
Database Tuning and Physical Design:
Basics of Query Execution

Fall, 2018

School of Computer Science
University of Waterloo

Databases CS348

(University of Waterloo) Query Execution 1 / 43

The Client/Server Architecture

(University of Waterloo) Query Execution 2 / 43

The Client/Server Architecture (cont’d)
Applications

User interaction: query input, presentation of results
Application-specific tasks

Database Server
DDL evaluation
DML compilation: selection of a query plan for a query
DML execution
Concurrency control
Buffer management: rollback and failure recovery

File System
Storage and retrieval of unstructured data

(University of Waterloo) Query Execution 3 / 43

Basics of Query Execution

Goal

Develop a simple relational calculator that answers queries.

Considerations:

1 How is data physically represented?

2 How to compute answers to complex queries?

3 How are intermediate results managed?

(University of Waterloo) Query Execution 4 / 43

How do we Execute Queries?
1 Parsing, typechecking, etc.
2 Relational Calculus (SQL) translated to Relational Algebra
3 Optimization:
⇒ generates an efficient query plan
⇒ uses statistics collected about the stored data

4 Plan execution:
⇒ access methods to access stored relations
⇒ physical relational operators to combine relations

(University of Waterloo) Query Execution 5 / 43

Relational Algebra

Idea

Define a set of operations on the universe of finite relations. . .
. . . called a RELATIONAL ALGEBRA.

(U ;R0, . . . ,Rk ,×, σϕ, πV ,∪,−)
Constants:

Ri : one for each relational scheme
Unary operators:

σϕ: selection (keeps only tuples satisfying ϕ)
πV : projection (keeps only attributes in V)

Binary operators:
×: Cartesian product
∪: union
−: set difference

(University of Waterloo) Query Execution 6 / 43

Examples

Account
Acnt# Type Balance Bank Branch
1234 CHK $1000 TD 1
1235 SAV $20000 TD 2
1236 CHK $2500 CIBC 1
1237 CHK $2500 Royal 5
2000 BUS $10000 Royal 5
2001 BUS $10000 TD 3

Bank
Name Address
TD TD Centre
CIBC CIBC Tower

(University of Waterloo) Query Execution 7 / 43

Projection
Definition:

πV (R) = {(xi1 , . . . , xik) : (x1, . . . , xn) ∈ R, ij ∈ V}
where V is an ordered list of column numbers.

Example:

π#1,#2(Account) =

1234 CHK
1235 SAV
1236 CHK
1237 CHK
2000 BUS
2001 BUS

(University of Waterloo) Query Execution 8 / 43

Selection
Definition:

σϕ(R) = {(x1, . . . , xn) : (x1, . . . , xn) ∈ R,
∧ ϕ(x1, . . . , xn)}

where ϕ is a built-in selection condition.

Example:

σ#3>5000(Account) =

1235 SAV $20000 TD 2
2000 BUS $10000 Royal 5
2001 BUS $10000 TD 3

(University of Waterloo) Query Execution 9 / 43

Product
Definition:

R × S = {((x1, . . . , xn, y1, . . . , ym) :
(x1, . . . , xn) ∈ R,
(y1, . . . , yn) ∈ S}

Example: Account× Bank =

1234 CHK $1000 TD 1 TD TD Centre
1235 SAV $20000 TD 2 TD TD Centre
1236 CHK $2500 CIBC 1 TD TD Centre
1237 CHK $2500 Royal 5 TD TD Centre
2000 BUS $10000 Royal 5 TD TD Centre
2001 BUS $10000 TD 3 TD TD Centre
1234 CHK $1000 TD 1 CIBC CIBC Tower
1235 SAV $20000 TD 2 CIBC CIBC Tower
1236 CHK $2500 CIBC 1 CIBC CIBC Tower
1237 CHK $2500 Royal 5 CIBC CIBC Tower
2000 BUS $10000 Royal 5 CIBC CIBC Tower
2001 BUS $10000 TD 3 CIBC CIBC Tower

(University of Waterloo) Query Execution 10 / 43

Union
Definition:

R ∪ S = {(x1, . . . , xn) : (x1, . . . , xn) ∈ R
∨ (x1, . . . , xn) ∈ S}

Example:

π#1,#2(σ#2=′CHK′(Account)) ∪ π#1,#2(σ#2=′SAV′(Account)) =

1234 CHK
1236 CHK
1237 CHK
1235 SAV

(University of Waterloo) Query Execution 11 / 43

Difference
Definition:

{(x1, . . . , xn) : (x1, . . . , xn) ∈ R,
∧ (x1, . . . , xn) 6∈ S}

Example:

Is there an account without a bank?
π#1,#4(Account)− π#1,#4(σ#4=#6(Account× Bank)) =

1237 Royal
2000 Royal

(University of Waterloo) Query Execution 12 / 43

Relational Calculus/SQL to Algebra
How do we know that these operators are sufficient to evaluate all Relational
Calculus queries?

Theorem (Codd)

For every domain independent Relational Calculus query there is an
equivalent Relational Algebra expression.

RCtoRA(Ri(x1, . . . , xk)) = Ri
RCtoRA(Q ∧ xi = xj) = σ#i=#j(RCtoRA(Q))
RCtoRA(∃xi .Q) = πFV (Q)−{#i}(RCtoRA(Q))
RCtoRA(Q1 ∧Q2)) = RCtoRA(Q1)× RCtoRA(Q2)
RCtoRA(Q1 ∨Q2)) = RCtoRA(Q1) ∪ RCtoRA(Q2)
RCtoRA(Q1 ∧ ¬Q2)) = RCtoRA(Q1)− RCtoRA(Q2)

. . . queries in ∧ must have disjoint sets of free variables

. . . we must invent consistent way of referring to attributes

(University of Waterloo) Query Execution 13 / 43

Iterator Model for RA
How do we avoid (mostly) storing intermediate results?

Idea

We use the cursor OPEN/FETCH/CLOSE interface.

Every implementation of an Relational Algebra operator:

1 implements the cursor interface to produce answers

2 uses the same interface to get answers from its children

. . . we make (at least) one physical implementation per operator.

(University of Waterloo) Query Execution 14 / 43

Physical Operators (example: selection)

// select_{#i=#j}(Child)
OPERATOR child;
int i,j;

public:

OPERATOR selection(OPERATOR c, int i0, int j0)
{ child = c; i = i0; j = j0; };

void open() { child.open(); };
tuple fetch() { tuple t = child.fetch();

if (t==NULL || t.attr(i)=t.attr(j))
return t;

return this.fetch();
};

void close() { child.close(); }

(University of Waterloo) Query Execution 15 / 43

Physical Operators (cont.)
The rest of the lot:

product:
simple nested loops algorithm

projection:
eliminate unwanted attributes from each tuple

union:
simple concatenation

set difference:
nested loops algorithm that checks for tuples on r.h.s.

WARNING!

This doesn’t quite work: projection and union may produce duplicates
. . . need to be followed by a duplicate elimination operator

(University of Waterloo) Query Execution 16 / 43

How to make it FAST(er)?

Observation

Naive implementation for each operator will work
. . . very (very very very) slowly

What to do?

1 Use (disk-based) data structures for efficient searching
INDEXING (used, e.g., in selections)

2 Use better algorithms to implement the operators
commonly based on SORTING or HASHING

3 Rewrite the RA expression to an equivalent, but more efficient one
remove unnecessary operations (e.g., duplicate elimination)
enable the use of better algorithms/data structures

(University of Waterloo) Query Execution 17 / 43

Atomic Relations and Indexing
When an index Rindex(x) (where x is the search attribute) is available we
replace a subquery of the form

σx=c(R)

with accessing Rindex(x) directly,
Otherwise: check all file blocks holding tuples for R.

Even if an index is available, scanning the entire relation may be faster in
certain circumstances:

The relation is very small
The relation is large, but we expect most of the tuples in the relation to
satisfy the selection criteria

(University of Waterloo) Query Execution 18 / 43

Clustering vs. Non-Clustering Indexes
An index on attribute A of a relation is a clustering index if tuples in the
relation with similar values for A are stored together in the same block.
Other indices are non-clustering (or secondary) indices.

Note

A relation may have at most one clustering index, and any number of
non-clustering indices.

(University of Waterloo) Query Execution 19 / 43

Clustering Index Example

44
57

77
84

10 Davis
14 Smith

17
21
27

Taylor
Garner
Dawson

31
39

Jones
Weddell

44
46

Hoff
Ryan

57
66
73

Ashton
Truman
McNair

77
83

Salem
Walsh

84
90

Parker
Strong
Green95

73

27

root node

10
17

31

(University of Waterloo) Query Execution 20 / 43

Non-Clustering Index Example

10 Davis
14 Smith

17
21
27

Taylor
Garner
Dawson

31
39

Jones
Weddell

44
46

Hoff
Ryan

57
66
73

Ashton
Truman
McNair

77
83

Salem
Walsh

84
90

Parker
Strong
Green95

Ashton
Davis
Dawson

Garner

McNair
Parker
Ryan

Salem
Smith
Strong

Taylor
Truman
Walsh
Weddell

Jones
Hoff
GreenDawson

Jones

Strong

Ryan

(University of Waterloo) Query Execution 21 / 43

Query Optimization
Many possible query plans for a single query:

1 equivalences in Relational Algebra
2 choice of Operator Implementation

⇒ performance differs greatly
How do we choose the best plan?

1 “always good” transformations
2 cost-based model

⇒ finding an optimal plan is computationally not feasible: we look for a
reasonable one

(University of Waterloo) Query Execution 22 / 43

General Approach
Generate all physical plans equivalent to the query
Pick the one with the lowest cost

Relational Algebray
Generate Physical Plans ←→ Determine Costy xy

Physical Algebra Cost Info

(University of Waterloo) Query Execution 23 / 43

. . . All Equivalent Plans?!
Cannot be done in general:

⇒ it is undecidable if a query is (un-)satisfiable (equivalent to an empty
plan)
Very expensive even for conjunctive queries

⇒ the Join-ordering problem
In practice:

⇒ only plans of certain form are considered (restrictions on the search
space.)
⇒ the goal is to eliminate the really bad ones

(University of Waterloo) Query Execution 24 / 43

. . . and Pick the Best one?!
How do we determine which plan is the best one?

⇒ cannot simply run the plan to find out
⇒ instead, estimate the cost based on stats collected by the DBMS for all
relations
A Simple Cost Model for disk I/O; Assumptions:

Uniformity: all possible values of an attribute are equally likely to
appear in a relation.

Independence: the likelihood that an attribute has a particular value (in a
tuple) does not depend on values of other attributes.

(University of Waterloo) Query Execution 25 / 43

A Simple Cost Model (cont.)
For a stored relation R with an attribute A we keep:

1 |R|: the cardinality of R (the number of tuples in R)
2 b(R): the blocking factor for R
3 min(R,A): the minimum value for A in R
4 max(R,A): the maximum value for A in R
5 distinct(R,A): the number of distinct values of A

Based on these values we try to estimate the cost of physical plans.

(University of Waterloo) Query Execution 26 / 43

Cost of Retrieval
Mark(Studnum, Course, Assignnum, Mark)

SELECT Studnum, Mark
FROM Mark
WHERE Course = ’PHYS’
AND Studnum = 100 AND Mark > 90

Indices:
clustering index CourseInd on Course
non-clustering index StudnumInd on Studnum

Assume:
|Mark| = 10000
b(Mark) = 50
500 different students
100 different courses
100 different marks

(University of Waterloo) Query Execution 27 / 43

Strategy 1: Use CourseInd
Assuming uniform distribution of tuples over the courses, there will be about
|Mark|/100 = 100 tuples with Course = PHYS.

Searching the CourseInd index has a cost of 2. Retrieval of the 100 matching
tuples adds a cost of 100/b(Mark) data blocks.
The total cost of 4.

Selection of N tuples from relation R using a clustered index has a cost of
2 + N/b(R).

(University of Waterloo) Query Execution 28 / 43

Strategy 2: Use StudnumInd
Assuming uniform distribution of tuples over student numbers, there will be
about |Mark|/500 = 20 tuples for each student.

Searching the StudnumInd has a cost of 2. Since this is not a clustered index,
we will make the pessimistic assumption that each matching record is on a
separate data block, i.e., 20 blocks will need to be read.
The total cost is 22.

Selection of N tuples from relation R using a clustered index has a cost of
2 + N.

(University of Waterloo) Query Execution 29 / 43

Strategy 3: Scan the Relation
The relation occupies 10,000/50 = 200 blocks, so 200 block I/O operations will
be required.

Selection of N tuples from relation R by scanning the entire relation has a cost
of |R|/b(R).

(University of Waterloo) Query Execution 30 / 43

Cost of other Relational Operations
Costs of physical operations (in I/O’s):

Selection: cost(σc(E)) = (1 + εc) cost(E).
Nested-Loop Join (R is the outer relation):

cost(R 1 S) = cost(R) + (|R|/b) cost(S)

Index Join (R is the outer relation, and S is the inner relation: B-tree with
depth dS):

cost(R 1 S) = cost(R) + dS|R|
Sort-Merge Join:

cost(R 1 S) = cost(sort(R)) + cost(sort(S))

where cost(sort(E)) = cost(E) + (|E |/b) log(|E |/b).
. . .

Why don’t we always use the Merge-Sort Join?

(University of Waterloo) Query Execution 31 / 43

Size Estimation
In the cost estimation we need to know sizes of results of operations: we use
the selectivity, defined, for a condition σcondition(R), as:

sel(σcondition(R)) =
|σcondition(R)|

|R|
Again, the optimizer will estimate selectivity using simple rules based on its
statistics:

sel(σA=c(R)) ≈ 1
distinct(R,A)

sel(σA≤c(R)) ≈ c −min(R,A)
max(R,A)−min(R,A)

sel(σA≥c(R)) ≈ max(R,A)− c
max(R,A)−min(R,A)

(University of Waterloo) Query Execution 32 / 43

Size Estimation (cont.)
For Joins:

General Join (on attribute A):

|R 1 S| ≈ |R| |S|
distinct(S,A)

or as

|R 1 S| ≈ |S| |R|
distinct(R,A)

Foreign key Join (Student and Enrolled joined on Sid):

|R 1 S| = |S| |R|
|S|

= |R|

May joins are foreign key joins, like this one.

(University of Waterloo) Query Execution 33 / 43

More Advanced Statistics
So far, have only a very primitive cost estimation approach

In practice: more complex approaches
histograms to approximate non-uniform distributions
correlations between attributes
uniqueness (keys) and containment (inclusions)
sampling methods
etc, etc

(University of Waterloo) Query Execution 34 / 43

Plan Generation
1 Apply “always good” transformations
⇒ heuristics that work in the majority of cases

2 Cost-based join-order selection
⇒ applied on conjunctive subqueries (the “select blocks”)
⇒ still computationaly not tractable.

(University of Waterloo) Query Execution 35 / 43

“Always good” transformations
Push selections:

σϕ(E1 1θ E2) = σϕ(E1) 1θ E2

for ϕ involving columns of E1 only (and vice versa).
Push projections:

πV (R 1θ S) = πV (πV1(R) 1θ πV2(S))

where V1 is the set of all attributes of R involved in θ and V (similarly for
V2).
Replace products by joins:

σϕ(R × S) = R 1ϕ S

⇒ also reduces the space of plans we need to search

(University of Waterloo) Query Execution 36 / 43

Example
Assume that

there are |S| = 1000 students,
enrolled in |C| = 500 classes.
the enrollment table is |E | = 5000,
and, on average, each student is registered for five courses.

Then:
cost(σname=′Smith′(S 1 (E 1 C))) >>

cost(σname=′Smith′(S) 1 (E 1 C))

(University of Waterloo) Query Execution 37 / 43

Join Order Selection
Joins are associative R 1 S 1 T 1 U can be equivalently expressed as

1 ((R 1 S) 1 T) 1 U
2 (R 1 S) 1 (T 1 U)
3 R 1 (S 1 (T 1 U))

⇒ try to minimize the intermediate result(s).
Moreover, we need to decide which of the subexpressions is evaluated
first

⇒ e.g., Nested Loop join’s cost is not symmetric!

(University of Waterloo) Query Execution 38 / 43

Example
We have the following two join orders to pick from:

1 σname=′Smith′(S) 1 (E 1 C)
we produce E 1 C, which has one tuple for each course registration (by
any student) ∼ 5000 tuples.

2 (σname=′Smith′(S) 1 E) 1 C
we produce an intermediate relation which has one tuple for each course
registration by a student named Smith. If there are only a few Smith’s
among the 1,000 students (say there are 10), this relation will contain
about 50 tuples.

(University of Waterloo) Query Execution 39 / 43

Pipelined Plans
All operators (except sorting) operate without storing intermediate results
⇒ iterator protocols in constant storage
⇒ no recomputation for left-deep plans

(University of Waterloo) Query Execution 40 / 43

Temporary Store
General pipelined plans lead to recomputation
We introduce an additional store operator

⇒ allows us to store intermediate results in a relation
⇒ we can also built a (hash) index on top of the result
Semantically, the operator represents the identity
The costs of plans:

1 cumulative cost—to compute the value of the expression and store then in a
relation (once):

costc(store(E)) = costc(E) + costs(E) + |E |/b
2 scanning cost—to “read” all the tuples in the stored result of the expression:

costs(store(E)) = |E |/b

(University of Waterloo) Query Execution 41 / 43

Parallelism in Query Execution

Another approach to improving performance:
take advantage of parallelism in hardware

Mass storage usually reads/writes data in blocks
Multiple mass storage units can be accessed in parallel
Relational operators amenable to parallel execution

(University of Waterloo) Query Execution 42 / 43

Summary

Relational Algebra is the basis for efficient implementation of SQL

Provides a connection between conceptual and physical level
Expresses query execution in (easily) manageable pieces
Allows the use of efficient algorithms/data structures
Provides a mechanism for query optimization based on logical
transformations (including simplifications based on integrity constraints,
etc.)

Performance of database operations depends on the way queries (and
updates) are executed against a particular physical schema/design.

. . . understanding basics of query processing is necessary
to making physical design decisions

. . . performance also depends on transaction management (later)

(University of Waterloo) Query Execution 43 / 43

