Translating Entity-Relationship to Relational Tables

Grant Weddell

David R. Cheriton School of Computer Science University of Waterloo

CS 348 Introduction to Database Management Spring 2012

Main ideas:

- Each entity set maps to a new table
- Each attribute maps to a new table column
- Each relationship set maps to either new table columns or to a new table

Representing Strong Entity Sets

Entity set E with attributes a_1, \ldots, a_n translates to table E with attributes a_1, \ldots, a_n

Entity of type $E \leftrightarrow$ row in table EPrimary key of entity set \rightarrow primary key of table Example:

Weak entity set E translates to table E

Columns of table E should include

- Attributes of the weak entity set
- Attributes of the identifying relationship set
- Primary key attributes of entity set for dominating entities

Primary key of weak entity set \rightarrow primary key of table

Representing Weak Entity Sets (cont.)

Example:

CS 348 (Intro to DB Mgmt)

ER to Relational

· < ≣ ▶ ≣ ∽ ९.0 Fall 2011 5 / 16

- If the relationship set is an identifying relationship set for a weak entity set then no action needed
- If we can deduce the general cardinality constraint (1,1) for a component entity set E then add following columns to table E
 - Attributes of the relationship set
 - Primary key attributes of remaining component entity sets
- Otherwise: relationship set $R \to ext{table } R$

- Columns of table R should include
 - Attributes of the relationship set
 - Primary key attributes of each component entity set
- Primary key of table R determined as follows
 - If we can deduce the general cardinality constraint (0,1) for a component entity set E, then take the primary key attributes for E
 - Otherwise, choose primary key attributes of each component entity

Representing Relationship Sets (cont.)

Note that the role name of a component entity set should be prepended to its primary key attributes, if supplied.

CS 348 (Intro to DB Mgmt)

ER to Relational

Fall 2011 8 / 16

Tabular representation of aggregation of R

= tabular representation for relationship set R

To represent relationship set involving aggregation of R, treat the aggregation like an entity set whose primary key is the **primary key** of the table for R

Representing Aggregation (cont.)

▶ < E ▶ E つへで Fall 2011 10 / 16 Create table for higher-level entity set, and treat specialized entity subsets like weak entity sets (without discriminators)

Example:

→ Ξ → ...

Create a table for each lower-level entity set only

Columns of new tables should include

- Attributes of lower level entity set
- Attributes of the superset

The higher-level entity set can be defined as a view on the tables for the lower-level entity sets

Representing Generalization (Approach #1)

▶ < E ▶ E つへで Fall 2011 13 / 16

Treat generalization the same as specialization.

Example:

→ ∃ →

Example Translation: ER Diagram

Fall 2011 15 / 16

э

イロン イロン イヨン イヨン

Example Translation: Relational Diagram

CS 348 (Intro to DB Mgmt)

Fall 2011 16 / 16

э