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SQL APIs

• Interactive SQL command interpreters (e.g., DB2’s command line
processor) are simply domain-independent client programs that
interact with an SQL database server

• In general, it is necessary to write other client programs for
specific applications

• SQL has “bindings” for various programming languages that
describe how applications written in those languages can be made
to interact with a database server

Note
The main problem is the “impedance mismatch” between
set-oriented SQL and the application programming language. How
should data be passed back and forth between the two?
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A Simple Example

#include <stdio.h>
EXEC SQL INCLUDE SQLCA;
main() {

EXEC SQL WHENEVER SQLERROR GOTO error;
EXEC SQL CONNECT TO sample;
EXEC SQL UPDATE Employee

SET salary = 1.1*salary
WHERE empno = ’000370’;

EXEC SQL COMMIT WORK;
EXEC SQL CONNECT RESET;
return(0);

error:
printf("update failed, sqlcode = %ldnn",SQLCODE );
EXEC SQL ROLLBACK WORK
return(-1);

}
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Static Embedded SQL

• SQL DML and DDL can be embedded in a C program by
prefixing with “EXEC SQL” and suffixing with “;”.

• host variables are used to send and receive values from the
database system

• values can be sent by using host variables in place of constants.
• values can be received by using host variables in an INTO clause.

Note
The SELECT statement is (potentially) different in embedded
SQL.
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Declaring Host Variables

EXEC SQL BEGIN DECLARE SECTION;
char deptno[4];
char deptname[30];
char mgrno[7];
char admrdept[4];
char location[17];
EXEC SQL END DECLARE SECTION;

/* program assigns values to variables */

EXEC SQL INSERT INTO
Department(deptno,deptname,mgrno,admrdept,location)

VALUES
(:deptno,:deptname,:mgrno,:admrdept,:location);
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Domain and Type Correspondence

Domain C Type
INTEGER long int v;
SMALLINT short int v;
REAL float v;
DOUBLE double v;
CHAR(n) char v[n+1];
VARCHAR(n) char v[n+1]; or

struct tag { short int len; char v[n]; }
DATE char v[11];

Note
Each SQL domain (type) corresponds to a type in the host
language. See, e.g., the DB2 Application Development Guide for
complete list.
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Queries Using INTO

int PrintEmployeeName( char employeenum[] ) {
EXEC SQL BEGIN DECLARE SECTION;

char empno[7];
char fname[16];
char lname[16];

EXEC SQL END DECLARE SECTION;
strcpy(empno,employeenum);
EXEC SQL

SELECT firstname, lastname INTO :fname, :lname
FROM employee
WHERE empno = :empno;

if( SQLCODE < 0 ) { return( -1 ); } /* error */
else if(SQLCODE==100){printf("no such employeenn");}
else { printf("%snn",lname); }
return( 0 );

}
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Indicator Variables

• What if a returned value is NULL?

• NULLs are handled using special flags called indicator variables.
• Any host variable that might receive a NULL should have a

corresponding indicator variable.
• In C/C++, indicator variables are short ints
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Indicator Variables: An Example

int PrintEmployeePhone( char employeenum[] ) {
EXEC SQL BEGIN DECLARE SECTION;
char empno[7];
char phonenum[5];
short int phoneind;
EXEC SQL END DECLARE SECTION;
strcpy(empno,employeenum);
EXEC SQL

SELECT phoneno INTO :phonenum :phoneind
FROM employee WHERE empno = :empno;

if( SQLCODE < 0) { return( -1 ); } /* error */
else if(SQLCODE==100){printf("no such employeenn");}
else if (phoneind<0){printf("phone unknownnn");}
else { printf("%snn",phonenum); }
return( 0 );

}
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Cursors

• If a query may return more than one row, then a cursor must be
use to retrieve values from the result.

• A cursor is like a pointer that refers to some row of the result. At
any time, a cursor may be in one of three places:

• before first tuple
• on a tuple
• after last tuple
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2

ïn ï 1

ïn

ïn + 1

n ï 1

n

n + 1

ï2

ï1

AFTER LAST TUPLE
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Using Cursors

1 Declare the cursor
• Declaring a cursor associates a cursor identifier with a query.

2 Open the cursor
• Opening a cursor (conceptually) causes the query to be evaluated,

generating a result.
3 Fetch one or more tuples using the cursor

• Each call to the FETCH command returns values from one tuple of
the generated result.

4 Close the cursor
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The FETCH Command Syntax

fetch [<location>] <cursor-name>
[ INTO <host-var1>, <host-var2> : : : ]

• Possible locations:
• NEXT (this is the default)
• PRIOR
• FIRST
• LAST
• ABSOLUTE n
• RELATIVE n

Unfortunately, locations cannot be specified in DB2
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Using Cursors: An Example

int PrintEmpNames() {
int rval; /* -1 for error, 0 for success */
EXEC SQL BEGIN DECLARE SECTION;
char fullname[30];
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE C1 CURSOR FOR
SELECT firstname || ’ ’ || lastname FROM Employee;
EXEC SQL OPEN C1;
for( ;; ) {

EXEC SQL FETCH NEXT C1 INTO :fullname;
if (SQLCODE == 100) { rval = 0; break; }
else if (SQLCODE < 0) { rval = -1; break;}
printf("%snn", fullname );

}
EXEC SQL CLOSE C1;
return(rval); }
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Dynamic Embedded SQL

• Must be used when tables, columns or predicates are not known at
the time the application is written.

• Basic idea:
1 prepare the statement for execution: PREPARE

• in static embedded SQL programs, statement preparation is
handled at compile time by the preprocessor

2 execute the prepared statement: EXECUTE

• Once prepared, a statement may be executed multiple times, if
desired
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Dynamic Embedded SQL: A Simple Example

EXEC SQL BEGIN DECLARE SECTION;
char s[100] =
"INSERT INTO department VALUES (’000456’,’Legal’,..)";

EXEC SQL END DECLARE SECTION;
EXEC SQL EXECUTE IMMEDIATE :s;

or, to factor cost of “preparing”

EXEC SQL BEGIN DECLARE SECTION;
char s[100] =
"INSERT INTO department VALUES (’000456’,’Legal’,..)";

EXEC SQL END DECLARE SECTION;
EXEC SQL PREPARE S1 FROM :s;
EXEC SQL EXECUTE S1;
EXEC SQL EXECUTE S1;
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Dynamic Embedded SQL: Using Host Variables for
Input

EXEC SQL BEGIN DECLARE SECTION;
char s[100] = "INSERT INTO employee VALUES (?, ?, ... )";
char empno[7];
char firstname[13];
...
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE S1 FROM :s;
strcpy(empno,"000111");
strcpy(firstname,"Ken");
...
EXEC SQL EXECUTE S1 USING :empno, :firstname, ... ;
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Placeholders

• In the query string
"INSERT INTO employee VALUES (?, ?, ... )";

the ? are called placeholders
• placeholders can appear where literals can appear - not in place of
relation names, column names, etc.

• host variable values replace the placeholders when the prepared
statement is executed

• the USING clause is used to specify which host variables should
replace the placeholders:
EXEC SQL EXECUTE S1 USING :empno, :firsname, ... ;

• USING can only use used with previously-prepared statements,
not with EXECUTE IMMEDIATE
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Dynamic Single-Row Queries

EXEC SQL BEGIN DECLARE SECTION;
char s[100] =
"select lastname,salary from employee where empno = ?"

char empno[7];
char lastname[16];
double salary;
short int salaryind;
EXEC SQL END DECLARE SECTION;
EXEC SQL PREPARE S1 FROM :s;
EXEC SQL EXECUTE S1

INTO :lastname, :salary :salaryind USING :empno

• INTO (with EXECUTE) in dynamic SQL is like INTO (with
SELECT) in static

• Note: our DB2 version does not allow the use of INTO with
EXECUTE. A dynamic cursor must be used to retrieve values.
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Dynamic Cursors

EXEC SQL BEGIN DECLARE SECTION;
char s[100] =
"select lastname,salary from employee where edlevel = ?"

short int edlevel;
char lastname[16];
double salary;
short int salaryind;
EXEC SQL END DECLARE SECTION;
EXEC SQL PREPARE S1 FROM :s;
EXEC SQL DECLARE C1 CURSOR FOR S1;
edlevel = 18;
EXEC SQL OPEN C1 USING :edlevel;
while( ... ) {

EXEC SQL FETCH FROM C1
INTO :lastname, :salary:salaryind;

}
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Descriptors and the SQLDA

• if the numbers and types of input and output values are not
known in advance, SQL descriptors can be used determine them
at run-time

• an SQLDA (descriptor area) is used to hold a description of the
structure (number of attributes and their types) of a query result.

• the DESCRIBE command can be used to populate a descriptor
area, that is, to find out the structure of a query result
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SQLJ

• SQLJ allows embedding of SQL into Java

• Not part of SQL standard, but supported by most DBMSs
• Like Embedded SQL, utilizes preprocessing step

• static type checking against database schema
• DBMS can optimize static queries at compile time

• Unlike Embedded SQL, runtime connection established via JDBC
connection

• forces compliance to SQL standard syntax
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JDBC, ODBC and CLI

• CLI (Call-Level Interface) is a vendor-neutral ISO standard
programming interface for SQL database systems. It is similar to
ODBC.

• ODBC (Open Database Connectivity), popularized by Microsoft,
is a programming interface for SQL database systems.

• JDBC (Java Database Connectivity) is a collection of Java classes
that provide an ODBC/CLI-like programming interface.

• Why?
• An embedded SQL program used to access one DBMS must be

recompiled before it can be used to access a different DBMS.
• A CLI/ODBC/JDBC program need not be recompiled - a single

application may even access multiple DBMS at the same time.
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CLI Overview

• Main ideas for both dynamic SQL and CLI/ODBC/JDBC
1 Queries are represented as strings in the application
2 Queries are prepared and then executed
3 In general, app will not know number and type of input parameters

and number and type of output parameters - descriptor areas are
used to hold type info (meta data) and actual data.

• “describing” a query causes DBMS to analyze query and place type
info into descriptor area

• app can read type info
• app can place data into descriptor (or into vars to which descriptor

points) before executing the query, and can place result data into
the descriptor through a cursor afterwards.

CS 348 (Intro to DB Mgmt) SQL APIs Winter 2017 25 / 34



A CLI Example

SQLHANDLE henv; /* an environment handle*/
SQLHANDLE hdbc; /* a connection handle */
SQLHANDLE hstmt; /* a statement handle */
SQLCHAR numteamsquery[] = "select count(*) from teams";
SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
DBconnect(henv,&hdbc,server,uid,pwd);
SQLAllocHandle( SQL_HANDLE_STMT, hdbc, &hstmt );
SQLExecDirect(hstmt,numteamsquery,SQL_NTS ); /* execute */
SQLFetch(hstmt); /* get one row of the result */
SQLGetData(hstmt,1,SQL_C_LONG,&numteams,

sizeof(numteams),&bytesremaining);
SQLFreeStmt(hstmt,SQL_CLOSE); /* close the statement */

Note
CLI/ODBC interface is similar to dynamic embedded SQL, but
syntax is entirely valid host language.
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Stored Procedures

Idea
A stored procedure executes application logic directly inside the
DBMS process.

• Possible implementations
• invoke externally-compiled application
• SQL/PSM (or vendor-specific language)

• Possible advantages of stored procedures:
1 minimize data transfer costs
2 centralize application code
3 logical independence
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A Stored Procedure Example: Atomic-Valued Function

CREATE FUNCTION sumSalaries(dept CHAR(3))
RETURNS DECIMAL(9,2)

LANGUAGE SQL
RETURN

SELECT sum(salary)
FROM employee
WHERE workdept = dept
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A Stored Procedure Example: Atomic-Valued Function

db2 => SELECT deptno, sumSalaries(deptno) AS sal \
=> FROM department

DEPTNO SAL
------ -----------
A00 128500.00
B01 41250.00
C01 90470.00
D01 -
D11 222100.00
D21 150920.00
E01 40175.00
E11 104990.00
E21 95310.00

9 record(s) selected.
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A Stored Procedure Example: Table-Valued Function

CREATE FUNCTION deptSalariesF(dept CHAR(3))
RETURNS TABLE(salary DECIMAL(9,2))
LANGUAGE SQL

RETURN
SELECT salary
FROM employee
WHERE workdept = dept
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A Stored Procedure Example: Table-Valued Function

db2 => SELECT * FROM TABLE \
=> (deptSalariesF(CAST(’A00’ AS CHAR(3)))) AS s

SALARY
-----------

52750.00
46500.00
29250.00

3 record(s) selected.
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A Stored Procedure Example: Multiple Results

CREATE PROCEDURE deptSalariesP(IN dept CHAR(3))
RESULT SETS 2
LANGUAGE SQL

BEGIN
DECLARE emp_curs CURSOR WITH RETURN FOR

SELECT salary
FROM employee
WHERE workdept = dept;

DECLARE dept_curs CURSOR WITH RETURN FOR
SELECT deptno, sumSalaries(deptno) as sumsal
FROM department;

OPEN emp_curs;
OPEN dept_curs;

END
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A Stored Procedure Example: Multiple Results

db2 => call deptSalariesP(’A00’)

SALARY
52750.00
46500.00
29250.00

DEPTNO SUMSAL
A00 128500.00
B01 41250.00
C01 90470.00
D01 NULL
D11 222100.00
D21 150920.00
E01 40175.00
E11 104990.00
E21 95310.00

"DEPTSALARIESP" RETURN_STATUS: "0"
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A Stored Procedure Example: Branching

CREATE PROCEDURE UPDATE_SALARY_IF
(IN employee_number CHAR(6), INOUT rating SMALLINT)

LANGUAGE SQL
BEGIN

DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE EXIT HANDLER FOR not_found

SET rating = -1;
IF rating = 1 THEN

UPDATE employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = employee_number;

ELSEIF rating = 2 THEN
UPDATE employee
SET salary = salary * 1.05, bonus = 500
WHERE empno = employee_number;

ELSE
UPDATE employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = employee_number;

END IF;
END
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