handle built-ins and discussed policies on the Web as an interesting use case
for testing the expressivity required by rules.

References

[1] H. Boley, Knowledge bases in the world wide web: A challenge for logic
programming (second, revised edition), Tech. Rep. TM-96-02, Deutsches
Forschungszentrum für Künstliche Intelligenz GmbH, Germany (1996).

[2] I. Horrocks, P. F. Patel-Schneider, Three theses of representation in the se-
mantic web, in: Proc. of the WWW 2003, ACM, 2003, pp. 39–47.

[3] T. Eiter, T. Lukasiewicz, R. Schindlauer, H. Tompits, Combining answer set
programming with description logics for the semantic web, in: Proc. of KR
2004, pp. 141–151.

[4] A. Levy, M.-C. Rousset, CARIN: A representation language combining horn
rules and description logics, Artificial Intelligence 104 (1-2) (1998) 165–209.

[5] B. Motik, U. Sattler, R. Studer, Query answering for owl-dl with rules, in:
Proc. of ISWC 2004, pp. 549–563.

[6] B. Grosof, I. Horrocks, R. Volz, S. Decker, Description logic programs: Com-
bining logic programs with description logic, in: Proc. of WWW 2003.

[7] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean,
SWRL: A semantic web rule language combining OWL and RuleML, W3C
Submission http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
(2004).

[8] I. Horrocks, S. Tessaris, A conjunctive query language for description logic
aboxes, in: Proc. of AAAI 2000, 2000, pp. 399–404.

[9] D. Connolly, J. Hendler, S. Hawke, Owl implementations,
http://www.w3.org/2001/sw/WebOnt/impls (2003).

[10] J. Kopena, W. Regli, DAMLJessKB: A tool for reasoning with the semantic
web, IEEE Intelligent Systems 18 (3) (2003) 74–77.

[11] S. Tessaris, Questions and answers: reasoning and querying in description
logic, Ph.D. thesis, University of Manchester (2001).

[12] F. M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, Al-log: integrating datalog

29

and description logics, Journal of Intelligent Information Systems 10 (1998)
227–252.

[13] S. Ceri, G. Gottlob, L. Tanca, What you always wanted to know about dat-
alog (and never dared to ask), IEEE Transactions on Knowledge and Data
Engineering 1 (1) (1989) 146–166.

[14] D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, G. Vetere, Dl-lite:
Practical reasoning for rich DLs, in: Proc. of DL 2004, 2004.

[15] Pellet - OWL DL Reasoner, http://www.mindswap.org/2003/pellet.
[16] F. Baader, P. Hanschke, A scheme for integrating concrete domains into con-

cept languages, in: Proc. of IJCAI-91, Australia, 1991, pp. 452–457.
[17] I. Horrocks, U. Sattler, Ontology reasoning in theSHOQ(D) description

logic, in: B. Nebel (Ed.), Proc. of the IJCAI 2001, pp. 199–204.
[18] J. Z. Pan, I. Horrocks, Extending Datatype Support in Web Ontology Reason-

ing, in: Proc. of the ODBASE 2002), 2002.

30

