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Introduction

Motivation

For Description Logics to be useful in realistic applications we want:

Expressivity

Fast reasoners

Previous Description Logic examples:

1 European GALEN project - medical terminology

2 KL-ONE by Brachman and Schmolze circa 1985

3 CLASSIC by Patel-Schneider et al. circa 1991

4 GRAIL be Reactor et al. circa 1997
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Introduction

Problem

Expressive logics have high worst-case complexities so we must use highly
optimized implementations of suitable reasoners.

So we will explore the following techniques:

Lazy Unfolding

Internalization

Tracing

Normalization
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Introduction

Syntax and Semantics

Regular Tarski style semantics (∆I , ·I ) where ∆I is the domain and ·I is
the interpretation function.

C ,D - arbitrary concepts
R,S - arbitrary roles
A,P - atomic concepts
u - conjunction
t - disjunction
¬ - negation
∃R.C - existential role restrictions
∀R.C - universal role restrictions
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Introduction

Negation Normal Form

Purpose

Negations only apply to concepts.

ALC concepts can be converted to negation normal form by:

1 DeMorgan’s laws

¬(C ∪ D)←→ ¬C ∩ ¬D
¬(C ∩ D)←→ ¬C ∪ ¬D

2 ¬¬C ←→ C

3 ¬(∃R.C )←→ (∀R.¬C )

4 ¬(∀R.C )←→ (∃R.¬C )
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Introduction

Negation Normal Form Example

Rules

1 DeMorgan’s laws

¬(C ∪ D)←→ ¬C ∩ ¬D
¬(C ∩ D)←→ ¬C ∪ ¬D

2 ¬¬C ←→ C

3 ¬(∃R.C )←→ (∀R.¬C )

4 ¬(∀R.C )←→ (∃R.¬C )

Example

¬(¬C ∪ D) ∩ ¬∃R.D

- apply Rule 1

(¬¬C ∩ ¬D) ∩ ¬∃R.D

- apply Rule 2

(C ∩ ¬D) ∩ ¬∃R.D

- apply Rule 3

(C ∩ ¬D) ∩ ∀R.¬D

- Done!
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Subsumption Testing Algorithms

Subsumption Testing Algorithms

1 Structural Subsumption Algorithms

2 Logical Algorithms

3 Logical Algorithms using existing Reasoners
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Subsumption Testing Algorithms

Structural Subsumption Algorithms

To determine if one concept subsumes another, structural algorithms
simply compare the (normalised) syntactic structure of the two concepts.

Advantages

Generally easy to demonstrate the soundness of the structural
inference rules

Very efficient

Disadvantages

Usually incomplete (may fail to infer all valid subsumption
relationships)

Difficult to extend structural algorithms to deal with more expressive
logics
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Subsumption Testing Algorithms

Logical Algorithms

These kinds of algorithm use a refutation style proof, we try to show that
C v D by showing that for some individual x :

x ∈ C I and x /∈ D I is logically inconsistent.

So in the case of description logics, this corresponds to testing the logical
(un)satisfiability of the concept C v D iff C u ¬D is not satisfiable.

Not satisfiability approach

Sound theoretical basis in first order logic

Allows for a range of logical languages by changing the set of
tableaux expansion rules

Very expressive logics

Optimal for a number of description logic languages
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Subsumption Testing Algorithms

Logical Algorithms using existing Reasoners

Most description logic systems using logical algorithms use existing
reasoners such as LOGICS WORKBENCH, KSAT/*SAT, or SPASS

Advantages

Easier to build a system using an existing reasoner.

Able to use state of the art implementations of existing reasoners

Allows to deal with more expressive description logics

Disadvantages

Difficult to extend the reasoner to add optimizations that take
advantage of specific features of a description logic

May have to rewrite the reasoner to handle more expressive
description logics
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Tableaux Algorithms
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Tableaux Algorithms

What is a Tableau?

Definition

A tableau is a graph which represents a model, with nodes corresponding
to individuals (elements of ∆I ) and edges corresponding to relationships
between individuals (elements of ∆IX∆I ).

Example

hasChild hasChild

Mary

John Tom
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Tableaux Algorithms

Purpose of a Tableau

The purpose of a tableau is to try to prove the satisfiability of a concept C
by constructing a model , and interpretation I in which C I is not empty

Example

hasChild hasChild

Mary

John Tom
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Tableaux Algorithms

How a Tableau Algorithm works

A typical algorithm will start with a single individual satisfying D and try
to construct a tableau, by inferring the existence of additional individuals
or of additional constraints on individuals.

The inference mechanism consists of applying a set of expansion rules
which correspond to the logical constructs of the language, and the
algorithm terminates either when the structure is complete (no further
inferences are possible) or obvious contradictions have been revealed.

A contradiction or clash is detected when C ,¬C occur.
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Tableaux Algorithms

Graph Notation

1 each node x is labelled with a set of concepts (L(x) = C1, C2, ...,Cn)

2 each edge < x , y > is labelled with a role (L(< x , y >) = R).

3 If C ∈ L(x), it represents a model in which the individual
corresponding with x is in the interpretation of C

4 If L(< x , y >) = R, it represents a model in which the tuple
corresponding with < x , y > is in the interpretation of R

5 A node y is called an R-successor of a node x if there is an edge
< x , y > labelled R, x is called the predecessor of y , also if y is an
R-successor of z , then x is called an ancestor of z
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Tableaux Algorithms

Tableaux expansion rules for ALC

u-rule if 1. (C u D) ∈ L(x)
2. {C , D} * L(x)

then L(x) −→ L(x) ∪ {C , D}
t-rule if 1. (C t D) ∈ L(x)

2. {C , D} ∩ L(x) = ∅
then either L(x) −→ L(x) ∪ {C}

or L(x) −→ L(x) ∪ {D}
∃-rule if 1. ∃R.C ∈ L(x)

2. there is no y s.t. L(< x , y >) = R and C ∈ L(y)
then create a new node y and edge < x , y >

with L(y) = {C} and L(< x , y >) = R
∀-rule if 1. ∀R.C ∈ L(x)

2. there is some y s.t. L(< x , y >) = R and C /∈ L(y)
then then L(y) −→ L(y) ∪ {C}
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Tableaux Algorithms

”t” Non-Determinism

Non-determinism is dealt with by searching different possible expansions.

The concept is unsatisfiable if every expansion leads to a contradiction and
is satisfiable if any possible expansion leads to the discovery of a complete
non-contradictory structure.

Example (If A is unsatisfiable, B and C satisfiable)
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Reducing a DL to Satisfiability and Subsumption Testing

Reducing a DL to Satisfiability and Subsumption Testing
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Reducing a DL to Satisfiability and Subsumption Testing

Unfolding

Purpose

Subsumption testing can be made to be independent of T:

T |= C v D ←→ ∅ |= Unfold(C , T ) v Unfold(D, T )

1 A ≡ D, substitute A with D everywhere it occurs in C

2 A v D, substitute A with the concept A′ u D where A′ is a new
concept name

Questions

1 Why should the definitions be acyclic? ({A v ∃R.A} /∈ T )

2 Why should the definitions be unique? ({A ≡ C , A ≡ D} /∈ T )
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Reducing a DL to Satisfiability and Subsumption Testing

Internalization

Purpose

The concept axioms in T can be reduced to the form > v C , which is
equivalent to testing satisfiability of a concept

1 A ≡ B ←→ > v (A t ¬B) u (¬A t B)

2 A v B ←→ > v ¬A t B
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Optimization Techniques
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Optimization Techniques

Theory vs. Practice

Many times there are gaps between the theory and the implementation so
in practice we also need to consider:

The efficiency of the algorithm, in the theoretical (worst case) sense

The efficiency of the algorithm, in a practical (average case) sense

How to use the the algorithm with unfoldable, general and cyclic
knowledge bases

How to optimize the implementation of the algorithm for the average
case
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Optimization Techniques

Optimization Types

1 Preprocessing, makes classification and subsumption testing easier

2 Parital ordering, minimize the number of subsumption tests required

3 Subsumption optimizations that replace expensive satisfiability tests
with cheaper ones

4 Satisfiability optimizations that try to improve the typical case
performance of the underlying satisfiability tester
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Optimization Techniques

Lazy Unfolding

U1-rule if 1. A ∈ L(x) and (A ≡ C ) ∈ T
2. C /∈ L(x)

then L(x) −→ L(x) ∪ {C}
U2-rule if 1. ¬A ∈ L(x) and (A ≡ C ) ∈ T

2. ¬C /∈ L(x)
then L(x) −→ L(x) ∪ {¬C}

U3-rule if 1. A ∈ L(x) and (A v C ) ∈ T
2. C /∈ L(x)

then L(x) −→ L(x) ∪ {C}
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Optimization Techniques

Internalization Technique

I1-rule if 1. (C ≡ D) ∈ T
2. (D t ¬C ) /∈ L(x)

then L(x) −→ L(x) ∪ {(D t ¬C )}
I2-rule if 1. (C ≡ D) ∈ T

2. (¬D t C ) /∈ L(x)
then L(x) −→ L(x) ∪ {(¬D t C )}

I3-rule if 1. C v D ∈ T
2. (D t ¬C ) /∈ L(x)

then L(x) −→ L(x) ∪ {(D t ¬C )}

Question

1 Why do these rules seem bad in a performance sense?
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Optimization Techniques

Trace Technique

Motivation

Minimize space usage

Sensible way of organizing the expansion and flow of control

How?

Choose a good ordering on what rules we apply

ALC Trace Rule

∃∀-rule if 1. ∃R.C ∈ L(x)
2. there is no y s.t. L(< x , y >) = R and C ∈ L(y)
3. neither the u-rule nor the t-rule is applicable to L(x)

then create a new node y and edge < x , y >
with L(y) = C ∪ D|∀R.D ∈ L(x) and L(< x , y >) = R
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Optimization Techniques

Normalization

Why?

Why only detect clashes when {C ,¬C} ⊆ L(x)?
Why not a direct contradiction between (C u D) and (¬D t ¬C )?

How?

Re-use work done in structural subsumption algorithms

Example

Put an order on concept names

Use DeMorgan’s laws

...
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Optimization Techniques

Normalization Pros/Cons

Advantages

Easy to implement and could be used with most logics

Subsumption/satisfiability problems can be simplified or completely
avoided

Complements lazy unfolding

May lead to more compact storage of the knowledge base

Disadvantages

Adds a little overhead to everything for potentially no gain

For unstructured knowledge bases, may even increase the size
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Conclusion

Conclusion

We have looked at a variety of techniques and there are many more worth
investigating such as:

Absorption

Satisfiability caching

Semantic branching search

Dealing with thrashing

Pruning using Backjumps

...

Lukasz Cwik (University of Waterloo) Impl. and Opt. Techniques June 11th, 2008 31 / 31


	Introduction
	Subsumption Testing Algorithms
	Tableaux Algorithms
	Reducing a DL to Satisfiability and Subsumption Testing
	Optimization Techniques
	Conclusion

