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The Client/Server Architecture
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The Client/Server Architecture (cont’d)
Applications

User interaction: query input, presentation of results
Application-specific tasks

Database Server
DDL evaluation
DML compilation: selection of a query plan for a query
DML execution
Concurrency control
Buffer management: rollback and failure recovery

File System
Storage and retrieval of unstructured data
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Basics of Query Execution

Goal

Develop a simple relational calculator that answers queries.

Considerations:

1 How is data physically represented?

2 How to compute answers to complex queries?

3 How are intermediate results managed?
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How do we Execute Queries?
1 Parsing, typechecking, etc.
2 Relational Calculus (SQL) translated to Relational Algebra
3 Optimization:
⇒ generates an efficient query plan
⇒ uses statistics collected about the stored data

4 Plan execution:
⇒ access methods to access stored relations
⇒ physical relational operators to combine relations
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Relational Algebra

Idea

Define a set of operations on the universe of finite relations. . .
. . . called a RELATIONAL ALGEBRA.

(U ;R0, . . . ,Rk ,×, σϕ, πV ,∪,−)
Constants:

Ri : one for each relational scheme
Unary operators:

σϕ: selection (keeps only tuples satisfying ϕ)
πV : projection (keeps only attributes in V )

Binary operators:
×: Cartesian product
∪: union
−: set difference
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Examples

Account
Acnt# Type Balance Bank Branch
1234 CHK $1000 TD 1
1235 SAV $20000 TD 2
1236 CHK $2500 CIBC 1
1237 CHK $2500 Royal 5
2000 BUS $10000 Royal 5
2001 BUS $10000 TD 3

Bank
Name Address
TD TD Centre
CIBC CIBC Tower
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Projection
Definition:

πV (R) = {(xi1 , . . . , xik ) : (x1, . . . , xn) ∈ R, ij ∈ V}
where V is an ordered list of column numbers.

Example:

π#1,#2(Account) =

1234 CHK
1235 SAV
1236 CHK
1237 CHK
2000 BUS
2001 BUS
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Selection
Definition:

σϕ(R) = {(x1, . . . , xn) : (x1, . . . , xn) ∈ R,
∧ ϕ(x1, . . . , xn)}

where ϕ is a built-in selection condition.

Example:

σ#3>5000(Account) =

1235 SAV $20000 TD 2
2000 BUS $10000 Royal 5
2001 BUS $10000 TD 3
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Product
Definition:

R × S = {((x1, . . . , xn, y1, . . . , ym) :
(x1, . . . , xn) ∈ R,
(y1, . . . , yn) ∈ S}

Example: Account× Bank =

1234 CHK $1000 TD 1 TD TD Centre
1235 SAV $20000 TD 2 TD TD Centre
1236 CHK $2500 CIBC 1 TD TD Centre
1237 CHK $2500 Royal 5 TD TD Centre
2000 BUS $10000 Royal 5 TD TD Centre
2001 BUS $10000 TD 3 TD TD Centre
1234 CHK $1000 TD 1 CIBC CIBC Tower
1235 SAV $20000 TD 2 CIBC CIBC Tower
1236 CHK $2500 CIBC 1 CIBC CIBC Tower
1237 CHK $2500 Royal 5 CIBC CIBC Tower
2000 BUS $10000 Royal 5 CIBC CIBC Tower
2001 BUS $10000 TD 3 CIBC CIBC Tower
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Union
Definition:

R ∪ S = {(x1, . . . , xn) : (x1, . . . , xn) ∈ R
∨ (x1, . . . , xn) ∈ S}

Example:

π#1,#2(σ#2=′CHK′(Account)) ∪ π#1,#2(σ#2=′SAV′(Account)) =

1234 CHK
1236 CHK
1237 CHK
1235 SAV
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Difference
Definition:

{(x1, . . . , xn) : (x1, . . . , xn) ∈ R,
∧ (x1, . . . , xn) 6∈ S}

Example:

Is there an account without a bank?
π#1,#4(Account)− π#1,#4(σ#4=#6(Account× Bank)) =

1237 Royal
2000 Royal
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Relational Calculus/SQL to Algebra
How do we know that these operators are sufficient to evaluate all Relational
Calculus queries?

Theorem (Codd)

For every domain independent Relational Calculus query there is an
equivalent Relational Algebra expression.

RCtoRA(Ri(x1, . . . , xk )) = Ri
RCtoRA(Q ∧ xi = xj) = σ#i=#j(RCtoRA(Q))
RCtoRA(∃xi .Q) = πFV (Q)−{#i}(RCtoRA(Q))
RCtoRA(Q1 ∧Q2)) = RCtoRA(Q1)× RCtoRA(Q2)
RCtoRA(Q1 ∨Q2)) = RCtoRA(Q1) ∪ RCtoRA(Q2)
RCtoRA(Q1 ∧ ¬Q2)) = RCtoRA(Q1)− RCtoRA(Q2)

. . . queries in ∧ must have disjoint sets of free variables

. . . we must invent consistent way of referring to attributes
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Iterator Model for RA
How do we avoid (mostly) storing intermediate results?

Idea

We use the cursor OPEN/FETCH/CLOSE interface.

Every implementation of an Relational Algebra operator:

1 implements the cursor interface to produce answers

2 uses the same interface to get answers from its children

. . . we make (at least) one physical implementation per operator.
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Physical Operators (example: selection)

// select_{#i=#j}(Child)
OPERATOR child;
int i,j;

public:

OPERATOR selection(OPERATOR c, int i0, int j0)
{ child = c; i = i0; j = j0; };

void open() { child.open(); };
tuple fetch() { tuple t = child.fetch();

if (t==NULL || t.attr(i)=t.attr(j))
return t;

return this.fetch();
};

void close() { child.close(); }
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Physical Operators (cont.)
The rest of the lot:

product:
simple nested loops algorithm

projection:
eliminate unwanted attributes from each tuple

union:
simple concatenation

set difference:
nested loops algorithm that checks for tuples on r.h.s.

WARNING!

This doesn’t quite work: projection and union may produce duplicates
. . . need to be followed by a duplicate elimination operator
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How to make it FAST(er)?

Observation

Naive implementation for each operator will work
. . . very (very very very) slowly

What to do?

1 Use (disk-based) data structures for efficient searching
INDEXING (used, e.g., in selections)

2 Use better algorithms to implement the operators
commonly based on SORTING or HASHING

3 Rewrite the RA expression to an equivalent, but more efficient one
remove unnecessary operations (e.g., duplicate elimination)
enable the use of better algorithms/data structures
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Atomic Relations and Indexing
When an index Rindex(x) (where x is the search attribute) is available we
replace a subquery of the form

σx=c(R)

with accessing Rindex(x) directly,
Otherwise: check all file blocks holding tuples for R.

Even if an index is available, scanning the entire relation may be faster in
certain circumstances:

The relation is very small
The relation is large, but we expect most of the tuples in the relation to
satisfy the selection criteria
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Clustering vs. Non-Clustering Indexes
An index on attribute A of a relation is a clustering index if tuples in the
relation with similar values for A are stored together in the same block.
Other indices are non-clustering (or secondary) indices.

Note

A relation may have at most one clustering index, and any number of
non-clustering indices.
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Clustering Index Example
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Non-Clustering Index Example
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Query Optimization
Many possible query plans for a single query:

1 equivalences in Relational Algebra
2 choice of Operator Implementation

⇒ performance differs greatly
How do we choose the best plan?

1 “always good” transformations
2 cost-based model

⇒ finding an optimal plan is computationally not feasible: we look for a
reasonable one
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General Approach
Generate all physical plans equivalent to the query
Pick the one with the lowest cost

Relational Algebray
Generate Physical Plans ←→ Determine Costy xy

Physical Algebra Cost Info
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. . . All Equivalent Plans?!
Cannot be done in general:

⇒ it is undecidable if a query is (un-)satisfiable (equivalent to an empty
plan)
Very expensive even for conjunctive queries

⇒ the Join-ordering problem
In practice:

⇒ only plans of certain form are considered (restrictions on the search
space.)
⇒ the goal is to eliminate the really bad ones
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. . . and Pick the Best one?!
How do we determine which plan is the best one?

⇒ cannot simply run the plan to find out
⇒ instead, estimate the cost based on stats collected by the DBMS for all
relations
A Simple Cost Model for disk I/O; Assumptions:

Uniformity: all possible values of an attribute are equally likely to
appear in a relation.

Independence: the likelihood that an attribute has a particular value (in a
tuple) does not depend on values of other attributes.
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A Simple Cost Model (cont.)
For a stored relation R with an attribute A we keep:

1 |R|: the cardinality of R (the number of tuples in R)
2 b(R): the blocking factor for R
3 min(R,A): the minimum value for A in R
4 max(R,A): the maximum value for A in R
5 distinct(R,A): the number of distinct values of A

Based on these values we try to estimate the cost of physical plans.
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Cost of Retrieval
Mark(Studnum, Course, Assignnum, Mark)

SELECT Studnum, Mark
FROM Mark
WHERE Course = ’PHYS’
AND Studnum = 100 AND Mark > 90

Indices:
clustering index CourseInd on Course
non-clustering index StudnumInd on Studnum

Assume:
|Mark| = 10000
b(Mark) = 50
500 different students
100 different courses
100 different marks
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Strategy 1: Use CourseInd
Assuming uniform distribution of tuples over the courses, there will be about
|Mark|/100 = 100 tuples with Course = PHYS.

Searching the CourseInd index has a cost of 2. Retrieval of the 100 matching
tuples adds a cost of 100/b(Mark) data blocks.
The total cost of 4.

Selection of N tuples from relation R using a clustered index has a cost of
2 + N/b(R).
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Strategy 2: Use StudnumInd
Assuming uniform distribution of tuples over student numbers, there will be
about |Mark|/500 = 20 tuples for each student.

Searching the StudnumInd has a cost of 2. Since this is not a clustered index,
we will make the pessimistic assumption that each matching record is on a
separate data block, i.e., 20 blocks will need to be read.
The total cost is 22.

Selection of N tuples from relation R using a clustered index has a cost of
2 + N.
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Strategy 3: Scan the Relation
The relation occupies 10,000/50 = 200 blocks, so 200 block I/O operations will
be required.

Selection of N tuples from relation R by scanning the entire relation has a cost
of |R|/b(R).

(University of Waterloo) Query Execution 30 / 43



Cost of other Relational Operations
Costs of physical operations (in I/O’s):

Selection: cost(σc(E)) = (1 + εc) cost(E).
Nested-Loop Join (R is the outer relation):

cost(R 1 S) = cost(R) + (|R|/b) cost(S)

Index Join (R is the outer relation, and S is the inner relation: B-tree with
depth dS):

cost(R 1 S) = cost(R) + dS|R|
Sort-Merge Join:

cost(R 1 S) = cost(sort(R)) + cost(sort(S))

where cost(sort(E)) = cost(E) + (|E |/b) log(|E |/b).
. . .

Why don’t we always use the Merge-Sort Join?
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Size Estimation
In the cost estimation we need to know sizes of results of operations: we use
the selectivity, defined, for a condition σcondition(R), as:

sel(σcondition(R)) =
|σcondition(R)|

|R|
Again, the optimizer will estimate selectivity using simple rules based on its
statistics:

sel(σA=c(R)) ≈ 1
distinct(R,A)

sel(σA≤c(R)) ≈ c −min(R,A)
max(R,A)−min(R,A)

sel(σA≥c(R)) ≈ max(R,A)− c
max(R,A)−min(R,A)
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Size Estimation (cont.)
For Joins:

General Join (on attribute A):

|R 1 S| ≈ |R| |S|
distinct(S,A)

or as

|R 1 S| ≈ |S| |R|
distinct(R,A)

Foreign key Join (Student and Enrolled joined on Sid):

|R 1 S| = |S| |R|
|S|

= |R|

May joins are foreign key joins, like this one.
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More Advanced Statistics
So far, have only a very primitive cost estimation approach

In practice: more complex approaches
histograms to approximate non-uniform distributions
correlations between attributes
uniqueness (keys) and containment (inclusions)
sampling methods
etc, etc
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Plan Generation
1 Apply “always good” transformations
⇒ heuristics that work in the majority of cases

2 Cost-based join-order selection
⇒ applied on conjunctive subqueries (the “select blocks”)
⇒ still computationaly not tractable.
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“Always good” transformations
Push selections:

σϕ(E1 1θ E2) = σϕ(E1) 1θ E2

for ϕ involving columns of E1 only (and vice versa).
Push projections:

πV (R 1θ S) = πV (πV1(R) 1θ πV2(S))

where V1 is the set of all attributes of R involved in θ and V (similarly for
V2).
Replace products by joins:

σϕ(R × S) = R 1ϕ S

⇒ also reduces the space of plans we need to search
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Example
Assume that

there are |S| = 1000 students,
enrolled in |C| = 500 classes.
the enrollment table is |E | = 5000,
and, on average, each student is registered for five courses.

Then:
cost(σname=′Smith′(S 1 (E 1 C))) >>

cost(σname=′Smith′(S) 1 (E 1 C))
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Join Order Selection
Joins are associative R 1 S 1 T 1 U can be equivalently expressed as

1 ((R 1 S) 1 T ) 1 U
2 (R 1 S) 1 (T 1 U)
3 R 1 (S 1 (T 1 U))

⇒ try to minimize the intermediate result(s).
Moreover, we need to decide which of the subexpressions is evaluated
first

⇒ e.g., Nested Loop join’s cost is not symmetric!
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Example
We have the following two join orders to pick from:

1 σname=′Smith′(S) 1 (E 1 C)
we produce E 1 C, which has one tuple for each course registration (by
any student) ∼ 5000 tuples.

2 (σname=′Smith′(S) 1 E) 1 C
we produce an intermediate relation which has one tuple for each course
registration by a student named Smith. If there are only a few Smith’s
among the 1,000 students (say there are 10), this relation will contain
about 50 tuples.
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Pipelined Plans
All operators (except sorting) operate without storing intermediate results
⇒ iterator protocols in constant storage
⇒ no recomputation for left-deep plans
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Temporary Store
General pipelined plans lead to recomputation
We introduce an additional store operator

⇒ allows us to store intermediate results in a relation
⇒ we can also built a (hash) index on top of the result
Semantically, the operator represents the identity
The costs of plans:

1 cumulative cost—to compute the value of the expression and store then in a
relation (once):

costc(store(E)) = costc(E) + costs(E) + |E |/b
2 scanning cost—to “read” all the tuples in the stored result of the expression:

costs(store(E)) = |E |/b
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Parallelism in Query Execution

Another approach to improving performance:
take advantage of parallelism in hardware

Mass storage usually reads/writes data in blocks
Multiple mass storage units can be accessed in parallel
Relational operators amenable to parallel execution
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Summary

Relational Algebra is the basis for efficient implementation of SQL

Provides a connection between conceptual and physical level
Expresses query execution in (easily) manageable pieces
Allows the use of efficient algorithms/data structures
Provides a mechanism for query optimization based on logical
transformations (including simplifications based on integrity constraints,
etc.)

Performance of database operations depends on the way queries (and
updates) are executed against a particular physical schema/design.

. . . understanding basics of query processing is necessary
to making physical design decisions

. . . performance also depends on transaction management (later)
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