Database Tuning and Physical Design:

Basics of Query Execution
Fall, 2018

School of Computer Science
University of Waterloo

Databases CS348

(University of Waterloo) Query Execution 1/43

The Client/Server Architecture

(University of Waterloo)

Application

Database Client

Application

Database Client

Database Server

File System

Query Execution

The Client/Server Architecture (cont’d)

Applications
m User interaction: query input, presentation of results
m Application-specific tasks
Database Server
m DDL evaluation
m DML compilation: selection of a query plan for a query
m DML execution
m Concurrency control
m Buffer management: rollback and failure recovery
File System
m Storage and retrieval of unstructured data

(University of Waterloo) Query Execution

3/43

Basics of Query Execution

Develop a simple relational calculator that answers queries.

Considerations:

How is data physically represented?
How to compute answers to complex queries?

How are intermediate results managed?

(University of Waterloo) Query Execution 4/43

How do we Execute Queries?

Parsing, typechecking, etc.
Relational Calculus (SQL) translated to Relational Algebra
Optimization:

= generates an efficient query plan
= uses statistics collected about the stored data

Plan execution:

= access methods to access stored relations
= physical relational operators to combine relations

(University of Waterloo) Query Execution 5/43

Relational Algebra

Define a set of operations on the universe of finite relations. . .
...called a RELATIONAL ALGEBRA.

(Ll; Ro,...,Rk, X,O’v,ﬂ'v,U, —)
Constants:
R;: one for each relational scheme
Unary operators:
o, selection (keeps only tuples satisfying ¢)
my: projection (keeps only attributes in V)
Binary operators:
x: Cartesian product
U: union
—: set difference

(University of Waterloo) Query Execution 6/43

Examples

Account

Acnt# Type Balance Bank Branch
1234 CHK $1000 TD 1
1235 SAV $20000 TD 2
1236 CHK $2500 CIBC 1
1237 CHK $2500 Royal 5
2000 BUS $10000 Royal 5
2001 BUS $10000 TD 3

(University of Waterloo)

Bank

Name Address

TD TD Centre
CIBC CIBC Tower

Query Execution

7143

Projection

Definition:

mv(R) = {(X,.--, X)) : (X1,...,Xn) € R, jj € V}
where V is an ordered list of column numbers.

Example:

71 22(Account) =

1234
1235
1236
1237
2000
2001

CHK
SAV
CHK
CHK
BUS
BUS

(University of Waterloo) Query Execution

8/43

Selection
Definition:
oo(R)={(x1,..., X)) : (X1,...,X)) € R

ANo(Xt,...,Xn)}
where ¢ is a built-in selection condition.

Example:

0 43>5000(Account) =

1235 SAV $20000 TD
2000 BUS $10000 Royal
2001 BUS $10000 TD

w o

(University of Waterloo) Query Execution 9/43

Product

Definition:

Example: Account x Bank =

(University of Waterloo)

RxS={((X1, s Xns Y1y, Ym) :
(X1,...,X) € R,
(¥1,---,¥n) € S}
1234 CHK $1000 TD 1] TD TD Centre
1235 SAV $20000 TD 2|TD TD Centre
1236 CHK $2500 CIBC 1| TD TD Centre
1237 CHK $2500 Royal 5| TD TD Centre
2000 BUS $10000 Royal 5| TD TD Centre
2001 BUS $10000 TD 3| TD TD Centre
1234 CHK $1000 TD 1| CIBC CIBC Tower
1235 SAV $20000 TD 2 | CIBC CIBC Tower
1236 CHK $2500 CIBC 1 | CIBC CIBC Tower
1237 CHK $2500 Royal 5| CIBC CIBC Tower
2000 BUS $10000 Royal 5 | CIBC CIBC Tower
2001 BUS $10000 TD 3 | CIBC CIBC Tower

Query Execution

10/43

Union

Definition:

RUS={(x,...

Example:

7Xn) .

(x1,...,%) €R
vV (X1,...,Xn) € S}

Tl 42 (O'#ZZICHKI (Account)) U 1 7#2(0'#2:/5‘,;\1/ (Account)) =

(University of Waterloo)

1234
1236
1237
1235

CHK
CHK
CHK
SAV

Query Execution

11/43

Difference

Definition:
{(X1,...,%2) 1 (X1,...,%n) € R,
A(Xty...,Xy) & S}

Example:

Is there an account without a bank?
Tyt #4(Account) — muq ua(opa—pe(Account x Bank)) =

1237 Royal
2000 Royal

(University of Waterloo) Query Execution

12/43

Relational Calculus/SQL to Algebra

How do we know that these operators are sufficient to evaluate all Relational
Calculus queries?

Theorem (Codd)

For every domain independent Relational Calculus query there is an
equivalent Relational Algebra expression.

HCtORA((X17 Ce ,Xk)) = R,'

RCIoRA(Q A X = X;) = ouiesuj(RCIORA(Q))
RCtoRA(3x..Q) = Trv(q)— (41 (RCIORA(Q))
RCoRA(Qi A Q2)) = RCtoRA(Q1) « RCtoRA(Q,)
RCtoRA(Q; vV Qo)) = RCtoRA(Q) U RCtoRA(Q»)

RCtoRA(Q; A—Qo)) = RCtoRA(Q;) — RCtoRA(Q»)

..queries in A must have disjoint sets of free variables
..we must invent consistent way of referring to attributes

(University of Waterloo) Query Execution 13/43

lterator Model for RA

How do we avoid (mostly) storing intermediate results?

We use the cursor OPEN/FETCH/CLOSE interface.

Every implementation of an Relational Algebra operator:

implements the cursor interface to produce answers

uses the same interface to get answers from its children

...we make (at least) one physical implementation per operator.

(University of Waterloo) Query Execution 14/43

Physical Operators (example

// select_{#i=#7J} (Child)

OPERATOR child;
int i, 3;
public:
OPERATOR selection (OPERATOR

{ child = ¢; 1
void open () {
tuple fetch() { tuple t =

if (t==NULL

child.open();
child.fetch();
[l t.attr(i)=t.attr(3))

. selection)

c, int 10,
= 1i0;

}i

int j0)
j = 30; };

return t;
return this.fetch();

}i

void close ()

(University of Waterloo)

{ child.close(); }

Query Execution

15/43

Physical Operators (cont.)
The rest of the lot:

product:
simple nested loops algorithm

projection:
eliminate unwanted attributes from each tuple

union:
simple concatenation

set difference:
nested loops algorithm that checks for tuples on r.h.s.

This doesn’t quite work: projection and union may produce duplicates
...need to be followed by a duplicate elimination operator

(University of Waterloo) Query Execution 16/43

How to make it FAST(er)?

Naive implementation for each operator will work
...very (very very very) slowly

What to do?

Use (disk-based) data structures for efficient searching
INDEXING (used, e.g., in selections)
Use better algorithms to implement the operators
commonly based on SORTING or HASHING
Rewrite the RA expression to an equivalent, but more efficient one

remove unnecessary operations (e.g., duplicate elimination)
enable the use of better algorithms/data structures

(University of Waterloo) Query Execution 17/43

Atomic Relations and Indexing
m When an index R qex(X) (Where x is the search attribute) is available we
replace a subquery of the form
O-ch(R)
with accessing Ringex(x) directly,
m Otherwise: check all file blocks holding tuples for R.
Even if an index is available, scanning the entire relation may be faster in
certain circumstances:
m The relation is very small

m The relation is large, but we expect most of the tuples in the relation to
satisfy the selection criteria

(University of Waterloo) Query Execution 18/43

Clustering vs. Non-Clustering Indexes

m An index on attribute A of a relation is a clustering index if tuples in the
relation with similar values for A are stored together in the same block.

m Other indices are non-clustering (or secondary) indices.

A relation may have at most one clustering index, and any number of
non-clustering indices.

(University of Waterloo) Query Execution 19/43

Clustering Index Example

oot node _,,51,@9@@,,,
66 : Truman

(University of Waterloo) Query Execution 20/43

Non-Clustering Index Example

Weddelli — 90 = Strong

21/43

niversity of Waterloo) Query Execution

Query Optimization

m Many possible query plans for a single query:

equivalences in Relational Algebra
choice of Operator Implementation

= performance differs greatly
m How do we choose the best plan?

El “always good” transformations
cost-based model

= finding an optimal plan is computationally not feasible: we look for a

reasonable one

(University of Waterloo) Query Execution

22/43

General Approach

m Generate all physical plans equivalent to the query
m Pick the one with the lowest cost

Relational Algebra

Generate Physical Plans

Determine Cost

(University of Waterloo)

Physical Algebra

Query Execution

Cost Info

23/43

.. All Equivalent Plans?!
m Cannot be done in general:

= it is undecidable if a query is (un-)satisfiable (equivalent to an empty
plan)

m Very expensive even for conjunctive queries
= the Join-ordering problem

m In practice:
= only plans of certain form are considered (restrictions on the search
space.)
= the goal is to eliminate the really bad ones

(University of Waterloo) Query Execution 24/43

..and Pick the Best one?!
m How do we determine which plan is the best one?

= cannot simply run the plan to find out

= instead, estimate the cost based on stats collected by the DBMS for all

relations

m A Simple Cost Model for disk I/O; Assumptions:
Uniformity: all possible values of an attribute are equally likely to

appear in a relation.

Independence: the likelihood that an attribute has a particular value (in a
tuple) does not depend on values of other attributes.

(University of Waterloo) Query Execution 25/43

A Simple Cost Model (cont.)

m For a stored relation R with an attribute A we keep:

|R|: the cardinality of R (the number of tuples in R)
b(R): the blocking factor for R

min(R, A): the minimum value for Ain R

max (R, A): the maximum value for Ain R
distinct(R, A): the number of distinct values of A

m Based on these values we try to estimate the cost of physical plans.

(University of Waterloo) Query Execution 26/43

Cost of Retrieval

Mark (Studnum, Course, Assignnum, Mark)

SELECT Studnum, Mark
FROM Mark
WHERE Course "PHYS’
AND Studnum = 100 AND Mark > 90

Indices:

m clustering index Courselnd on Course
m non-clustering index Studnumind on Studnum
Assume:

m |Mark| = 10000

m b(Mark) = 50

m 500 different students
m 100 different courses
m 100 different marks

(University of Waterloo) Query Execution 27/43

Strategy 1: Use Courselnd

Assuming uniform distribution of tuples over the courses, there will be about
|[Mark|/100 = 100 tuples with Course = PHYS.

Searching the Courselnd index has a cost of 2. Retrieval of the 100 matching
tuples adds a cost of 100/b(Mark) data blocks.
The total cost of 4.

Selection of N tuples from relation R using a clustered index has a cost of
2+ N/b(R).

(University of Waterloo) Query Execution 28/43

Strategy 2: Use Studnumind

Assuming uniform distribution of tuples over student numbers, there will be
about |Mark|/500 = 20 tuples for each student.

Searching the Studnumind has a cost of 2. Since this is not a clustered index,
we will make the pessimistic assumption that each matching record is on a
separate data block, i.e., 20 blocks will need to be read.

The total cost is 22.

Selection of N tuples from relation R using a clustered index has a cost of
2+ N.

(University of Waterloo) Query Execution 29/43

Strategy 3: Scan the Relation

The relation occupies 10,000/50 = 200 blocks, so 200 block 1/0O operations will
be required.

Selection of N tuples from relation R by scanning the entire relation has a cost
of |R|/b(R).

(University of Waterloo) Query Execution 30/43

Cost of other Relational Operations

Costs of physical operations (in 1/0’s):
m Selection: cost(o¢(E)) = (1 + €c) cost(E).
m Nested-Loop Join (R is the outer relation):
cost(R X S) = cost(R) + (|R|/b) cost(S)

m Index Join (R is the outer relation, and S is the inner relation: B-tree with

depth ds):

cost(R ™M S) = cost(R) + ds|R]
m Sort-Merge Join:
cost(R X S) = cost(sort(R)) + cost(sort(S))

where cost(sort(E)) = cost(E) + (|E|/b) log(|E|/b).

n ...

Why don’t we always use the Merge-Sort Join?

(University of Waterloo) Query Execution 31/43

Size Estimation

In the cost estimation we need to know sizes of results of operations: we use
the selectivity, defined, for a condition o¢ongition(R), @s:

condition R
sel(Tcondition(A)) = |Ud|l.‘:?|()

Again, the optimizer will estimate selectivity using simple rules based on its
statistics:

1
distinct(R, A)

¢ —min(R, A)
max(R, A) — min(R, A)
N max(R,A) — ¢

~ max(R, A) — min(R, A)

sel(oa=c(R)) =~

sel(ca<c(R)) ~

sel(ca>c(R))

(University of Waterloo) Query Execution 32/43

Size Estimation (cont.)

For Joins:
m General Join (on attribute A):

Bl
X ~ _
[R>S |R|distinct(S, A)
or as
A
X ~ _
[R>S~ S| distinct(R, A)
m Foreign key Join (Student and Enrolled joined on Sid):
A
RX S| =|S R
R S| =Sl g =IA

May joins are foreign key joins, like this one.

(University of Waterloo) Query Execution 33/43

More Advanced Statistics

So far, have only a very primitive cost estimation approach

In practice: more complex approaches
m histograms to approximate non-uniform distributions
m correlations between attributes
m uniqueness (keys) and containment (inclusions)
m sampling methods
m efc, etc

(University of Waterloo) Query Execution 34/43

Plan Generation
Apply “always good” transformations
= heuristics that work in the majority of cases

Cost-based join-order selection
= applied on conjunctive subqueries (the “select blocks”)
= still computationaly not tractable.

(University of Waterloo) Query Execution 35/43

“Always good” transformations
m Push selections:
o,(E1 Mg Ez) = 0,(E1) Mg Ep
for ¢ involving columns of E; only (and vice versa).
m Push projections:
7T\/(R Mg S) = 7T\/(7TV1(R) Mg WVZ(S))

where V; is the set of all attributes of R involved in 6 and V (similarly for
Vo).

m Replace products by joins:
o,(RxS)=RMX, S
= also reduces the space of plans we need to search

(University of Waterloo) Query Execution 36/43

Example

m Assume that
m there are |S| = 1000 students,
m enrolled in |C| = 500 classes.
m the enroliment table is |E| = 5000,
m and, on average, each student is registered for five courses.

m Then:
COSt(Uname:’Smith’(S X (E X C))) >>
COSt(Unamez’Smith’(S) s (E X C))

(University of Waterloo) Query Execution 37/43

Join Order Selection

m Joins are associative R X S X T X U can be equivalently expressed as
(RXS)XT)XU
(RX S) X (T X U)
R ™ (SX (T X U))
= try to minimize the intermediate result(s).
m Moreover, we need to decide which of the subexpressions is evaluated
first

= e.g., Nested Loop join’s cost is not symmetric!

(University of Waterloo) Query Execution 38/43

Example

We have the following two join orders to pick from:
Una.me:/Smith’(S) X (E X C)
we produce E X C, which has one tuple for each course registration (by
any student) ~ 5000 tuples.
(Uname:’Smith’(s) X E) X C
we produce an intermediate relation which has one tuple for each course
registration by a student named Smith. If there are only a few Smith’s

among the 1,000 students (say there are 10), this relation will contain
about 50 tuples.

(University of Waterloo) Query Execution 39/43

Pipelined Plans

m All operators (except sorting) operate without storing intermediate results

= iterator protocols in constant storage
= no recomputation for left-deep plans

(University of Waterloo) Query Execution 40/43

Temporary Store

m General pipelined plans lead to recomputation
m We introduce an additional store operator
= allows us to store intermediate results in a relation
= we can also built a (hash) index on top of the result
m Semantically, the operator represents the identity

m The costs of plans:

cumulative cost—to compute the value of the expression and store then in a
relation (once):

coste(store(E)) = coste(E) + costs(E) + |E|/b
scanning cost—to “read” all the tuples in the stored result of the expression:
costs(store(E)) = |E|/b

(University of Waterloo) Query Execution 41/43

Parallelism in Query Execution

|
Another approach to improving performance:

take advantage of parallelism in hardware

m Mass storage usually reads/writes data in blocks
m Multiple mass storage units can be accessed in parallel
m Relational operators amenable to parallel execution

(University of Waterloo) Query Execution 42 /43

Summary
|

Relational Algebra is the basis for efficient implementation of SQL

m Provides a connection between conceptual and physical level
m Expresses query execution in (easily) manageable pieces
m Allows the use of efficient algorithms/data structures

m Provides a mechanism for query optimization based on logical
transformations (including simplifications based on integrity constraints,
etc.)

|
Performance of database operations depends on the way queries (and
updates) are executed against a particular physical schema/design.

...understanding basics of query processing is necessary
to making physical design decisions

... performance also depends on fransaction management (later)

(University of Waterloo) Query Execution 43/43

