Schema Refinement: Other Dependencies and Higher Normal Forms

Grant Weddell

Cheriton School of Computer Science
University of Waterloo

CS 348
Introduction to Database Management
Winter 2017
1. Multivalued Dependencies
 - Reasoning about MVDs
 - Lossless-Join Decompositions
 - Fourth Normal Form

2. Other Dependencies
Beyond Functional Dependencies

There exist anomalies/redundancies in relational schemas that cannot be captured by FDs.

Example: consider the following table:

<table>
<thead>
<tr>
<th>Course</th>
<th>Teacher</th>
<th>Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Smith</td>
<td>Algebra</td>
</tr>
<tr>
<td>Math</td>
<td>Smith</td>
<td>Calculus</td>
</tr>
<tr>
<td>Math</td>
<td>Jones</td>
<td>Algebra</td>
</tr>
<tr>
<td>Math</td>
<td>Jones</td>
<td>Calculus</td>
</tr>
<tr>
<td>Advanced Math</td>
<td>Smith</td>
<td>Calculus</td>
</tr>
<tr>
<td>Physics</td>
<td>Black</td>
<td>Mechanics</td>
</tr>
<tr>
<td>Physics</td>
<td>Black</td>
<td>Optics</td>
</tr>
</tbody>
</table>

There are no (non-trivial) FDs that hold on this scheme; therefore the scheme (Course, Set-of-teachers, Set-of-books) is in BCNF.
Multivalued Dependencies (MVD)

- CTB table contains redundant information because:

 whenever $(c, t_1, b_1) \in CTB$ and $(c, t_2, b_2) \in CTB$

 then also $(c, t_1, b_2) \in CTB$

 and, by symmetry, $(c, t_2, b_1) \in CTB$

- we say that a multivalued dependency (MVD)

 $C \rightarrow\rightarrow T$ (and $C \rightarrow\rightarrow B$ as well)

 holds on CTB.

given a course, the set of teachers and the set of books are uniquely determined and independent.
Another Example

<table>
<thead>
<tr>
<th>Course</th>
<th>Teacher</th>
<th>Hour</th>
<th>Room</th>
<th>Student</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS101</td>
<td>Jones</td>
<td>M-9</td>
<td>2222</td>
<td>Smith</td>
<td>A</td>
</tr>
<tr>
<td>CS101</td>
<td>Jones</td>
<td>W-9</td>
<td>3333</td>
<td>Smith</td>
<td>A</td>
</tr>
<tr>
<td>CS101</td>
<td>Jones</td>
<td>F-9</td>
<td>2222</td>
<td>Smith</td>
<td>A</td>
</tr>
<tr>
<td>CS101</td>
<td>Jones</td>
<td>M-9</td>
<td>2222</td>
<td>Black</td>
<td>B</td>
</tr>
<tr>
<td>CS101</td>
<td>Jones</td>
<td>W-9</td>
<td>3333</td>
<td>Black</td>
<td>B</td>
</tr>
<tr>
<td>CS101</td>
<td>Jones</td>
<td>F-9</td>
<td>2222</td>
<td>Black</td>
<td>B</td>
</tr>
</tbody>
</table>

- FDs:
 \[C \rightarrow T, \ CS \rightarrow G, \ HR \rightarrow C, \ HT \rightarrow R, \text{ and } HS \rightarrow R \]

- MVDs:
 \[C \rightarrow HR \]
Axioms for MVDs

1. \(Y \subseteq X \Rightarrow X \rightarrow Y \) (reflexivity)
2. \(X \rightarrow Y \Rightarrow X \rightarrow (R - Y) \) (complementation)
3. \(X \rightarrow Y \Rightarrow XZ \rightarrow YZ \) (augmentation)
4. \(X \rightarrow Y, Y \rightarrow Z \Rightarrow X \rightarrow (Z - Y) \) (transitivity)
5. \(X \rightarrow Y \Rightarrow X \rightarrow Y \) (conversion)
6. \(X \rightarrow Y, XY \rightarrow Z \Rightarrow X \rightarrow (Z - Y) \) (interaction)

Theorem:
Axioms for FDs (1)-(6) are sound and complete for logical implication of FDs and MVDs.
Example

In the $CTHRSG$ schema, $C \rightarrow SG$ can be derived as follows:

1. $C \rightarrow HR$
2. $C \rightarrow T$ (from $C \rightarrow T$)
3. $C \rightarrow CTSG$ (complementation of (1))
4. $C \rightarrow CT$ (augmentation of (2) by C)
5. $CT \rightarrow CTSG$ (augmentation of (3) by T)
6. $C \rightarrow SG$ (transitivity on (4) and (5))
Definition:

A dependency basis for X with respect to a set of FDs and MVDs F is a partition of $R - X$ to sets Y_1, \ldots, Y_k such that $F \models X \rightarrow Z$ if and only if $Z - X$ is a union of some of the Y_is.

- unlike for FDs we can’t split right-hand sides of MVDs to single attributes (cf. minimal cover).
- the dependency basis of X w.r.t. F can be computed in PTIME [Beeri80].
- The dependency basis of $CTHRSG$ with respect to C is $[T, HR, SG]$
similarly to the FD case we want to decompose the schema to avoid anomalies

⇒ a lossless-join decomposition \((R_1, R_2)\) of \(R\) with respect to a set of MVDs \(F\):

\[
F \models (R_1 \cap R_2) \rightarrow (R_1 - R_2)
\]

or, by symmetry

\[
F \models (R_1 \cap R_2) \rightarrow (R_2 - R_1)
\]

this condition implies the one for FDs (in only FDs appear in \(F\)).
Fourth Normal Form (4NF)

Definition:
Let R be a relation schema and F a set of FDs and MVDs. Schema R is in **4NF** if and only if whenever $(X \rightarrow Y) \in F^+$ and $XY \subseteq R$, then either
- $(X \rightarrow Y)$ is trivial ($Y \subseteq X$ or $XY = R$), or
- X is a superkey of R

A database schema $\{R_1, \ldots, R_n\}$ is in 4NF if each relation schema R_i is in 4NF.

\Rightarrow use BCNF-like decomposition procedure to obtain a lossless-join decomposition into 4NF.
The *CTB* schema can be decomposed to 4NF (using $C \rightarrow T$) as follows:

<table>
<thead>
<tr>
<th>Course</th>
<th>Teacher</th>
<th>Course</th>
<th>Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Smith</td>
<td>Math</td>
<td>Algebra</td>
</tr>
<tr>
<td>Math</td>
<td>Jones</td>
<td>Math</td>
<td>Calculus</td>
</tr>
<tr>
<td>Physics</td>
<td>Black</td>
<td>Physics</td>
<td>Mechanics</td>
</tr>
<tr>
<td>Advanced Math</td>
<td>Smith</td>
<td>Advanced Math</td>
<td>Calculus</td>
</tr>
</tbody>
</table>

\Rightarrow no FDs here!
Other Dependencies

- **Join Dependency on** R

 $\Rightarrow \Join [R_1, \ldots, R_k]$ holds if $I = \pi_{R_1}(I) \Join \ldots \Join \pi_{R_k}(I)$

 \Rightarrow generalization of an MVD

 $X \Join Y$ is the same as $\Join [XY, X(R - Y)]$

 \Rightarrow cannot be simulated by MVDs

 \Rightarrow no axiomatization exists

 \Rightarrow Project-Join NF (5NF)

 $\Join [R_1, \ldots, R_k]$ implies R_i is a key.

- **Inclusion Dependency on** R and S

 $\Rightarrow R[X] \subseteq S[Y]$ holds if $\pi_X(I_R) \subseteq \pi_Y(I_S)$

 \Rightarrow relates two relations

 foreign-key relationships