
Fundamental Techniques for Order Optimization

David Simmen Eugene Shekita Timothy Malkemus

IBM Santa Teresa Lab IBM Almaden Research Center IBM Austin Lab

dsimmen@vnet.lbm. com shekita@almaden. ibm. com malkemus@vnet Ibm com

Abstract

Decision support applications are growing in popularity as

more business data is kept on-line. Such applications t yp-

ically include complex SQL queries that can test a query

optimizer’s ability to produce an efficient access plan. Many

access plan strategies exploit the physical ordering of data

provided by indexes or sorting. Sorting is an expensive op-

eration, however. Therefore, it is imperative that sorting

is optimized in some way or avoided all together. Toward

that goal, this paper describes novel optimization techniques

for pushing down sorts in joins, minimizing the number of

sorting columns, and detecting when sorting can be avoided

because of predicates, keys, or indexes. A set of fimdamen-

tal operations is described that provide the foundation for

implementing such techniques. The operations exploit data

properties that arise from predicate application, uniqueness,

and fictional dependencies. These operations and tech-

niques have been implemented in IBM’s DB2/CS.

1 Introduction

As the cost of disk storage drops, more business data

is being kept on-line. This has given rise to the no-

tion of a data warehouse, where non-operational data is

typically kept for analysis by decision support applica-

tions. Such applications typically include complex SQL

queries that can test the capabilities of an optimizer.

Often, huge amounts of data are processed, so an op-

t imizer’s decisions can mean the difference between an

execution plan that finishes in a few minutes verses one

that takes hours to run.

Many access plan strategies exploit the physical or-

dering of data provided by indexes or sorting. Sorting is

an expensive operation, however. Therefore, it is imper-

ative that sorting is optimized in some way or avoided

all together. This leads to a non-trivial optimization

problem, however, because a single complex query can

give rise to multiple interesting orders [SAC+79]. Here,

Permission to make digifal~ard copy of part or all of this work for personal
or classroom use is ranted without fee provided that copies are not made

?or distributed for pro It or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGMOD ’96 6/96 Montreal, Canada
O 1996 ACM 0-89791 -794-4t96fOO06. ..$3.50

an interesting order refers to a specification for any or-

dering of the data that may prove useful for processing

a join, an ORDER BY, GROUP BY, or DISTINCT.
To be effective, an optimizer must detect when indexes

provide an interesting order, the optimal place to sort

if sorting is unavoidable, the minimal number of sorting

columns, whether two or more interesting orders can be

combined and satisfied by a single sort, and so on. This

process will be referred to as o?’deT optzmzzatzon.

At first glance, it might seem like hash-based set op-

erations [BD83, DKO+ 84] make order optimization a

non-issue, since hash-based operations do not require

their input to be ordered. An index may already provide

an interesting order for some operation, however, mak-

ing the hash-based alternative more expensive. This is

particularly true in warehousing environments, where

indexes are pervasive. As a result, an optimizer needs

to be cognizant of interesting orders. It should always

consider both hash- and order-based operations and pick

the least costly alternative [Gra93].

Although people have been building SQL query op-

timizers for close to twenty years [JV84, Gra93], there

haa been surprisingly little written about the problem

of order optimization. This paper describes novel tech-

niques to address that problem. One of the paper’s key

contributions is an algorithm for reducing an interest-

ing order to a simple canonical form by using applied

predicates and functional dependencies. This is essen-

tial for determining when sorting is actually required.

Another important contribution is the notion of sort-

ahead, which allows a sort for something like an OR-

DER 13Y to be pushed down in a join tree or view. All

of these techniques have been implemented in the query

optimizer of IBM’s DB2/CS, which is the client-server

version of DB2 that runs 0S/2, Microsoft Windows NT,

and various flavors of UNIX. Henceforth, DB2/CS will

be referred to as simply DB2. Much of the discussion in

this paper is framed in the context of the DB2 query op-

timizer. The techniques that are described have general

applicability y, however, and could be used in any query

optimizer.

The remainder of this paper is organized as follows:

In Section 2, related work is described. This is followed

by a brief overview of the DB2 optimizer in Section 3.

Next, fundamental operations for order optimization are

57

described in Section 4. In Section 5, the architecture of

the DB2 optimizer that has been built around those fun-

damental operations is described. An example is then

provided in Section 6 to illustrate how things tie to-

gether. Advanced issues beyond the scope of this paper

are mentioned in Section 7. Finally, performance results

are presented in Section 8, and conclusions are drawn

in Section 9.

2 Related Work

The classic work on the System R optimizer by Selinger

et al. [SAC+ 79] was the first research to look at the

problem of order optimization. That paper coined the

term “interesting orders”. In System R, interesting or-

ders were mainly used to prevent subplans that satisfy

some useful order from being pruned by less expensive

but unordered subplans during bottom-up plan genera-

tion.

A recent paper on the Rdb optimizer [Ant 93] talked

about combining interesting orders from ORDER BY,

GROUP BY, and DISTINCT clauses, if possible, so at

most one sort could be used. That paper was primarily

an overview of the Rdb optimizer, however. It did not

specifically focus on order optimization.

Other, more loosely related papers include those on

predicate migration [He194] and group-by push-down

[YL93, CS93]. Predicate migration considers whether

an expensive predicate should be applied before or af-

ter a join. Similarly, group-by push-down considers

whether GROUP BY should be performed before a join.

In each case, an optimizer determines which is the bet-

ter alternative using its cost estimates. Both techniques

are similar to the notion of sort-ahead, as described in

this paper.

3 Overview

The DB2 optimizer is a direct descendent of the Star-

burst optimizer described in [Loh88, HFLP89]. Among

other things, the DB2 optimizer uses much more sophis-

ticated techniques for order optimization. This sect ion

provides an overview of the DB2 optimizer to establish

some background and terminology. More details will be

given later.

The DB2 optimizer actually has several distinct op-

timization phases. Here, we are mainly concerned with

the phase where traditional cost-based optimization oc-

curs. Prior to this phase, an input query is parsed and

converted to an intermediate form called the que~y gmph

model (QGM).

The QGM is basically a high-level, graphical repre-

sentation of the query. Boxes are used to represent re-

lational operations, while arcs between boxes are used

to represent quantzjie~s, i.e., table references. Each box

includes the predicates that it applies, an input or out-

put order specification (if any), a distinct flag, and so

on. The basic set of boxes include those for SELECT,

GROUP BY, and UNION. Joins are represented by a

SELECT box with two or more input quantifiers, while

ORDER BY is represented by a SELECT box with an

output order specification.

After its construction, the original QGM is trans-

formed into a semantically equivalent but more “effi-

cient” QGM using heuristics such as predicate push-

down, view merging, and subquery-to-join transforma-

tion. [PHH92]. Finally, cost-based optimization is per-

formed. During this phase, the QGM is traversed and

a query e~ecution plan (QEP) is generated.

A QEP can be viewed as a dataflow graph of oper-

atoTs, where each node in the graph corresponds to a

relational operation like a join or a low-level operation

like a sort. Each operator consumes one or more input

records (i.e., a table), and produces an output set of

records (another table). We will refer to these as input

and output .stTeams. Figure 1 illustrates what the QGM

and QEP might look like for a simple query.

QGM

QSELECT

QUERY

select ay, sum(b.y)
jkom a, b
where a-r = b.x
group by a.y

QEP

ogroup by

a y

box

o

operawr
-.. ..,.$...

GROUP BY sort ,....-

a.v

-Rb&
a table scan index scan

a b

Figure 1: Simple QGM and QEP Example

Each stream in a QEP has an associated set of pToper-

tz.es [GD87, Loh88]. Examples of properties include the

columns that make up each record in the stream, the set

of predicates that have been applied to the stream, and

the order of the stream. Each operator in a QEP deter-

mines the properties of its output stream. The proper-

58

ties of an operator’s output stream are a function of its

input stream(s) and the operation being applied by the

operator. For example, a sort operator passes on all the

properties of its input stream unchanged except for the

order property and cost. Note that a stream’s order, if

any, always originates from an ordered index scan or a

sort.

During the planning phase of optimization, the

DB2 optimizer builds a QEP bottom-up, operator-by-

operator, computing properties as it goes. At each step,

different alternatives are tried and more costly subplans

with comparable properties are pruned [Loh88]. At

strategic points during planning, the opt imizer may de-

cide to build a QEP which satisfies an interesting order.

A sort may need to be added to a QEP if there is no

existing QEP with an order property satisfying the in-

teresting order.

Interesting orders are generated in a top-down scan

of QGM prior to the planning phase. This is referred

to as the order scan of QGM. Interesting orders arise

from joins, ORDER BY, GROUP BY, or DISTINCT,

and are hung off the QGM. Here, both order properties

and interesting orders will be denoted as a simple list

of columns in major to minor order, i.e., (cl, cz,). ..}cn

Without loss of generality, we will always assume that

an ascending order is required for each column c~.

Interesting orders are pushed down and combined in

the order scan whenever possible. This allows one sort

to satisfy multiple interesting orders. As interesting or-

ders are pushed down they can turn into sort-ahead or-

ders. These allow the optimizer to try pushing down a

sort for, say, an ORDER BY to an arbitrary level in a

join tree. Different alternatives are tried, and only the

least costly one is kept. The next section looks at the

fundamental operations on interesting orders needed to

accomplish these tasks.

4 Fundamental Operations for

Order Optimization

4.1 Reduce Order

The most fundamental operation used by order opti-

mization is something referred to as reduction. Reduc-

tion is the process of rewriting an order specification

(i.e., an order property or interesting order) in a simple

canonical form. This involves substituting each column

in the specification with a designated representative of

its equivalence class (called the equivalence class head)

and then removing all redundant columns. Reduction is

essential for testing whether an order property satisfies

an interesting order.

As a motivating example, consider an arbitrary inter-

esting order 1 = (z, y), and suppose an input stream

has the order property OP = (y). A naive test would

conclude that I is not satisfied by OP, and a sort would

be added to the QEP. Suppose, however, that a predi-

cate c~f the form CO1= constant has been applied to the

input stream, e.g., z = 10. Then the column z in 1 is re-

dundant since it has the value 10 for all records. Hence,

1 can be rewritten as 1 = (y). After being rewritten,

it is easy to determine that OP satisfies I, so no sort

is necessary. Note that a literal expression, host vari-

able, or correlated column qualify as a constant in this

context,

Recluction also needs to take column equivalence

classes into account. These are generated by predicates

of the form cot = CO1. For example, suppose 1 = (z, z)

and OP = (y, z). Further suppose that the predicate

z = y has been applied. The equivalence class gener-

ated by z = y allows OP to be rewritten as OP = (z, z).

After being rewritten, it is easy to determine that OP

satisfies J.

Recluction also needs to take keys into account. For

example, suppose 1 = (z, y) and OP = (x, z). If z

is a key, then these can be rewritten as 1 = (z) and

OP = (z). Here, y and z are redundant since z alone is

sufficient to determine the order of any two records.

Keys are really just a special case of functional de-

pendencies (FDs) [DD92]. So rather than keys, FDs are

actually used by reduction, since they are more power-

ful. Irl the DB2 optimizer, a set of FDs are included in

the properties of a stream. The way FDs are maintained

as a property will be discussed in more detail later.

The notation used for FDs is as follows: A set of

columns A = {al, az, ..., an} functionally determines

columns B = {bl, bz, ..., bm} if for any two records with

the same values for columns in A, the values for columns

in 1? a,re also the same. This is denoted as A + B. The

head ctf the FD is A, while the tail is B.

It is important to note that all of the above optimiza-

tion can be framed in terms of functional dependen-

cies. This is because a predicate of the form z = 10

gives rise to {} + {z}, i.e., the “empty-headed FD

[DD9;!]. Moreover, a predicate of the form z = y gives

rise to {z} + {y} and {y} -i {x}. If z = y is a join

predicate for an outer join, then {z} -i {y) holds if z is

a column from a non-null-supplying side. In addition,

{x} + {all COIS} when z is a key. Finally, {z}+ {a}

is alwirtys true.

The mapping of predicate relationships and keys to

functional dependencies makes it possible to express re-

duction in a very simple and elegant way. The algorithm

for Reduce Order is shown in Figure 2. In the algorithm,

note that the equivalence class head is chosen from those

columns made equivalent by predicates already applied

to the stream. Also note that B + {ci} if there exists

some J? + C where B! ~ B and C ~ {ci}. This follows

from the algebra on FDs [DD92]. Consequently, simple

subset operations can be used on the input FDs to test

59

whether B --+ {c,}

Reduce Order

input:

a set of FDs, applied predicates, and

order specification O = (cl, c2, Cn)

output:

the reduced version of O

1) rewrite O in terms of each column’s

equivalence class head

2) scan O backwards

3) for (each column c, scanned)

4) let B = {cl, c2, ci-,}, i.e.,

the columns of O preceding c~

5) if (B -+ {cl}) then

6) remove c. from O

7) endif

8) endfor

Figure 2: Reduce Order Algorithm

The correctness proof for Reduce Order is straightfor-

ward. Consider what happens when two records T1 and

T2 are compared. The only time the value of Ci affects

their order is when rl and rz have the same values for all

columns in C. But then rl .c, and rj .c, must also have

the same value because B + {cl}. Consequently, re-

moving c, will not change the order of records produced

by O.

Before moving on, note that an order specification

can become “empty” after being reduced. For example,

suppose the predicate z = 10 has been applied and the

interesting order 1 = (z) is reduced. The predicate

z = 10 gives rise to {} + {z}. Consequently, 1 will

reduce to the empty interesting order I = (), which is

trivially satisfied by any input stream.

4.2 Test Order

As it generates a QEP, the optimizer has to test whether

a stream’s order property OP satisfies an interesting or-

der 1. If not, a sort is added to the QEP. The algorithm

for Test Order is shown in Figure 3. Note that when a

sort is required, the reduced version of 1 provides the

minimal number of sorting columns, which is important

for minimizing sort costs.

4.3 Cover Order

As mentioned earlier, the DB2 optimizer tries to com-

bine interesting orders in the top-down order scan of

QGM. This often allows one sort to satisfy multiple in-

teresting orders. When two interesting orders are com-

bined, a cover is generated. The cover of two interesting

Test Order

input:

an interesting order I and an order

property OP

output:

true if OP satisfies 1, otherwise false

1) reduce 1 and OP

2) if (1 is empty or the columns in 1

are a prefix of the columns in OP) then

3) return true

4) else

5) return false

6) endif

Figure 3: Test Order Algorithm

orders 11 and 12 is a new interesting order C such that

any order property which satisfies C’ also satisfies both

11 and 12, For example, the cover of II = (z) and

17, = (z, y) is C’= (z, y).

Of course, it is not always possible to generate a

cover. For example, there is no cover for II = (y, z)

and 12 = (z, y, z). As in Test Order, however, interest-

ing orders need to be reduced before attempting a cover.

Suppose the predicate z = 10 has been applied in this

example. Then the interesting orders would reduce to

II = (g) and 12 = (y, z), giving the cover C = (y, z).

The algorithm for Cover Order is shown in Figure 4.

Cover Order

znpuk

interesting orders 11 and 12

output

1)

2)

3)

4)

5)

6)

7)

the cover of 11 and 12; or a return code

indicating that a cover is not possible

reduce 11 and 12

w. 1.e.g., assume 11 is the shorter interesting order

if (11 is a prefix of 12) then

return 12

else

return “cannot cover 11 and 12°

endif

Figure 4: Cover Order Algorithm

4.4 Homogenize Order

As mentioned earlier, an attempt is made to push down

interesting orders in the order scan of QGM so that sort-

ahead may be attempted. When an interesting order I is

60

pushed down, some columns may have to be substituted

with equivalent columns in the new context. This is

referred to as homogenuzatzon. For example, consider

the following query:

select *

from a, b

where a.x = b.x

order by ax, b.y

Here, the ORDER BY gives rise to the interesting

order 1 = (a.z, by). The order scan will try to push

down I to the access of both table a and table b as a sort-

ahead order. For the access of table b, the equivalence

class generated by a.x = b.z is used to homogenize I as

Ib = (b.z, b.y).

I cannot be pushed down to the access of table a,

since b.y is unavailable until after the join. However,

suppose a. x is a base-table key that remains a key after

the join [DD92]. If so, {a.z} + {by}. This allows 1

to be reduced to I = (a.x), which can be pushed down

to the access of table a. As this example illustrates,

an interesting order needs to be reduced before being

homogenized. The algorithm for Homogenize Order is

shown in Figure 5.

Homogenize Order

input:

an interesting order I and target

columns C = {cl, cz,cn }
output

1)

2)

3)

4)

5)

6)

7)

~ homogenized to C, that is, Ic; or a return

code indicating that Ic is not possible

reduce I

using equivalence classes, try to substitute each

column in 1 with a column in C

if (all the columns in 1 could be substituted) then

return lC

else

return “cannot homogenize I to C“

endif

Figure 5: Homogenize Order Algorithm

Note that unlike Reduce Order, Homogenize Order

can choose any column in the equivalence class for sub-

stitution. Moreover, there is no need to choose from

just the columns that have been made equivalent by

predicates applied so far. Columns that will become

equivalent later because of predicates that have yet to

be applied can also be considered. This is because ho-

mogenization is concerned with producing an order that

will eventually satisfy 1.

5 The Architecture for Order

Optimization in DB2

This section describes the overall architecture of the

DB2 optimizer for order optimization. Only a high-level

summary of the architecture is provided. The focus will

be those parts of the architecture that have been built

arouncl the fundamental operations discussed in the pre-

vious section.

5.1 The Order Scan of QGM

As mentioned earlier, interesting orders are generated

during the order scan, which takes place prior to the

planning phase of optimizat ion. Interesting orders arise

from joins, ORDER BY, GROUP BY, or DISTINCT,

and are hung off the QGM.

Each QGM box has an associated output order re-

quirement, and each QGM quantifier has an associated

input (order requirement. In contrast to an interesting

order, an order requirement forces a stream to have a

specific order. Either the input or output order require-

ment can be empty. Output order requirements come

from ORDER BY, while input order requirements cur-

rently come from GROUP BY. (Note that this does not

preclude hash-based GROUP BY from being consid-

ered during the planning phase of optimization.) Each

QGM box also has an associated list of interesting or-

ders, which can double as sort-ahead orders.

Conceptually, the order scan has four stages. In the

first stage, input and output order requirements are de-

termined for each QGM box. Then, interesting orders

for each DISTINCT is determined. Next, interesting

orders for merge-joins and subqueries are determined.

Finally, the QGM graph is traversed in a top-down man-

ner.

In tlhe top-down traversal, interesting orders are re-

cursively pushed down along quantifier arcs. When an

interesting order is pushed down to a quantifier Q, it

gets hc)mogenized to Q’s columns and then covered with

Q‘s input order requirement, if any. Similarly, before an

interesting order can be pushed into a box B and added

to 1?’s list of interesting orders, it gets covered with B‘s

output order requirement.

One subtlety in the order scan is that the algorithms

for Cover Order and Homogenize Order require their

inputs to be reduced. This in turn requires a set of

applied predicates and FDs. Unfortunately, these are

not known in the order scan since they are computed as

properties during the planning phase of optimization.

This problem is resolved by proceeding optimistically.

When an interesting order I is pushed down, the or-

der SCaLn simply assumes that all the predicates below a

given box have been applied. Furthermore, if 1 cannot

be fully homogenized to a quantifier, the largest prefix

61

of I that can be homogenized is used. This is done in

the hope that some FD will make the suffix redundant.

The planning phase can detect when these assumptions

turn out to be false.

5.2 The Planning Phase of

Optimization

During the planning phase of optimization, the DB2

optimizer walks the QGM bottom-up, box-by-box, and

incrementally builds a QEP. For each box, alternative

subplans are generated, and more costly subplans with

comparable properties are pruned [Loh88]. The input

and output interesting orders associated with each box

are used to detect when a sort is required.

As a QEP is built, the interesting orders that hang off

a QGM box are used for both pruning and to generate

sort-ahead orders. During join enumeration, for exam-

ple, the optimizer will try sorting the outer for each

interesting order it finds. This allows a sort for, say, an

ORDER BY to be pushed down an arbitrary number

of levels in a join tree or view. If no sort is actually

required at any level, this will be detected, of course.

Note that this is only done for join methods where the

order of the outer stream is propagated by the join.

When an interesting order is pushed down to the

outer of a join, it has to be homogenized to the quan-

tifier(s) that belong to the outer. This cannot be done

during the order scan, since the order in which joins are

enumerated is not known then. In the case of a merge-

join, a cover with the merge-join order is also required.

Unfortunately, the process of pushing down sort-

ahead orders increases the complexity of join enumera-

tion [OL90]. This is because two join subtrees with the

same tables but different orders are not compared and

pruned against each other. It is possible to show that

the complexity of join enumeration increases by a factor

of 0(n2) for n sort-ahead orders. In practice, this has

not been problem, since typically n < 3.

5.2.1 Properties

For order optimization, the most important properties

are the order property, the predicate property, the key

property, and the FD property. Each of these is dis-

cussed in detail below. For any property x, the two

primary ssues are how z propagates through operators

and how two plans are compared on the basis of x.

How the different properties propagate will be dis-

cussed shortly. In terms of the way properties are com-

pared, the DB2 optimizer treats everything uniformly.

Let PI and P2 be two plans being compared. Also, over-

load the symbol “<” for properties to mean less general

or equivalent. Then P2 prunes PI if P2 cost ~ PI cost

and for every property x, PI .x < P2 .x. In other words,

PI can be pruned if it costs more than P2 and has less

general properties. Thus, for pruning, it suffices to de-

fine ~ for each property.

The Order Property

The order property (if any) of a stream always originates

from an ordered index scan or a sort. The way it prop-

agates for most relational operators is straightforward

except for projections and joins. If any column Ci of an

order property OP = (cl, cz, c~) is projected, then

only the prefix OP’ = (cl, CZ, ci_I) k propagated.

For both nested-loops and merge-join [BE76], the or-

der of the outer stream is propagated. In the special

case when the outer has only one record, however, the

inner order is propagated. There are also circumstances

where the outer and inner orders can be concatenated,

but that discussion is beyond the scope of this paper.

For hash-join [DKO+ 84], neither the outer nor inner or-

der is propagated.

The Test Order algorithm given in Section 4.2 is used

to compare the order properties OPI and OP2 of two

plans during pruning. Let int(OP1) denote OP1 cast as

an interesting order. Then “<” can be defined for the—
order property as follows: OP1 < OPZ if OPZ satisfies

in’t(oPl).

The Predicate Property

The predicate property is simply the set of conjuncts

which have been applied to a stream. Each operator

propagates the predicate property by taking the predi-

cate property of its input stream and unioning it with

any conjuncts applied by the operator. For the predi-

cate property, “<” is defined as follows: Let PP1 and

PP2 be the predicate properties of two plans being com-

pared. Then, PPI ~ PP2 if PPI ~ PP2.

The predicate property is used to determine both

column equivalences and functional dependencies that

arise from the application of equality predicates. In the

DB2 optimizer, FDs that arise from predicates are not

actually added to the FD property, however, since this

information would be redundant and would only add

to the complexity of maintaining the FD property (see

below).

The Key Property

The key property of a stream is the set of unique keys

for the stream. Each key K is represented as a set

of columns K = {cl, C2, Cn}. Keys are useful for a

variety of reasons beyond their role in order optimiza-

tion. One example is their use in DISTINCT elimina-

tion [PL94]. Consequently, in the DB2 optimizer, keys

are maintained as a separate property.

Keys originate from base-table constraints or can be

added via a GROUP BY or DISTINCT operation. If

62

any column c, of a key K = {Cl, Cz,cn} in a key

property KP is projected by an operator, then K is

removed from KP.

Whether a key propagates in a join requires anal-

ysis of the join predicates and the keys of the join’s

input streams. Consider the join of two streams S1

and S2 on join predicates JP. Let the key proper-

ties of S1 and S2 be denoted asKP1 and KP2 respec-

tively. If a given row of S1 can match at most one

row of S2 (i.e., the join is n-to-l), then KP1 is prop-

agated. This is true if any key K = {Clj Cz,cn} of

KP2 is fully qualzjledby predicates in JP of the form

S1.col = S2,ca for all Ci. Similarly, if the join is 1-

to-n, then KP2 is also propagated. If neither KPI nor

KP2 can be propagated, then the key property of the

join is formed by generating all concatenated key pairs

K1 . K2, where K1 c KPI and K2 c KP2. For example,

ifKl = {al, az, ..., an} and K2 = {bl, bz, bm} then

K1 .Kz = {al, az,a~. b11b2, b~},b~}.

An attempt is made to keep each key property as

“succinct” as possible by removing keys that have be-

come redundant because of projections and/or applied

predicates. Each key is rewritten in a canonical form

by substituting each column with its equivalence class

head and removing redundant columns. If the DB2 op-

timizer detects that some key has become fully qualified

by equality predicates during this process, then the en-

tire key property is discarded and a one-record condataon

is flagged. This condition serves as the key property and

indicates that at most one record is in the stream.

After simplifying each key in the property, redundant

keys are removed from the key property using the defi-

nition of ‘[<” that follows: Let key K1 = {al, a2, an }
and let key K2 = {bl, bz, bin}. Then KI < K2 if

{bl, bzl..., bm} ~ {al, az,..., an}. IfKl ~ K2, then KI

is implied by K2. In that case, K1 is redundant and can

be removed.

The definition of “<” is also used to compare the key

properties KPI and KP2 of two plans during pruning.

More specifically, KP1 < KP2 if for all K1 E KP1 there

exists some K2 E KP2, where the relationship K1 < K2

holds. In other words, each KI c KPI is implied by

some K2 c KP2.

The FD Property

In the DB2 optimizer, the FD property is simply a set

of FDs, which can be empty. Each FD originates from

a key. A key becomes an FD when it fails to propa-

gate through a join. The columns of the key become

the new FD’s head, and the remaining columns in the

key’s stream become the new FD’s tail. As an exam-

ple, assume K = {cl} is a key in the join stream S

with columns {cl, C2, ...cn}. Further assume that the

key property KP of S does not propagate in the join.

Then, {cl} +- {c2,cn } is added to the FD property of

the join. The same is done for all keys in KP. Note that

if S had a one-record condition, then the empty-headed

FD {} + {cl, C2, Cn} would be generated.

The effect of projection on the FD property is similar

to the (effect of projection on the key property. Let A =

{al, az,an} and B = {bl, bz, bin}. Then let F be

a member of the FD property FP, where F is defined

as A + B. If any column a, in A is projected, then F

is remcwed from FP. In contrast, if any column bi in B

is projected, then F’ replaces F, where F’ is identical

to F but with b; removed from B.

Except for projection, FDs almost always propagate

unchanged. In a join, the FDs of the outer and inner

stream are combined and keys that do not propagate

are used to generate new FDs, as described above. The

resulting set of FDs can then be used to infer still more

FDs [DD92]. This is not done in the DB2 optimizer

because of its complexity, which is NP-complete in the

general case [BB79].

Like the key property, an attempt is made to keep

each FID property as “succinct” as possible by removing

FDs that have become redundant because of projections

and/or applied predicates. First, each FD is rewritten

in a canonical form by substituting each column with its

equivalence class head and removing redundant columns

from both the head and tail. Then redundant FDs are

removed from the FD property using the definition of

“<” that follows: Let F1 be defined as Al + B1 and let

F2 be defined as AZ + B2. Then, F1 < F2 if A2 ~ Al

and B2 ~ B1. If FI < F2, then F1 is implied by F2.

In that case, F1 is redundant and can be removed from

the FD property.

The definition of “<” is also used to compare the FD

properties FP1 and FP2 of two plans during pruning.

More specifically, FP1 < FP2 if for all F1 c FP1 there

exists some F2 E FP2, where the relationship F1 < F2

holds. In other words, each FI c FPI is implied by

some F2 c FP2.

6 An Example

An example that illustrates how some of the techniques

tie together is shown in Figure 6. In the example, the

ORDER BY’s interesting order OB = (a.%) was pushed
down and covered with the GROUP BY’s interesting

order GB = (a.z, a.y, by). The resulting cover was then

pushed down and itself covered wit h the merge-join’s

interesting order kfJ = (b. z). The key on b.x gives

rise to {b. z} + {by}, which propagates through all

the joins. This FD and the equivalence class generated

by the predicate a.z = b.x allowed the optimizer to

detect that GB can be reduced to GB = (ax, a.y). As

a result, the sort on a.z, a.y simultaneously satisfies all

interesting orders.

As shown, the optimizer determined that pushing

63

QUERY

select ax, a y, by, sum(c.z]
from a, b, c
where a.x = b.x
and b.x = LX
group by ax, a.y, b.y
order by a.x

QEP

ogroup by
(2.X, a y> b.y

sort produces
order (a.x,a.y), which
satisfies themerge-join,
group by, and order by

25’
ax, ay

table scan
a

U/’

Figure 6: Query Example

down the sort before the first join results in the most

efficient QEP. This is likely to be true if the size of table

a is smaller than the result of either join. Because of the

indexes on b.z and C.X, the resulting QEP would prob-

ably beat one that used hash-based operators. Finally,

note that the sort could be eliminated if there was an

ordered index on a.x, a.y.

7 Advanced Issues

One of the issues that we have tacitly avoided in this

paper is the fact that the order-based GROUP BY and

DISTINCT operators do not dictate an exact interest-

ing order. For example, consider a GROUP BY for

a, y, surn(distinct z). This can be satisfied by (z, y, z)

or (y, z, z). Moreover, z, y, and z can be in ascending

or descending order. In fact, a total of sixteen different

orders can satisfy the order-based GROUP BY.

Rather than generate sixteen different interesting or-

ders, one general interesting order is used in the real

implementation. It includes information about which

columns can be permuted and which columns can be in

ascending or descending order. Using this information,

the DB2 optimizer can correctly detect any order that

satisfies the order-based GROUP BY. Accounting for

these “degrees of freedom” adds a non-trivial amount

of complexity to all operations on orders. It probably

doubled the amount of code. In general, though, the

same underlying logic that has been described in this

paper still prevails

8 Performance Results

Clearly, the techniques described in this paper for or-

der optimization can only improve the quality of exe-

cution plans produced by an optimizer. In cases where

an execution plan’s performance would degrade, which

can happen with sort-ahead, an optimizer would sim-

ply pick a better alternative using its cost estimates.

Therefore, the only question is whether the improve-

ment in performance offered by our techniques is worth

the implementation effort. More specifically, are there

a lot of “real world’) queries where the improvement in

performance is significant?

IBM maintains a number of internal benchmarks that

have been inspired by real DB2 customers over the

years. On those benchmarks and at customer sites, we

have observed substantial improvement in the perfor-

mance of many queries because of the techniques de-

scribed in this paper. The biggest improvements are

typically seen in decision-support environments with

lots of indexes. Often, applications in these environ-

ments cannot fully anticipate the predicates that will

be specified by end-users at runtime. Nor can they an-

ticipate schema changes, such as the addition of a new

index or key. As a result, queries in these environments

frequently include a lot of redundancy – grouping on

key columns, sorting on columns that are bound to con-

stants through predicates, and so on. Order optimiza-

tion is able to eliminate this kind of redundancy, which

in turn usually leads to a better exection plan.

8.1 TPC-D Results

Unfortunately, the benchmarks described above are un-

known outside of IBM. Therefore, we turn to the TPC-

D benchmark 1 to illustrate how much our techniques

for order optimization can improve performance. A de-

scription of the TPC-D benchmark and its schema is

omitted. For details, readers are directed to [Eng95].

TPC bylaws prohibit us from disclosing a full set of

unaudited TPC- D results. Moreover, IBM was reluc-

tant to let certain results be published when this paper

was written. Consequently, the focus here will be on just

Query 3 of the TPC-D benchmark. Query 3 was chosen

because it is (relatively) simple and benefits from sev-

eral of the techniques that have been described in this

paper. Query 3 retrieves the shipping priority and po-

tential revenue of the orders having the largest revenue

among those that had not been shipped as of a given

date. It is defined as follows:

1 TPC-D is a trademark of the Transaction Processing Concil.

64

Setect l.oTdeTkey,

sum(l-ext endedpTice “ (1 - l-discount)) as Tev,

o-orderdate, O-shipp?’iority

fTom customeT, oTdeT, tineitem

whe?’e o.oTde?’key = i-oTdeTkey

and c-custkey = o.oTdeTkey

and c-mktsegment = ‘building’

and o-oTdeTdate < date[’1995-03-15’)

and Lshipdate> date(’1995-03-15’)

gToup byl-oTdeTkey, o_oTdeI’date, OJh@pTaOTdy

oTdeT by Tev descl O- OTdeTdUte

To gather performance results, we built a modified

version of DB2 with order optimization disabled. Then

we ran queries on both the production and disabled ver-

sion of DB2. Results were obtained on a lGB TPC-D

database using a single IBM RS/6000 Model 59H (66

Mhz) server with 512MB of memory and running AIX

4.1. A real benchmark configuration was used, with

data striped over 15 disks and 4 1/0 controllers. Us-

ing a combination of big-block 1/0, prefetching, and

1/0 parallelism, this configuration was able to drive the

CPU at 100% utilization.

The results for Query 3 are shown in Table 1. The

numbers in the table correspond to the elapsed time to

run Query 3, averaged over five runs. As shown, the

elapsed time for the version of DB2 with order opti-

mization disabled was significantly slower than the pro-

duction version of DB2 (by a ratio of 2.04).

Production DB2 Disabled DB2 Ratio

192 sec. 393 sec. 2.04

Table 1: Elapsed Time for Query 3

The execution plan chosen by the production version

of DB2 is shown in Figure 7. Using a combination of

Reduce Order, Cover Order, and Homogenize Order,

the DB2 optimizer was able to determine that it was

beneficial to push the sort for the GROUP BY below

the nested-loop join. This sort not only provided the re-

quired order for the GROUP BY, but it also caused the

index probes in the nested-loop join to become clus-

tered. We refer to these as oTdered nested-loop joins.

Here, an ordered nested-loop join is especially impor-

tant because it allows prefetching and parallel 1/0 to

be used on the lmeitem table, which is the largest of all

the TPC-D tables.

In Figure 7, note that the sort on o_oTderkey

satisfied the GROUP BY because of the equiva-

lence class generated by the predicate o-oTo!eTkey =

1-o?’deTkey and because of the FD {o-oTderkey} +

{o-o?’deTdaie, o-shippTiorit y}. In SQL queries, there is

often no choice but to include functionally dependent

Qsort
rev, o_orderdate

/ clustered index
on l_orderkey

c

table scan
customer

Figure 7: Query 3 in Production Version of DB2

(i.e., redundant) columns like these in a GROUP BY,

since that is the only way to have them appear as out-

put .

For comparison, the execution plan chosen by the ver-

sion of DB2 with order optimization disabled is shown

in Figure 8. In this case, the DB2 optimizer was un-

able tc~ detect that the sort on o_o?’de?’key satisfies the

GROUP BY. Moreover, without an awareness of equiv-

alence classes, the optimizer was unable to determine

that the same sort could be used to generate an ordered

nested-loop join for the lineitem table. Consequently, a

more costly merge-join was used.

9 Conclusion

This paper described the novel techniques that are used

for order optimization in the query optimizer of IBM’s

DB2. These general techniques, which can be used by

any query optimizer, make it possible to detect when

sort ing can be avoided because of predicates, keys, in-

dexes, or functional dependencies; the minimal number

of sorting columns when a sort is unavoidable; whether

a sort can be pushed down into a view or join tree to

make it cheaper; and whether two or more sorts can be

65

esort
rev, o_orderdate

$?
group by

I_orderkey,
o_orderdate,

o_shippriority

sort

l_orderkey.
o_orderdate,

o_~hlpprlority

c=?merge-join

o_orderkey = l_orderkey

@@

@@

Figure 8: Query 3 with Order Optimization Disabled

combined and satisfied by a single sort. For complex

queries in a data warehouse environment, these tech-

niques can mean the difference between an execution

plan that finishes in a few minutes verses one that takes

hours to run.

This paper’s main contribution was a set of funda-

mental operations for use in order optimization. Al-

gorithms were provided for testing whether an inter-

esting order is satisfied, for combining two interesting

orders, and for pushing down an interesting order in

a query graph. All of these hinge on a core operation

called Reduce Order, which uses functional dependencies

and predicates to reduce interesting orders to a simple

canonical form.

This paper also described the overall architecture of

the DB2 optimizer for order optimization. In particular,

the paper described how order, predicates, keys, and

functional dependencies can be maintained as access

plan properties. The importance of maintaining func-

tional dependencies as a property goes beyond just order

opt imizat ion. Functional dependencies can be used for

other optimizations as well [DD92].

Finally, results for Query 3 of the TPC-D benchmark

were provided to illustrate how much the techniques de-

scribed in this paper can improve performance. On a

lGB TPC-D database, a version of DB2 with order op-

timization disabled ran Query 3 roughly 2x slower than

the production version of DB2 with order optimization

enabled.

Acknowledgements

The authors would like to thank Bobbie Cochrane, Guy

Lehman, and Jeff Naughton for reading earlier drafts

of this paper. Thanks also go to Bernie Schiefer for

generating TPC-D benchmark results.

References

[Ant93]

[BB79]

[BD83]

[BE76]

[CS93]

[DD92]

G. Antosheknov. Query processing in dec rdb:

Major issues and future challenges. In IEEE Bzd-

letin on the Technical Comittee on Data Engi-

neering, December 1993.

C. Beeri and P. Bernstein. Computational prob-

lems related to the design of normal form re-

lational schemas. In ACM Transactions on

Database Systems, March 1979.

D. Bitton and D. DeWitt. Duplicate record elim-

ination in large data files. In ACM Transactions

on Database Systems, June 1983.

M. Blasgen and K. Eswaran. On the evaluation

of queries in a relational data base system. Tech-

nical Report 1745, IBM Santa Teresa Lab, April

1976.

S. Chaudhuri and K. Shim. Including group-by

in query optimization. In Proceedings of the 19th

International Conference on Very La~ge Data

Bases, August 1993.

H. Darwen and C. Date. The role of functional

dependencies in query decomposition. In Re-

lational Database Writings 1989-1991. Addison

Wesley, 1992.

[DKO+84] D. DeWitt, R. Katz, F. Olken, L. Shapiro,

M. St onebraker, and D. Wood. Implementation

techniques for main memory database systems.

In Proceedings of the 1984 ACM SIGMOD In-

ternational Conference on Management of Data,

June 1984.

[Eng95] S. Englert. Tpc benchmark d. In Transaction

Processing Performance Council, 777 N. First

St, Suite 600, San Jose CA 95112-6311, Octo-

ber 1995.

66

[GD87]

[Gra93]

[He194]

G. Graefe and D. De Witt. The exodus optimizer

generator. In Proceedings of the 1987A CM SIG-

MOD International Conference on Management

of Data, June 1987.

G. Graefe. Query evaluation techniques for large

databases. In ACM Computing Surveys, June

1993.

J. Hellerstein. Pratical predicate placement. In

Proceedings of the 1994 ACM SIGMOD Interna-

tional Conference on Management of Data, June

1994.

[HFLP89] L. Haas, J. Freytag, G. Lehman, and H. Pira-

[JV84]

[Loh88]

[OL90]

[PHH92]

[PL94]

[SAC+ 79]

[YL93]

hesh. Extensible query processing in starburst.

In Proceedings of the 1989 ACM SIGMOD In-

ternational Conference on Management of Data,

June 1989.

M. Jarke and Y. Vassiliou. Query optimization in

database systems, In ACM Computing Surveys,

June 1984.

G. Lehman. Grammar-like functional rules for

representing query optimization alternatives. In

Proceedings of the 1988A CM SIGMOD Interna-

tional Conference on Management of Data, June

1988.

K. Ono and G. Lehman. Measuring the complex-

it y of join enumeration in query optimization. In

Proceedings of the 16th International Conference

on Very Large Data Bases, August 1990.

H. Pirahesh, J. Hellst ein, and W. Hasan. Ex-

tensible rule based query rewrite optimization in

st arburst. In Proceedings of the 1992 ACM SIG-

MOD International Conference on Management

.$ Data, June 1992.

G. Pauiley and P. Larson. Exploiting uniqueness

in query optimization. In International Confer-

ence on Data Engineering, February 1994.

P. Selinger, M. Astrahan, D. Chamberlain, R. Lo-

rie, and T. Price. Access path selection in a re-

lational database system. In Proceedings of the

1979 ACM SIGMOD International Conference

on Management of Data, June 1979.

P. Yan and P. Larson. Performing group-by be-

fore join. In International Conference on Data

Engineering, February 1993.

67

