
CS646: Software Design and Architectures

Integration test planning
Testing takes place throughout the software life cycle.

Testing can apply to:
design;

source code;

manuals; and

tests themselves (choice of test data, etc.).

Integration test planning is carried out during the design stage.

An integration test plan is a collection of integration tests that focus on
functionality.

CS646: Software Design and Architectures

Bottom up integration testing

Bottom up integration testing proceeds as follows.

There are two basic approaches to integration testing:
1. bottom up testing, and
2. top down testing.

Assume that detailed design consists of a collection of structure charts.

Unit test individual lowest level modules first. Lowest modules are
combined to form subsystems, the subsystems tested, and so on.

NOTE: An artificial environment is necessary for each integration test;
the environment consists of driver programs and test data, and is called a
test harness.

CS646: Software Design and Architectures

Bottom up integration testing: disadvantages

Must code and debug test harnesses (extra work).

There can be difficulty in combining subsystems and then testing
them. An extreme case: all modules united tested, then combined
together; this is called big bang integration testing.

It can be difficult to fully unit test a module. A more complex driver
is usually necessary, which can further complicate finding the source of
errors.

CS646: Software Design and Architectures

Top down integration testing

Modules at top of structure chart are tested first, starting with the main
or control modules.

NOTE: For called modules not yet written, it is necessary to use stubs,
i.e., simple dummy modules used to avoid linker errors.

One therefore uses older more reliable modules to test new modules.

There is little emphasis on unit testing, perhaps nothing beyond
successful compilation. Instead an integration test is used to test any
given module.

CS646: Software Design and Architectures

Process of designing integration tests

1. Look at design plans.

3. Identify test threads and necessary scaffolding.

4. Determine test data requirements.

2. Decide on the functions to test.†

†Our next subject is on estimating and scheduling. In determining the functions,
one should try for the corresponding test threads that can be worked in in
parallel by different test teams, hopefully without any necessary interaction.

CS646: Software Design and Architectures

Definitions

Integration Test
Tests action of a group of modules accomplishing an identifiable
function.

Test Thread
A group of modules being tested.

Scaffolding
Set of modules, stubs and possibly a test harness connected to the test
thread, but not in the test thread.

CS646: Software Design and Architectures

Hints and notes

Use earlier tests to provide scaffolding and data for later tests. This
suggests one should test input first.

As new modules replace stubs, all or part of previous tests should be
repeated to ensure no new errors. These are called regression tests.

Although top-down integration testing is usually preferable, it may not
be possible in some cases:

Module groups performing complex tasks; or
Need to test timing requirements (e.g., device drivers).

For many cases, it is possible to isolate and fully test such subsystems
first. Thus, some combination of bottom up and top down testing is
required; this is called sandwich testing.

CS646: Software Design and Architectures

Example

M1
control

M6
dispatch

M2
user interface

M3
query input

M4
update input

M9
update evaluation

M7
query evaluation

M8
summary statistics

M10
data access

M5
error control

CS646: Software Design and Architectures

Test priority charts

IT1

IT5IT2 IT3

IT4

IT6

Implies the following.

1. IT1 before IT2 and IT3.

2. IT1 in parallel to IT5.

3. IT2 in parallel to IT3.

4. IT2, IT3 and IT5 before IT4.

5. All before IT6.

CS646: Software Design and Architectures

Further notes on integration test planning

Automated tools can aid in integration testing. Examples:
test data generators;
command language programs;
development support libraries;
etc.

Another factor which governs selection of test threads:

module criticality;

that is , module complexity and/or importance in the software system.
Such modules should be tested as early as possible and included in many
test threads.

CS646: Software Design and Architectures

More definitions
Build
The task of coding and unit testing a collection of modules, stubs and
test harnesses.

Build Plan
A set of builds that include all modules, stubs and test harnesses used in
an integration test plan.

Implementation Task
Either a build or an integration test.

Schedule Priority Chart
Requires an integration test plan and a build plan. Corresponds to a
priority chart that includes a node for each implementation task.

CS646: Software Design and Architectures

Estimating
A large subject.

Four general approaches.

1. Expert judgment.

2. Delphi cost estimation.

3. Algorithmic methods.

4. Work breakdown.

For purposes of assignment two, use a combination of work breakdown
and expert judgment, and assume you are the expert.

CS646: Software Design and Architectures

Scheduling: Critical Path Method (CPM)
Takes the following as input.
1. A schedule priority chart.
2. Estimates of how long each task in the schedule priority chart will

take.
3. An assignment of each task to a programmer.
4. An ordering on the tasks assigned to each programmer.

Computes the following.
1. Earliest start time of each task.
2. Earliest completion time for all tasks.
3. Slack time, the amount of time starting on a task can be delayed

without affecting the earliest completion date.

CS646: Software Design and Architectures

CPM: Notational convention for tasks

(task identifier)

(task duration)

a

b

a ≡ (earliest possible start time of the task)

b ≡ (latest possible start time of the task)†

b – a ≡ (slack time for the task)

†Without delaying earliest completion time for all tasks.

CS646: Software Design and Architectures

CPM: Representing ordering constraints

To capture that task T2 must wait for the completion of task T1 before
starting:

T1 T2

or

T1

T2

CS646: Software Design and Architectures

CPM Example

IT1 IT2 IT4
John:

IT5 IT3 IT6
Mary:

IT1

IT5IT2 IT3

IT4

IT6

CS646: Software Design and Architectures

CPM Example

IT1 IT2 IT4
John:

IT5 IT3 IT6
Mary:

IT1

IT5IT2 IT3

IT4

IT6

(adding ordering constraints)

CS646: Software Design and Architectures

CPM Example

IT1 IT2 IT4
John:

IT5 IT3 IT6
Mary:

IT1

IT5IT2 IT3

IT4

IT6

3 5 4

7 4 2

(adding task durations)

CS646: Software Design and Architectures

CPM Example

IT1 IT2 IT4
John:

IT5 IT3 IT6
Mary:

IT1

IT5IT2 IT3

IT4

IT6

3 5 4

7 4 2

(calculating earliest start times)

0

0

3

7

11

15

(calculating earliest completion time)

17

CS646: Software Design and Architectures

CPM Example

IT1 IT2 IT4
John:

IT5 IT3 IT6
Mary:

IT1

IT5IT2 IT3

IT4

IT6

3 5 4

7 4 2

(calculating latest possible start times)

0

0

3

7

11

15

17

15

11

7

63

0

CS646: Software Design and Architectures

CPM Example

IT1 IT2 IT4
John:

IT5 IT3 IT6
Mary:

IT1

IT5IT2 IT3

IT4

IT6

3 5 4

7 4 2

0

0

3

7

11

15

17

15

11

7

63

0

Tasks on the critical path: IT4, IT5, IT3 and IT6.

CS646: Software Design and Architectures

Gantt charts: example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time

John: IT1
John: IT2

Mary: IT3
John: IT4

Mary: IT5
Mary: IT6

CS646: Software Design and Architectures

Gantt charts: notation

slack time

duration

earliest possible start time

(overlay)

