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Abstract. The problem of deciding containment of aggregate queries
is investigated. Containment is reduced to equivalence for queries with
expandable aggregation functions. Many common aggregation functions,
such as max, cntd (count distinct), count, sum, avg, median and stdev
(standard deviation) are shown to be expandable. It is shown that even
in the presence of integrity constraints, containment can be reduced to
equivalence. For conjunctive count and sum-queries, simpler characteri-
zations for containment are given, that do not require checking equiva-
lence. These results are built upon in order to solve the problem of finding
maximally-contained sets of rewritings for conjunctive count-queries.

1 Introduction

Rewriting queries using views is a fundamental problem in databases. Research
in view usability attempts to answer the questions “what can be computed from
what, and how?” Such techniques have applications in a number of areas. In
query optimization, the execution of a query can be accelerated if results from
previous queries can be used to compute answers [23,2]. In designing information
systems that should periodically process a huge number of a priori known queries,
it can be beneficial to store beforehand intermediate results that can be useful
for as many queries as possible [17,20]. In integrating heterogeneous information
sources, one approach is to model the contents and the relationships of a set
of sources by setting up one rich schema and to describe the sources as views
on this schema. In order to answer queries issued against the schema we must
rewrite them using the “views” [16].

While the focus of this work was for a long time on non-aggregate queries, in-
terest in aggregate queries has been motivated recently by the rapid expansion of
data warehousing and decision support, where aggregate queries typically occur.
Optimization based on the reuse of previously computed results is particularly
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promising for aggregate queries, since often a huge amount of data is touched to
produce a single aggregate value. In fact, most existing data warehouses make
use of this idea in a rather ad hoc way in their optimization algorithms [13].

There are several papers that provide characterizations for equivalence of ag-
gregate queries [18,6,9,4]. Algorithms for rewriting aggregate queries have been
presented [6,7,10,21]. However, these algorithms investigated the problem of find-
ing a rewriting that is equivalent to the given query. They also did not use unions
of aggregate queries to rewrite aggregate queries and thus, could not find rewrit-
ings in some cases, even though such rewritings existed.

This paper investigates the problem of deciding containment of aggregate
queries. To the best of our knowledge, there are no previous results on this
topic. See Section 5 for related work on containment of non-aggregate queries.
We show how it is possible to reduce containment of a wide class of aggre-
gate queries to equivalence. We build on our containment results and present
a method for finding maximally-contained sets of rewritings of count-queries.
Maximally-contained sets of rewritings are of importance in the context of in-
formation integration. This solves an open problem mentioned in [14].

Section 2 contains basic definitions. We present our containment results in
Section 3. A method for computing maximally-contained sets of rewritings is
detailed in Section 4. Section 5 concludes. An extended version of this paper,
containing proofs and additional examples, is available on the Web [5].

2 Aggregate Queries

We introduce aggregate queries and review their basic properties. Our aggregate
queries can contain disjunction, negation and comparisons.

2.1 Syntax of Queries

Let P be a fixed relational vocabulary and let C be a set of constants. We
assume that there is a linear ordering defined over C, which is either dense (like
the rational numbers) or discrete (like the integers). We will usually define a
database D as a set of ground atoms of the form p(c1, . . . , ck), where p ∈ P is
a predicate of arity k and c1, . . . , ck ∈ C. At times we will consider databases
that are bags of ground atoms, but then we will state this explicitly.

A condition ϕ(z̄, x̄), where z̄, x̄ are tuples of variables, is a conjunction of
positive and negated atomic formulas over P , < and ≤, with constants from
C. The comparisons are interpreted w.r.t. the ordering over C. The variables in
x̄ are exactly the free variables in ϕ(z̄, x̄) and the variables in z̄ are bound by
existential quantifiers. A query has the form

q(x̄)← ϕ1(z̄1, x̄) ∨ · · · ∨ ϕn(z̄n, x̄)

where ϕi(z̄i, x̄) is a condition, for all i. We call q(x̄) the head of the query and
ϕ1(z̄1, x̄) ∨ · · · ∨ ϕn(z̄n, x̄) the body of the query. Each condition ϕi(z̄i, x̄) is a
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disjunct of the query. We sometimes use the notation q(x̄) or q as a short-hand
for denoting the query above. We assume that all queries are safe [22]. Note that
all variables not appearing in x̄ are implicitly existentially quantified.

We assume that there is a fixed set of constants Cagg. If S is a domain, we
denote byM(S) the set of finite bags over S. A k-ary aggregation function is a
function α : M(Ck)→ Cagg that maps bags of k-tuples of values in C to values
in Cagg. In this paper we consider a wide class of aggregation functions, with
the property of being expandable. Such aggregation functions include the unary
aggregation functions max, sum, avg, median, stdev and cntd which map a bag
of real numbers to the maximum, sum, average, median, standard deviation
or number of distinct elements.1 We also consider the expandable aggregation
function count which maps a bag of tuples to its cardinality.

An aggregate query has the form q(x̄, α(ȳ))← ϕ1(z̄1, x̄, ȳ)∨· · ·∨ϕn(z̄n, x̄, ȳ),
where α is an aggregation function and x̄ and ȳ are free variables appearing in
ϕi, for all i. We call x̄ the grouping variables and ȳ the aggregation variables.
We will also refer to the query q as an α-query since the aggregation function α
appears in q’s head.

We distinguish the class of conjunctive queries. A query q is conjunctive
if its body contains a single disjunct ϕ(z̄, x̄) that is a conjunction of positive
atomic formulas over P and C. Note that conjunctive queries do not contain
comparisons.

Example 2.1. Suppose that our database contains the relations study(student,
course, grade) and teach(prof, course). The conjunctive query q finds the
average grade of the students in Prof. Lau’s courses:

q(c, avg(g))← study(s, c, g) ∧ teach(Lau, c) .

2.2 Semantics of Queries

We define in which way an aggregate query q, for a database D, gives rise to
a set of tuples qD. Aggregate queries are evaluated in two phases. In the first
phase, the query retrieves a bag of tuples from the database. The tuples are then
grouped into equivalence classes, and an aggregation function is applied to each
equivalence class.

An assignment γ for a condition ϕ(z̄, x̄, ȳ) is a mapping of the variables in
z̄, x̄, ȳ to constants in C. Satisfaction of a condition by an assignment w.r.t. a
database is defined in the usual way.

Consider an aggregate query q(x̄, α(ȳ))← ϕ1(z̄1, x̄, ȳ)∨· · ·∨ϕn(z̄n, x̄, ȳ). Let
Γi be the set of satisfying assignments of ϕi(z̄i, x̄, ȳ) with respect to D. For a
tuple of values d̄ from C, let Γi,d̄ be the set of assignments in Γi that map x̄ to
d̄, i.e.,

Γi,d̄ := {γ ∈ Γi | γ(x̄) = d̄}.
1 Results for min are analogous to results for max and, thus, are not presented.
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In the sets Γi,d̄, we collect those satisfying assignments of ϕi that agree on d̄.
For each set Γi,d̄, we define Γi,d̄(ȳ) to be the bag of tuples of constants for ȳ

derived by applying the assignments in Γi,d̄ to ȳ. Formally,

Γi,d̄(ȳ) := {{γ(ȳ) | γ ∈ Γi,d̄}}

is the bag of tuples obtainable by restricting assignments in Γi,d̄ to ȳ.
Now we define the result of evaluating q over D, denoted qD as

{
(d̄, α(Γ1,d̄(ȳ) � · · · � Γn,d̄(ȳ))) | d̄ = γ(x̄) for some i and γ ∈ Γi

}
(1)

where � is the bag union operator. Note that we have computed the function α
on the bag corresponding to each mapping of x̄ to constants. Observe that if a
mapping satisfies more than one disjunct, then it contributes more than one value
to the bag to which we apply α. Thus, for example, the queries q(x, sum(y))←
a(x, y)∨a(x, y) and q′(x, sum(y))← a(x, y) are not equivalent since q will always
return an aggregate value twice that of q′.

For the special case of conjunctive α-queries, we also consider evaluating
queries over databases that are bags of ground atoms. Queries evaluated over a
database defined as a bag are said to be evaluated under bag-semantics. Oth-
erwise, the evaluation is under set-semantics. When evaluating a conjunctive
α-query under bag-semantics, we proceed as above (i.e., as under set semantics),
except that there is only one Γd̄ for each d̄ (since there is only one disjunct) and
Γd̄ can be a bag of assignments. Consider the conjunctive α-query

q(x̄, α(ȳ))← a1(w̄1) ∧ · · · ∧ ak(w̄k),

where w̄i are variables from x̄, ȳ or are bound variables. Let γ be an assignment
that satisfies the body of q and maps x̄ to d̄. Suppose that ai(γ(w̄i)) appears in
D a total of ni times. Then, γ will be in Γd̄ a total of n1 × · · · × nk times. The
rest of the computation proceeds as in Equation (1). Note that the output of an
aggregate query is always a set, even if it is evaluated over a bag database.

2.3 Containment and Equivalence

Containment and equivalence of aggregate queries are defined in the natural
way. An aggregate query q is contained in an aggregate query q′ if over every
database the set of results returned by q is a subset of the results returned by q′.
Formally, q is contained in q′, denoted q ⊆ q′, if qD ⊆ q′D for all databases D.
Two queries q and q′ are equivalent , denoted q ≡ q′, if over every database they
return the same sets of results. Obviously, two queries are equivalent if and only
if they contain each other.

For conjunctive queries q and q′, we say that q is bag-contained in q′, denoted
q ⊆b q′, if over every bag database D, we have qD ⊆ q′D. We say that q and q′

are bag-equivalent , denoted q ≡b q′, if q ⊆b q′ and q′ ⊆b q.
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3 Containment of Aggregate Queries

This section contains characterizations of containment among queries with a
wide class of aggregation functions. In Section 4 we show how our containment
results can be used to create rewritings of queries using views. Our criteria
involve reducing containment of aggregate queries to equivalence of aggregate
queries.

3.1 Queries with Expandable Aggregation Functions

We present the class of expandable aggregation functions. We show that they
are common and reduce containment of queries with expandable aggregation
functions to equivalences of queries.

Let B be a bag of constants and c be a constant. We denote by |B|c the
multiplicity of c in B. Given a non-negative integer n, we define the n-expansion
of B. Intuitively, the n-expansion of B, denoted B⊗ n, is the bag that contains
the same constants as those in B, but each constant has a multiplicity n times
larger than in B. Formally, for all constants c, |B⊗ n|c = |B|c × n.

Aggregation functions can be characterized by their behavior on expanded
bags. We say that an aggregation function α is expandable if for all bags B
and B′ and for all positive integers n we have

α(B⊗ n) = α(B′⊗ n) ⇐⇒ α(B) = α(B′) .

Proposition 3.1 (Expandable Functions). The aggregation functions max,
cntd, count, sum, avg, stdev and median are expandable.

However, not all aggregation functions are expandable.

Example 3.2. The function prod (product) is not expandable. As an example,
consider the bags B = {{−2}} and B′ = {{2, 1}}. Clearly, prod(B) = prod(B′).
However, prod(B⊗2) = prod(B′⊗2) = 4. Hence, prod is not expandable. Observe
that prod is expandable when the domain of the bags contains only non-negative
numbers. This example also shows that the function parity is not expandable.

Given the aggregate queries

q(x̄, α(ȳ))← ϕ1(z̄1, x̄, ȳ) ∨ · · · ∨ ϕn(z̄n, x̄, ȳ)
q′(x̄, α(ȳ′))← ϕ′

1(z̄
′
1, x̄, ȳ′) ∨ · · · ∨ ϕ′

m(z̄′
m, x̄, ȳ′)

we say that a query p is a product of q and q′ if p is defined as

p(x̄, α(ȳ))←
∨

1≤i≤n, 1≤j≤m

ϕi(z̄i, x̄, ȳ) ∧ ϕ′
j(θ(z̄

′
j), x̄, θ(ȳ′)) ,

where θ is a substitution that maps the variables in ȳ′ and z̄′
j to distinct unused

variables. A product of q and q′ is essentially a join on the grouping variables
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of q and q′. Note that two products of q and q′ are only distinguished by the
substitution θ and thus, are isomorphic. Slightly abusing notation, we will write
q ⊗ q′ to refer to an arbitrary product of q and q′. This is justified because the
specific variables occurring in a query are never important for our arguments.

Containment of aggregate queries can be reduced to equivalence of appropri-
ate aggregate queries, if the aggregation function is expandable.

Theorem 3.3 (Containment). Consider the aggregate queries q(x̄, α(ȳ)) and
q′(x̄, α(ȳ′)). Suppose that α is an expandable function. Then for any database D

qD ⊆ q′D ⇐⇒ (q ⊗ q)D = (q′ ⊗ q)D
.

Proof. (Sketch) Consider a database D and a tuple d̄. Suppose that q computes
the bag B of values for d̄ and q′ computes the bag B′ of values for d̄. It is not
difficult to show that in this case, q ⊗ q will compute the bag B⊗ |B| for d̄ and
q′⊗ q will compute the bag B′⊗ |B| for d̄. Since α is an expandable aggregation
function, α(B) = α(B′) if and only if α(B⊗ |B|) = α(B′⊗ |B|), for |B| > 0.

“⇐” Suppose that q⊗ q ≡ q′⊗ q. If q returns an aggregate value for d̄, then
|B| > 0. Therefore, α(B⊗ |B|) = α(B′⊗ |B|) implies that α(B) = α(B′), i.e.,
q and q′ return the same aggregate value for d̄.

“⇒” Suppose that q ⊆ q′. If q does not return an aggregate value for d̄, then
both q⊗ q and q′⊗ q will not return an aggregate value. Otherwise, q returns an
aggregate value for d̄, and q′ returns the same aggregate value. Therefore, from
α(B) = α(B′), we conclude that α(B⊗ |B|) = α(B′⊗ |B|), i.e., q ⊗ q and q′ ⊗ q
return the same value. ��

Corollary 3.4 (Decidability). Checking if q is contained in q′ is decidable if

– q and q′ are count, sum or max-queries or
– q and q′ are conjunctive avg or cntd-queries without constants.

Proof. This follows from Theorem 3.3 and the decidability of equivalence for the
classes above (see [18,6,9,4]). ��

Theorem 3.5 (Bag-Containment). Let α be an expandable function and q
and q′ be conjunctive α queries. Then, q ⊆b q′ if and only if q ⊗ q ≡b q′ ⊗ q.

Proof. The proof is analogous to the proof of Theorem 3.3. ��
If α is not an expandable function, the reduction may not be correct.

Example 3.6. Consider the queries

q(parity(y))← p(y) ∨ p(y)
q′(parity(y))← p(y) .

Let k be the number of values d such that D contains p(d). Then, q always
returns the value “even”, since it evaluates the parity of a bag with 2k values.
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The query q′ returns the parity of k since it evaluates the parity of a bag with k
values. Thus, q ⊆ q′, since if k is odd, the queries q and q′ will return different
values. Consider the queries q ⊗ q and q′ ⊗ q. Clearly, q ⊗ q will always return
the value “even”, since the aggregation function parity is evaluated over a bag
with cardinality 4k2. Similarly, q′ ⊗ q will always return the value “even”, since
it computes the parity of a bag of size 2k2. Therefore, the queries q⊗q and q′⊗q
are equivalent, even though q ⊆ q′.

3.2 Integrity Constraints

Even in the presence of arbitrary integrity constraints it is possible to reduce con-
tainment of aggregate queries to equivalence. We write q ⊆I q′ if for all databases
D satisfying the integrity constraints I, it holds that qD ⊆ q′D. Similarly, we
write q ≡I q′ if q ⊆I q′ and q′ ⊆I q.

Corollary 3.7 (Reduction w.r.t. Integrity Constraints). Consider the α-
queries q and q′ and the integrity constraints I. Suppose that α is an expandable
aggregation function. Then q ⊆I q′ if and only if (q ⊗ q) ≡I (q′ ⊗ q).

Proof. Theorem 3.3 allows us to reduce containment with respect to a set of
integrity constraints I to equivalence with respect to I. ��

It is possible to extend previous characterizations of equivalence of queries
from [18,6,4] to equivalence with respect to a set of functional dependencies F .
For example, it can be shown that if q and q′ are conjunctive count-queries, then
q ≡F q′ if and only if the chases of q and q′ with respect to F are isomorphic.

Corollary 3.8 (Decidability). Given a set of functional dependencies F , the
problem of checking whether q ⊆F q′ is decidable if q and q′ are count, sum or
max-queries.

Example 3.9. Consider the queries q and q′ which find the number of visitor
advisors of a student and the number of advisors of a student, respectively:

q(s, count)← advise(p, s) ∧ visitor(p)
q′(s, count)← advise(p, s) .

In general, q ⊆ q′. Suppose that every student can have at most one advisor,
i.e., the first column of advise is functionally dependent on the second. Let F
be the set of functional dependencies that contains exactly this dependency. We
will show that that q ⊆F q′ even though applying the chase to q and q′ has no
effect. To prove that q ⊆F q′, we consider the products q ⊗ q and q′ ⊗ q, i.e.,

(q ⊗ q)(s, count)← advise(p, s) ∧ visitor(p) ∧ advise(p′, s) ∧ visitor(p′)
(q′ ⊗ q)(s, count)← advise(p, s) ∧ advise(p′, s) ∧ visitor(p′).

By Corollary 3.7, q ⊆F q′ if and only if (q⊗ q) ≡F (q′⊗ q). Indeed, applying the
chase to (q ⊗ q) and (q′ ⊗ q) results in isomorphic, and thus, equivalent queries.
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3.3 Containment of Conjunctive Count-Queries

We show how the results in the previous section give rise to simpler characteri-
zations for conjunctive count-queries.

A bound atom is an atom with at least one argument that is a bound variable.
Otherwise, the atom is free. We sometimes write a conjunctive query as

q(x̄, α(ȳ))← ϕf (x̄, ȳ) ∧ ϕb(z̄, x̄, ȳ) .

where ϕf is a conjunction of free atoms and ϕb is a conjunction of bound atoms.
Note that for the special case of count-queries, ȳ is an empty tuple of variables.

Theorem 3.10 (Conjunctive Count-Queries). For the conjunctive queries

q(x̄, count)← ϕf (x̄) ∧ ϕb(z̄, x̄)
q′(x̄, count)← ϕ′

f (x̄) ∧ ϕ′
b(z̄

′, x̄).

it holds that q ⊆b q′ if and only if q ≡b q′, and q ⊆ q′ if and only if both the
following conditions hold

– the set of atoms in ϕ′
f (x̄) is contained in the set of atoms in ϕf (x̄) and

– ϕ′
b(z̄

′, x̄) is isomorphic to ϕb(z̄, x̄).2

When considering the general problem of aggregate query containment, we
assumed that both queries had the same grouping variables. This was without
loss of generality since equalities between grouping variables and between group-
ing variables and constants could be expressed using comparisons in the bodies
of the queries. In this section we discuss only conjunctive count-queries and such
queries do not have comparisons in their bodies. Therefore, we characterize con-
tainment of queries with different grouping terms. (Both queries have the same
number of grouping terms, however.) A query has the form

q(s̄, count)← ϕf (x̄) ∧ ϕb(z̄, x̄) ,

where s̄ is a tuple of terms and x̄ are exactly all the variables in s̄.
Let q(s̄, count)← ϕf (x̄) ∧ ϕb(z̄, x̄) and q′(s̄′, count)← ϕ′

f (x̄′) ∧ ϕ′
b(z̄

′, x̄′) be
queries. A mapping θ from the variables in q′ to the terms in q is a containment
mapping if the following conditions hold

1. θ(s̄′) = s̄, i.e., θ maps the head of q′ to the head of q;
2. θ is injective on the bound variables in q′;
3. the set of atoms in θ(ϕ′

b(z̄
′, x̄′)) is the same as the set of atoms in ϕb(z̄, x̄),

i.e., θ maps bound atoms in q′ to bound atoms in q;
4. θ(ϕ′

f (x̄′)) is contained in ϕf (x̄) ∧ ϕb(z̄, x̄), i.e., the images of the free atoms
in q′ appear in q.

The following corollary follows from Theorem 3.10 and will be used in Sec-
tion 4 when discussing rewritings of queries.

Corollary 3.11 (Conjunctive Count-Queries (2)). Let q and q′ be conjunc-
tive count-queries, possibly with different terms in their heads. Then q ⊆ q′ if
and only if there is a containment mapping from q′ to q.
2 Note that our isomorphisms ignore duplicate occurrences of atoms in a conjunction.
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3.4 Containment of Conjunctive Sum-Queries

Theorem 3.3 characterizes containment of sum-queries, since sum is an expand-
able function. We present a simpler condition for the case where the sum-queries
are conjunctive. A sum-query of the form q(x̄, sum(y))← ϕ(z̄, x̄, y) is associated
with a count-query qc defined as qc(x̄, y, count)← ϕ(z̄, x̄, y).

Theorem 3.12 (Conjunctive Sum-Queries). Let q and q′ be conjunctive
sum-queries. Then q ⊆ q′ if and only if qc ⊆ q′

c, and q ⊆b q′ if and only if
qc ⊆b q′

c.

Proof. (Sketch) This follows from the the fact that q ≡ q′ if and only if qc ≡ q′
c

and q ≡b q′ if and only if qc ≡b q′
c, shown in [18].

4 Rewriting Conjunctive Count-Queries

The problem of answering queries using views has been studied for different
classes of queries [1,8,11,15]. See [14] for a comprehensive survey of related work.
The ability to answer queries using views is useful for query optimization, for
maintaining independence of physical and logical database schemas and in the
context of data integration. We focus here on finding maximally-contained sets
of rewritings, a problem that arises when integrating data from varied sources.

We present a sound and complete method to compute maximally-contained
sets of rewritings for conjunctive count-queries. Our results are also immediately
applicable to non-aggregate queries evaluated under bag-set semantics. A similar
method can be used to compute maximally-contained sets of rewritings for sum-
queries. We do not show how to find such sets because of space limitations.

Rewriting aggregate queries has been considered in [6,21,9]. However, to the
best of our knowledge, the problem of finding maximally-contained sets of rewrit-
ings of aggregate queries has not been dealt with at all. In fact, in [14], this
problem is mentioned as an interesting open problem.

4.1 Definitions

Let V be a set of queries, called views. The queries in V are defined over the
relational vocabulary P and use the constants in C. We say that a predicate v
is defined in V if there is a view in V which has the predicate v as its head. We
also call v a view predicate.

We now allow queries to be defined over the relational vocabulary V . Let r be
such a query. Any view predicate v in r’s body is considered an IDB predicate.
Thus, the extension of v with respect to a database D contains exactly the tuples
derived by evaluating v on D, i.e., vD. We denote the result of evaluating r on
D, using the view definitions in V , as rDV .

A query that is defined over P is said to be defined over the base predicates.
A query that is defined over V is said to be defined over the view predicates. Let
q be a query defined over P and let r, r′ be queries defined over V . We say that
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r is contained modulo V in q, denoted r ⊆V q, if for all database D, rDV ⊆ qD.
Similarly, r ⊆V r′ if rDV ⊆ r′DV . We define equivalence modulo V , denoted ≡V ,
in a similar fashion. If r ⊆V q we say that r is a rewriting of q using V . Note
that our notion of a rewriting differs from the standard definition in that r must
be contained in q and need not be equivalent to q.

Let q be a query, let R be a set of rewritings of q using views V and let R
be a subset of R. We say that R is a maximally-contained set of rewritings of q
with respect to R if for every r ∈ R there is an r′ ∈ R such that r ⊆V r′.

4.2 Class of Views and Class of Rewritings

We consider the problem of finding rewritings of a conjunctive count-query given
a set of views. A count-query is sensitive to multiplicities, and count-views are
the only type of aggregate views that do not lose multiplicities.3 Thus, we only
use count-views when rewriting count-queries. Even if we restrict ourselves to
using count views, there may be an infinite number of aggregate terms that can
be usable in the head of a rewriting of a count-query. However, we will restrict
ourselves to a specific class of queries that is both natural and expressive.

Finding a rewriting of a count-query q using a set of views V involves two
steps:

– Generate: Create a query r over the view predicates V .
– Test: Determine if r is contained in q.

Observe that it is might not possible to check directly if r ⊆V q since r
may not even be a count-query and r uses the view predicates and not the
base predicates. Therefore, we have no characterizations of containment that
can allow us to determine directly if r ⊆V q. In order to overcome this problem,
we will restrict ourselves to choosing r from the class of queries Unf(V ), defined
below. We will show that if r ∈ Unf(V ), then it is possible to find a count-query
r′ over the base predicates that is equivalent to r. Thus, we will be able to
check whether r ⊆V q by checking whether r′ ⊆ q, using the characterizations
in Theorem 3.10 and Corollary 3.11.

Let V = {vi(s̄i, count) ← ϕi(z̄i, x̄i)}i∈I be a set of count-views. Let r be a
query defined over V of the form

r(s̄, sum(
n∏

j=1

wj))← v1(θ1(s̄1), w1) ∧ · · · ∧ vn(θn(s̄n), wn) . (2)

We call θi the instantiation of vi. Note that wi is the variable that replaces the
aggregation term count in the head of vi. A view in V can appear any number
of times in r. The unfolding of r, denoted ru , is derived by

1. replacing each view atom vi(θi(s̄i), wi) in the body of r by ϕi(θ′
i(z̄i), θi()̄xi)

where θ′
i is an injective mapping of z̄i to unused variables and

3 Although sum-views are sensitive to multiplicities, they lose these values. For exam-
ple, sum-queries ignore occurrences of zero values.



Containment of Aggregate Queries 121

2. replacing the aggregation function in the head of r with the function count.

Thus, ru has the form

ru(s̄, count)← ϕ1(θ′
1(z̄1), θ1(x̄1)) ∧ · · · ∧ ϕn(θ′

n(z̄n), θn(x̄n))

We say that r has the unfolding property if for all databases D it holds
that (ru)D ≡V rDV . Intuitively, this property states that evaluating r over D by
taking V into consideration will yield the same result as evaluating the unfolding
of r on the relations in the database. This is a natural property that is required
when rewriting non-aggregate queries. In [6] it has been shown that for a query
to have the unfolding property it must be of the form presented in Equation 2.
We denote as Unf(V ) the class of queries with the form presented in Equation 2
such that vi ∈ V , for all i.

Now, given a count-query q and a query r in Unf(V ), it is possible to deter-
mine if r ⊆V q, since it is possible to find a count-query over the base predicates
that is equivalent to r. This count-query is simply the unfolding of r, i.e., ru .

Example 4.1. Consider the query q and the views V = {v1, v2, v3} defined below:

q(p, g, count)← study(s, c, g) ∧ teach(p, c)
v1(p, c, count)← teach(p, c) ∧ full time(p)

v2(s, c, g, count)← study(s, c, g)
v3(p, g, count)← teach(p, c) ∧ visitor(p) ∧ study(s, c, g) .

Query q computes the number of students with a given grade, for a given pro-
fessor. View v1 returns information about the courses that full-time professors
teach. (The count value will always be one in this view since all the variables
in the view are free.) View v2 returns students with courses that they studied
and their respective grades. The view v3 computes the number of students with
a given grade, for a given visiting professor.

Consider the query r1 defined over the view predicates and its unfolding ru
1

r1(p, g, sum(w1 × w2))← v1(p, c, w1) ∧ v2(s, c, g, w2)
ru
1 (p, g, count)← teach(p, c) ∧ full time(p) ∧ study(s, c, g) .

By applying Theorem 3.10 we derive that ru
1 ⊆ q and therefore, r1 ⊆V q.

Consider also the query r2 defined over the views and its unfolding ru
2

r2(p, g, w3)← v3(p, g, w3)
ru
2 (p, g, count)← teach(p, c) ∧ visitor(p) ∧ study(s, c, g) .

Once again, using Theorem 3.10, we can verify that ru
2 ⊆ q and thus, r2 ⊆V q.

In this manner, we found two rewritings of q using the views. It is possible to
show that {r1, r2} is a maximally-contained set of rewritings of q w.r.t. Unf(V ).

However, the following example will show that if only queries from Unf(V )
are considered, it may not be possible to find a finite maximally-contained set
of rewritings for a given query.
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Example 4.2. Consider the following query and views

q(x, count)← a(x, z) ∧ c(x, u)
v1(x, y, count)← a(x, z) ∧ b(x, y)

v2(x, count)← c(x, u).

The query r1 has the unfolding property (i.e., r1 ∈ Unf(V )), but is not a rewriting
of q:

r1(x, sum(w1 × w2))← v1(x, y, w1) ∧ v2(x, w2).

Intuitively, r1 is not a rewriting of q since the atom b(x, y) is bound in ru
1 and

does not appear in q. However, for any constant d, the query rd ∈ Unf(V )

rd(x, sum(w1 × w2))← v1(x, d, w1) ∧ v2(x, w2)

is a rewriting of q. Therefore, if we consider only queries with the unfolding
property, a maximally-contained set of rewritings w.r.t. Unf(V ) will contain an
infinite number of queries (one for each constant).

In order to ensure the existence of a finite maximally-contained set of rewrit-
ings, we will choose our rewritings from a class that is more expressive than
Unf(V ), called PUnf(V ). Intuitively, PUnf(V ) contains projections of queries in
Unf(V ). Formally, let p(s̄, sum(

∏n
j=1 wj)) be a query in Unf(V ). We say that the

query r

r(s̄′, w)← p(s̄, w) (3)

is a k-projection of p if

1. s̄′ contains exactly the first k terms in s̄, i.e., s̄ = (s̄′, t̄) for some tuple of
terms t̄ and

2. every variable in s̄ and not in s̄′ appears only in free atoms in pu .

If r is a k-projection of p, we say that p is the k-projectee of r. When evaluating
a query such as r, the projection is taken as a set-projection, i.e., duplicates are
removed. Property 2 ensures that each tuple in a k-projection is associated with
a single aggregation value (see [5]).

Given a set of views V , the class PUnf(V ) contains all k-projections of queries
in Unf(V ), for all k. The reader will note that any query in Unf(V ) can be
expressed in PUnf(V ) by simply taking s̄′ as s̄.

Example 4.3. Recall the query q and views v1 and v2 from Example 4.2. Let
p ∈ Unf(V ) and r ∈ PUnf(V ) be the queries

p(x, y, sum(w1 × w2))← v1(x, y, w1) ∧ v2(x, w2)
r(x, w)← p(x, y, w) .

It is not difficult to see that r ⊆V q and for all d, it holds that rd ⊆V r. (We
show formally how to check for containment below.) In fact, one can show that
the set {r} is a maximally contained rewriting of q w.r.t. PUnf(V ).
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Given a query q and a set of views V , we will be interested in finding a
maximally-contained set of rewritings of q w.r.t. PUnf(V ). We extend the def-
inition of a containment mapping (page 118) to allow us to check if a query
in PUnf(V ) is contained in a count-query. Consider the queries p(s̄, count) and
p′(s̄′, count). Suppose that the tuples s̄ and s̄′ are at least of size k. We say that a
mapping θ from the variables in p′ to the terms in p is a k-containment mapping
if it fulfills requirements 2 through 4 of containment mappings and also maps
the first k terms in s̄′ to the first k terms in s̄. Our k-containment mappings can
be used to check if a query in PUnf(V ) is contained in a count-query.

Lemma 4.4 (Containment of PUnf(V ) Queries). Let q be a conjunctive
count-query, V be a set of views and r be a query in PUnf(V ). Suppose that p is
the k-projectee of r. Then r is a rewriting of q, i.e., r ⊆V q, if and only if there
exists a k-containment mapping from q to pu .

Lemma 4.4 implies an algorithm for checking if a query in PUnf(V ) is a
rewriting. Hence, when searching for a maximally-contained set of rewritings,
we simply have to generate queries in PUnf(V ) and check if they are rewritings.
For this procedure to terminate, we show that it is sufficient to generate a finite
number of queries. In fact, it is possible to bound the number of views being
used and the number of constants needed. This is similar to the conjunctive case.
Using Lemma 4.4 and 4.5, we can show that it is possible to find a maximally-
contained set of rewritings of a given query w.r.t. the class PUnf(V ).

Lemma 4.5 (Size of Rewriting). Let q be a query and let r ∈ PUnf(V ) be
a rewriting of q. Suppose that the body of q contains n atoms. Then there is a
rewriting r′ of q such that r ⊆V r′ and the projectee of r′

– contains at most n views and
– does not contain any constant not appearing in either V or q.

Theorem 4.6 (Maximally-Contained Set of Rewritings). Let q be a query
and V be a set of views. It is possible to find a maximally-contained set of
rewritings of q w.r.t. PUnf(V ) of finite size.

Theorem 4.6 suggests an exponential algorithm for finding a maximally-
contained set of rewritings. It can be improved using standard rewriting algo-
rithm techniques, such as those appearing in [7,19]. Such algorithms have been
shown to run well in practice [19].

5 Conclusion

The class of expandable aggregation functions has been introduced and we
have shown how to reduce containment of queries with expandable aggregation
functions to equivalence of queries. This reduction holds even in the presence
of arbitrary integrity constraints. Simpler characterizations for containment of
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count and sum-queries have been presented. The problem of finding maximally-
contained sets of rewritings has been solved for conjunctive count-queries.

Containment of non-aggregate conjunctive queries under bag and bag-set
semantics has been studied in [3,12]. In these papers, a query q is contained in
a query q′ if for all databases D, it holds that qD is a sub-bag of q′D. For count-
queries, this is similar to defining that q(x̄, count) is contained in q′(x̄, count)
if for all databases D and tuples d̄, if (d̄, c) ∈ qD, then there is a c′ ≥ c such
that (d̄, c′) ∈ q′D. It has been shown independently by [3] and by [12] that
containment of conjunctive queries under bag semantics is decidable if the queries
do not contain any repeated predicates. Undecidability of containment of unions
of conjunctive queries under bag semantics has been proven in [12].

Our definition of containment differs from the definition above and we feel
that it is more natural in the context of finding maximally-contained sets of
rewritings. For our definition of containment, we know that if q ⊆ q′ then every
result of applying q on a database would also be achieved by q′. The correspond-
ing definition of containment in [3,12] would only allow us to derive lower bounds
on the count values of q′. Moreover, our definition carries over easily to other
types of aggregation functions.

We leave for future research the problem of deciding containment of queries
with a HAVING clause, as well as queries containing aggregation functions that
are not expandable, such as prod and parity. Finding tight upper and lower
bounds for the complexity of containment is another important open problem.
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