Translating Entity-Relationship to Relational Tables

Grant Weddell

Cheriton School of Computer Science
University of Waterloo

CS 348
Introduction to Database Management
Winter 2017
Main ideas:

- Each entity set maps to a new table
- Each attribute maps to a new table column
- Each relationship set maps to either new table columns or to a new table
Representing Strong Entity Sets

Entity set E with attributes a_1, \ldots, a_n translates to table E with attributes a_1, \ldots, a_n

Entity of type E \leftrightarrow row in table E

Primary key of entity set \rightarrow primary key of table

Example:

Student

<table>
<thead>
<tr>
<th>StudentNum</th>
<th>StudentName</th>
<th>Major</th>
</tr>
</thead>
</table>

CS 348 (Intro to DB Mgmt) ER to Relational Winter 2017 3 / 16
Representing Weak Entity Sets

Weak entity set E translates to table E.

Columns of table E should include:

- Attributes of the weak entity set
- Attributes of the identifying relationship set
- Primary key attributes of entity set for dominating entities

Primary key of weak entity set $→$ primary key of table.
Representing Weak Entity Sets (cont.)

Example:

```
Balance     Account     AccNum

Log

Transaction   TransNum

Date     Amount

Account

AccNum | Balance

Transaction

TransNum | AccNum | Date | Amount
```
Representing Relationship Sets

- If the relationship set is an identifying relationship set for a weak entity set then no action needed.

- If we can deduce the general cardinality constraint (1,1) for a component entity set E then add following columns to table E
 - Attributes of the relationship set
 - Primary key attributes of remaining component entity sets

- Otherwise: relationship set $R \rightarrow$ table R
• Columns of table R should include
 • Attributes of the relationship set
 • Primary key attributes of each component entity set

• Primary key of table R determined as follows
 • If we can deduce the general cardinality constraint $(0,1)$ for a component entity set E, then take the primary key attributes for E
 • Otherwise, choose primary key attributes of each component entity
Note that the role name of a component entity set should be prepended to its primary key attributes, if supplied.
Representing Aggregation

Tabular representation of aggregation of R

$= \text{tabular representation for relationship set } R$

To represent relationship set involving aggregation of R, treat the aggregation like an entity set whose primary key is the \textbf{primary key} of the table for R
Representing Aggregation (cont.)

Example:

```
Representing Aggregation (cont.)

Example:

```

```

Subject

```

```
Representing Specialization

Create table for higher-level entity set, and treat specialized entity subsets like weak entity sets (without discriminators)

Example:

Student
  └── StudentNumber
  └── StudentName

Graduate
  └── StudentNumber
  └── ProfessorName

SupervisedBy
  └── (1, 1)

Professor
  └── ProfessorName

Degrees
  └── (0, N)

Student
  └── StudentNumber
  └── StudentName

Graduate
  └── StudentNumber
  └── ProfessorName

Degree
  └── StudentNumber
  └── Degree

Professor
  └── ProfessorName
Representing Generalization (Approach #1)

Create a table for each lower-level entity set only

Columns of new tables should include

- Attributes of lower level entity set
- Attributes of the superset

The higher-level entity set can be defined as a view on the tables for the lower-level entity sets
Representing Generalization (Approach #1)

Example:

```
<table>
<thead>
<tr>
<th>LicenceNum</th>
<th>MakeAndModel</th>
<th>Price</th>
<th>Tonnage</th>
<th>AxelCount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LicenceNum</td>
<td>MakeAndModel</td>
<td>Price</td>
<td>MaxSpeed</td>
<td>PassengerCount</td>
</tr>
<tr>
<td>Truck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

ER to Relational
Representing Generalization (Approach #2)

Treat generalization the same as specialization.

Example:

```
Vehicle
 LicenceNum
 MakeAndModel
 Price
 COVERS
 LicenceNum
 MakeAndModel
 Price
 Truck
 Car
 Tonnage
 AxelCount
 PassengerCount

Truck
 LicenceNum
 Tonnage
 AxelCount

Car
 LicenceNum
 MaxSpeed
 PassengerCount
```
Example Translation: ER Diagram