
SQL Application Development

Grant Weddell

Cheriton School of Computer Science
University of Waterloo

CS 348
Introduction to Database Management

Winter 2017

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 1 / 34

SQL APIs

• Interactive SQL command interpreters (e.g., DB2’s command line
processor) are simply domain-independent client programs that
interact with an SQL database server

• In general, it is necessary to write other client programs for
specific applications

• SQL has “bindings” for various programming languages that
describe how applications written in those languages can be made
to interact with a database server

Note
The main problem is the “impedance mismatch” between
set-oriented SQL and the application programming language. How
should data be passed back and forth between the two?

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 2 / 34

SQL APIs

• Interactive SQL command interpreters (e.g., DB2’s command line
processor) are simply domain-independent client programs that
interact with an SQL database server

• In general, it is necessary to write other client programs for
specific applications

• SQL has “bindings” for various programming languages that
describe how applications written in those languages can be made
to interact with a database server

Note
The main problem is the “impedance mismatch” between
set-oriented SQL and the application programming language. How
should data be passed back and forth between the two?

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 2 / 34

Outline

1 Embedded SQL
Static Embedded SQL
Dynamic Embedded SQL
SQLJ

2 Call Level Interfaces

3 Stored Procedures

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 3 / 34

Development Process for Embedded SQL Applications

SOURCE CODE
EMBEDDED SQL

EMBEDDED SQL
PREPROCESSOR

SOURCE CODE

General structure

EMBEDDED SQL

C

C

OBJECT

LINKER

EXECUTABLE

EMBEDDED SQL / C

C

CODE
OBJECT

CODE

SOURCE

COMPILER

LIBRARIES

SOURCE

PREPROCESSOR

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 4 / 34

Development Process for Embedded SQL Applications

SOURCE CODE
EMBEDDED SQL

EMBEDDED SQL
PREPROCESSOR

SOURCE CODE

General structure

EMBEDDED SQL

C

C

OBJECT

LINKER

EXECUTABLE

EMBEDDED SQL / C

C

CODE
OBJECT

CODE

SOURCE

COMPILER

LIBRARIES

SOURCE

PREPROCESSOR

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 4 / 34

A Simple Example

#include <stdio.h>
EXEC SQL INCLUDE SQLCA;
main() {

EXEC SQL WHENEVER SQLERROR GOTO error;
EXEC SQL CONNECT TO sample;
EXEC SQL UPDATE Employee

SET salary = 1.1*salary
WHERE empno = ’000370’;

EXEC SQL COMMIT WORK;
EXEC SQL CONNECT RESET;
return(0);

error:
printf("update failed, sqlcode = %ldnn",SQLCODE);
EXEC SQL ROLLBACK WORK
return(-1);

}

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 5 / 34

Static Embedded SQL

• SQL DML and DDL can be embedded in a C program by
prefixing with “EXEC SQL” and suffixing with “;”.

• host variables are used to send and receive values from the
database system

• values can be sent by using host variables in place of constants.
• values can be received by using host variables in an INTO clause.

Note
The SELECT statement is (potentially) different in embedded
SQL.

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 6 / 34

Declaring Host Variables

EXEC SQL BEGIN DECLARE SECTION;
char deptno[4];
char deptname[30];
char mgrno[7];
char admrdept[4];
char location[17];
EXEC SQL END DECLARE SECTION;

/* program assigns values to variables */

EXEC SQL INSERT INTO
Department(deptno,deptname,mgrno,admrdept,location)

VALUES
(:deptno,:deptname,:mgrno,:admrdept,:location);

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 7 / 34

Domain and Type Correspondence

Domain C Type
INTEGER long int v;
SMALLINT short int v;
REAL float v;
DOUBLE double v;
CHAR(n) char v[n+1];
VARCHAR(n) char v[n+1]; or

struct tag { short int len; char v[n]; }
DATE char v[11];

Note
Each SQL domain (type) corresponds to a type in the host
language. See, e.g., the DB2 Application Development Guide for
complete list.

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 8 / 34

Queries Using INTO

int PrintEmployeeName(char employeenum[]) {
EXEC SQL BEGIN DECLARE SECTION;

char empno[7];
char fname[16];
char lname[16];

EXEC SQL END DECLARE SECTION;
strcpy(empno,employeenum);
EXEC SQL

SELECT firstname, lastname INTO :fname, :lname
FROM employee
WHERE empno = :empno;

if(SQLCODE < 0) { return(-1); } /* error */
else if(SQLCODE==100){printf("no such employeenn");}
else { printf("%snn",lname); }
return(0);

}

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 9 / 34

Indicator Variables

• What if a returned value is NULL?

• NULLs are handled using special flags called indicator variables.
• Any host variable that might receive a NULL should have a

corresponding indicator variable.
• In C/C++, indicator variables are short ints

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 10 / 34

Indicator Variables

• What if a returned value is NULL?
• NULLs are handled using special flags called indicator variables.
• Any host variable that might receive a NULL should have a

corresponding indicator variable.
• In C/C++, indicator variables are short ints

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 10 / 34

Indicator Variables: An Example

int PrintEmployeePhone(char employeenum[]) {
EXEC SQL BEGIN DECLARE SECTION;
char empno[7];
char phonenum[5];
short int phoneind;
EXEC SQL END DECLARE SECTION;
strcpy(empno,employeenum);
EXEC SQL

SELECT phoneno INTO :phonenum :phoneind
FROM employee WHERE empno = :empno;

if(SQLCODE < 0) { return(-1); } /* error */
else if(SQLCODE==100){printf("no such employeenn");}
else if (phoneind<0){printf("phone unknownnn");}
else { printf("%snn",phonenum); }
return(0);

}

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 11 / 34

Cursors

• If a query may return more than one row, then a cursor must be
use to retrieve values from the result.

• A cursor is like a pointer that refers to some row of the result. At
any time, a cursor may be in one of three places:

• before first tuple
• on a tuple
• after last tuple

BEFORE FIRST TUPLE0

1

2

ïn ï 1

ïn

ïn + 1

n ï 1

n

n + 1

ï2

ï1

AFTER LAST TUPLE

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 12 / 34

Using Cursors

1 Declare the cursor
• Declaring a cursor associates a cursor identifier with a query.

2 Open the cursor
• Opening a cursor (conceptually) causes the query to be evaluated,

generating a result.
3 Fetch one or more tuples using the cursor

• Each call to the FETCH command returns values from one tuple of
the generated result.

4 Close the cursor

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 13 / 34

The FETCH Command Syntax

fetch [<location>] <cursor-name>
[INTO <host-var1>, <host-var2> : : :]

• Possible locations:
• NEXT (this is the default)
• PRIOR
• FIRST
• LAST
• ABSOLUTE n
• RELATIVE n

Unfortunately, locations cannot be specified in DB2

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 14 / 34

Using Cursors: An Example

int PrintEmpNames() {
int rval; /* -1 for error, 0 for success */
EXEC SQL BEGIN DECLARE SECTION;
char fullname[30];
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE C1 CURSOR FOR
SELECT firstname || ’ ’ || lastname FROM Employee;
EXEC SQL OPEN C1;
for(;;) {

EXEC SQL FETCH NEXT C1 INTO :fullname;
if (SQLCODE == 100) { rval = 0; break; }
else if (SQLCODE < 0) { rval = -1; break;}
printf("%snn", fullname);

}
EXEC SQL CLOSE C1;
return(rval); }

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 15 / 34

Dynamic Embedded SQL

• Must be used when tables, columns or predicates are not known at
the time the application is written.

• Basic idea:
1 prepare the statement for execution: PREPARE

• in static embedded SQL programs, statement preparation is
handled at compile time by the preprocessor

2 execute the prepared statement: EXECUTE

• Once prepared, a statement may be executed multiple times, if
desired

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 16 / 34

Dynamic Embedded SQL

• Must be used when tables, columns or predicates are not known at
the time the application is written.

• Basic idea:
1 prepare the statement for execution: PREPARE

• in static embedded SQL programs, statement preparation is
handled at compile time by the preprocessor

2 execute the prepared statement: EXECUTE

• Once prepared, a statement may be executed multiple times, if
desired

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 16 / 34

Dynamic Embedded SQL

• Must be used when tables, columns or predicates are not known at
the time the application is written.

• Basic idea:
1 prepare the statement for execution: PREPARE

• in static embedded SQL programs, statement preparation is
handled at compile time by the preprocessor

2 execute the prepared statement: EXECUTE

• Once prepared, a statement may be executed multiple times, if
desired

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 16 / 34

Dynamic Embedded SQL: A Simple Example

EXEC SQL BEGIN DECLARE SECTION;
char s[100] =
"INSERT INTO department VALUES (’000456’,’Legal’,..)";

EXEC SQL END DECLARE SECTION;
EXEC SQL EXECUTE IMMEDIATE :s;

or, to factor cost of “preparing”

EXEC SQL BEGIN DECLARE SECTION;
char s[100] =
"INSERT INTO department VALUES (’000456’,’Legal’,..)";

EXEC SQL END DECLARE SECTION;
EXEC SQL PREPARE S1 FROM :s;
EXEC SQL EXECUTE S1;
EXEC SQL EXECUTE S1;

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 17 / 34

Dynamic Embedded SQL: Using Host Variables for
Input

EXEC SQL BEGIN DECLARE SECTION;
char s[100] = "INSERT INTO employee VALUES (?, ?, ...)";
char empno[7];
char firstname[13];
...
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE S1 FROM :s;
strcpy(empno,"000111");
strcpy(firstname,"Ken");
...
EXEC SQL EXECUTE S1 USING :empno, :firstname, ... ;

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 18 / 34

Placeholders

• In the query string
"INSERT INTO employee VALUES (?, ?, ...)";

the ? are called placeholders
• placeholders can appear where literals can appear - not in place of
relation names, column names, etc.

• host variable values replace the placeholders when the prepared
statement is executed

• the USING clause is used to specify which host variables should
replace the placeholders:
EXEC SQL EXECUTE S1 USING :empno, :firsname, ... ;

• USING can only use used with previously-prepared statements,
not with EXECUTE IMMEDIATE

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 19 / 34

Dynamic Single-Row Queries

EXEC SQL BEGIN DECLARE SECTION;
char s[100] =
"select lastname,salary from employee where empno = ?"

char empno[7];
char lastname[16];
double salary;
short int salaryind;
EXEC SQL END DECLARE SECTION;
EXEC SQL PREPARE S1 FROM :s;
EXEC SQL EXECUTE S1

INTO :lastname, :salary :salaryind USING :empno

• INTO (with EXECUTE) in dynamic SQL is like INTO (with
SELECT) in static

• Note: our DB2 version does not allow the use of INTO with
EXECUTE. A dynamic cursor must be used to retrieve values.

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 20 / 34

Dynamic Cursors

EXEC SQL BEGIN DECLARE SECTION;
char s[100] =
"select lastname,salary from employee where edlevel = ?"

short int edlevel;
char lastname[16];
double salary;
short int salaryind;
EXEC SQL END DECLARE SECTION;
EXEC SQL PREPARE S1 FROM :s;
EXEC SQL DECLARE C1 CURSOR FOR S1;
edlevel = 18;
EXEC SQL OPEN C1 USING :edlevel;
while(...) {

EXEC SQL FETCH FROM C1
INTO :lastname, :salary:salaryind;

}

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 21 / 34

Descriptors and the SQLDA

• if the numbers and types of input and output values are not
known in advance, SQL descriptors can be used determine them
at run-time

• an SQLDA (descriptor area) is used to hold a description of the
structure (number of attributes and their types) of a query result.

• the DESCRIBE command can be used to populate a descriptor
area, that is, to find out the structure of a query result

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 22 / 34

SQLJ

• SQLJ allows embedding of SQL into Java

• Not part of SQL standard, but supported by most DBMSs
• Like Embedded SQL, utilizes preprocessing step

• static type checking against database schema
• DBMS can optimize static queries at compile time

• Unlike Embedded SQL, runtime connection established via JDBC
connection

• forces compliance to SQL standard syntax

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 23 / 34

SQLJ

• SQLJ allows embedding of SQL into Java
• Not part of SQL standard, but supported by most DBMSs

• Like Embedded SQL, utilizes preprocessing step
• static type checking against database schema
• DBMS can optimize static queries at compile time

• Unlike Embedded SQL, runtime connection established via JDBC
connection

• forces compliance to SQL standard syntax

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 23 / 34

SQLJ

• SQLJ allows embedding of SQL into Java
• Not part of SQL standard, but supported by most DBMSs
• Like Embedded SQL, utilizes preprocessing step

• static type checking against database schema
• DBMS can optimize static queries at compile time

• Unlike Embedded SQL, runtime connection established via JDBC
connection

• forces compliance to SQL standard syntax

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 23 / 34

SQLJ

• SQLJ allows embedding of SQL into Java
• Not part of SQL standard, but supported by most DBMSs
• Like Embedded SQL, utilizes preprocessing step

• static type checking against database schema
• DBMS can optimize static queries at compile time

• Unlike Embedded SQL, runtime connection established via JDBC
connection

• forces compliance to SQL standard syntax

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 23 / 34

JDBC, ODBC and CLI

• CLI (Call-Level Interface) is a vendor-neutral ISO standard
programming interface for SQL database systems. It is similar to
ODBC.

• ODBC (Open Database Connectivity), popularized by Microsoft,
is a programming interface for SQL database systems.

• JDBC (Java Database Connectivity) is a collection of Java classes
that provide an ODBC/CLI-like programming interface.

• Why?
• An embedded SQL program used to access one DBMS must be

recompiled before it can be used to access a different DBMS.
• A CLI/ODBC/JDBC program need not be recompiled - a single

application may even access multiple DBMS at the same time.

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 24 / 34

CLI Overview

• Main ideas for both dynamic SQL and CLI/ODBC/JDBC
1 Queries are represented as strings in the application
2 Queries are prepared and then executed
3 In general, app will not know number and type of input parameters

and number and type of output parameters - descriptor areas are
used to hold type info (meta data) and actual data.

• “describing” a query causes DBMS to analyze query and place type
info into descriptor area

• app can read type info
• app can place data into descriptor (or into vars to which descriptor

points) before executing the query, and can place result data into
the descriptor through a cursor afterwards.

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 25 / 34

A CLI Example

SQLHANDLE henv; /* an environment handle*/
SQLHANDLE hdbc; /* a connection handle */
SQLHANDLE hstmt; /* a statement handle */
SQLCHAR numteamsquery[] = "select count(*) from teams";
SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
DBconnect(henv,&hdbc,server,uid,pwd);
SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
SQLExecDirect(hstmt,numteamsquery,SQL_NTS); /* execute */
SQLFetch(hstmt); /* get one row of the result */
SQLGetData(hstmt,1,SQL_C_LONG,&numteams,

sizeof(numteams),&bytesremaining);
SQLFreeStmt(hstmt,SQL_CLOSE); /* close the statement */

Note
CLI/ODBC interface is similar to dynamic embedded SQL, but
syntax is entirely valid host language.
CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 26 / 34

Stored Procedures

Idea
A stored procedure executes application logic directly inside the
DBMS process.

• Possible implementations
• invoke externally-compiled application
• SQL/PSM (or vendor-specific language)

• Possible advantages of stored procedures:
1 minimize data transfer costs
2 centralize application code
3 logical independence

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 27 / 34

Stored Procedures

Idea
A stored procedure executes application logic directly inside the
DBMS process.

• Possible implementations
• invoke externally-compiled application
• SQL/PSM (or vendor-specific language)

• Possible advantages of stored procedures:
1 minimize data transfer costs
2 centralize application code
3 logical independence

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 27 / 34

Stored Procedures

Idea
A stored procedure executes application logic directly inside the
DBMS process.

• Possible implementations
• invoke externally-compiled application
• SQL/PSM (or vendor-specific language)

• Possible advantages of stored procedures:
1 minimize data transfer costs
2 centralize application code
3 logical independence

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 27 / 34

A Stored Procedure Example: Atomic-Valued Function

CREATE FUNCTION sumSalaries(dept CHAR(3))
RETURNS DECIMAL(9,2)

LANGUAGE SQL
RETURN

SELECT sum(salary)
FROM employee
WHERE workdept = dept

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 28 / 34

A Stored Procedure Example: Atomic-Valued Function

db2 => SELECT deptno, sumSalaries(deptno) AS sal \
=> FROM department

DEPTNO SAL
------ -----------
A00 128500.00
B01 41250.00
C01 90470.00
D01 -
D11 222100.00
D21 150920.00
E01 40175.00
E11 104990.00
E21 95310.00

9 record(s) selected.

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 29 / 34

A Stored Procedure Example: Table-Valued Function

CREATE FUNCTION deptSalariesF(dept CHAR(3))
RETURNS TABLE(salary DECIMAL(9,2))
LANGUAGE SQL

RETURN
SELECT salary
FROM employee
WHERE workdept = dept

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 30 / 34

A Stored Procedure Example: Table-Valued Function

db2 => SELECT * FROM TABLE \
=> (deptSalariesF(CAST(’A00’ AS CHAR(3)))) AS s

SALARY

52750.00
46500.00
29250.00

3 record(s) selected.

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 31 / 34

A Stored Procedure Example: Multiple Results

CREATE PROCEDURE deptSalariesP(IN dept CHAR(3))
RESULT SETS 2
LANGUAGE SQL

BEGIN
DECLARE emp_curs CURSOR WITH RETURN FOR

SELECT salary
FROM employee
WHERE workdept = dept;

DECLARE dept_curs CURSOR WITH RETURN FOR
SELECT deptno, sumSalaries(deptno) as sumsal
FROM department;

OPEN emp_curs;
OPEN dept_curs;

END

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 32 / 34

A Stored Procedure Example: Multiple Results

db2 => call deptSalariesP(’A00’)

SALARY
52750.00
46500.00
29250.00

DEPTNO SUMSAL
A00 128500.00
B01 41250.00
C01 90470.00
D01 NULL
D11 222100.00
D21 150920.00
E01 40175.00
E11 104990.00
E21 95310.00

"DEPTSALARIESP" RETURN_STATUS: "0"

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 33 / 34

A Stored Procedure Example: Branching

CREATE PROCEDURE UPDATE_SALARY_IF
(IN employee_number CHAR(6), INOUT rating SMALLINT)

LANGUAGE SQL
BEGIN

DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE EXIT HANDLER FOR not_found

SET rating = -1;
IF rating = 1 THEN

UPDATE employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = employee_number;

ELSEIF rating = 2 THEN
UPDATE employee
SET salary = salary * 1.05, bonus = 500
WHERE empno = employee_number;

ELSE
UPDATE employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = employee_number;

END IF;
END

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 34 / 34

	Embedded SQL
	Static Embedded SQL
	Dynamic Embedded SQL
	SQLJ

	Call Level Interfaces
	Stored Procedures

