V. Database Design

How to obtain a good relational database schema

- Deriving new relational schema from ER-diagrams
- Normal forms: use of constraints in evaluating existing relational schema
Translating an E-R Model to a Relational Schema

General approach is straightforward

- Each entity set maps to a new table
- Each attribute maps to a new table column
- Each relationship set maps to either new table columns or to a new table
Representing Strong Entity Sets

Entity set E with attributes a_1, \ldots, a_n
→ table E with attributes a_1, \ldots, a_n

Entity of type $E \leftrightarrow$ row in table E

Primary key of entity set \rightarrow primary key of table

Ex.

- Student
 - StudentNum
 - StudentName
 - Major

<table>
<thead>
<tr>
<th>StudentNum</th>
<th>StudentName</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS338</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Representing Weak Entity Sets

Weak entity set $E \rightarrow$ table E

Columns of table E should include

- Attributes of the weak entity set
- Attributes of the identifying relationship set
- Primary key attributes of entity set for dominating entities

Primary key of weak entity set \rightarrow primary key of table
Representing Weak Entity Sets (cont’d)

Ex.

Account

<table>
<thead>
<tr>
<th>AccNum</th>
<th>Balance</th>
</tr>
</thead>
</table>

Transaction

<table>
<thead>
<tr>
<th>TransNum</th>
<th>AccNum</th>
<th>Date</th>
<th>Amount</th>
</tr>
</thead>
</table>
Representing Relationship Sets

If the relationship set is an identifying relationship set for a weak entity set then no action needed.

If we can deduce the general cardinality constraint (1,1) for a component entity set E then add following columns to table E

- Attributes of the relationship set
- Primary key attributes of remaining component entity sets

Otherwise: relationship set $R \rightarrow$ table R
Representing Relationship Sets (cont’d)

Columns of table R should include

- Attributes of the relationship set
- Primary key attributes of each component entity set

Primary key of table R determined as follows

- If we can deduce the general cardinality constraint $(0,1)$ for a component entity set E, then choose the primary key attributes for E
- Otherwise, choose primary key attributes of each component entity
Representing Relationship Sets (cont’d)

Ex.

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TeamName</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LocName</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the role name of a component entity set should be prepended to its primary key attributes, if supplied.
Example Translation

Course
- CourseNum
- CourseName

Section
- CourseNum
- SectionNum
- ProfNum

Student
- StudentNum
- StudentName

EnrolledIn
- CourseNum
- SectionNum
- StudentNum
- Mark

Professor
- ProfNum
- ProfName
Representing Aggregation

Tabular representation for aggregation of relationship set R
\equiv tabular representation for relationship set R

To represent relationship set involving aggregation of R, treat the aggregation like an entity set whose primary key \equiv primary key of the table for R
Representing Aggregation (cont’d)

Ex.

```
<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>StudentNum</td>
<td>CourseNum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EnrolledIn</th>
<th>CourseAccount</th>
</tr>
</thead>
<tbody>
<tr>
<td>StudentNum</td>
<td>CourseNum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Account</th>
<th>EnrolledIn</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserId</td>
<td>StudentNum</td>
</tr>
</tbody>
</table>

Ex.

```

<table>
<thead>
<tr>
<th>CourseAccount</th>
<th>EnrolledIn</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserId</td>
<td>StudentNum</td>
</tr>
</tbody>
</table>

CS338 11
Representing Specialization

Create table for higher-level entity set, and treat specialized entity subsets like weak entity sets

Ex.

![Entity Relationship Diagram]

Student
- StudentNumber
- StudentName

Graduate
- StudentNumber
- ProfessorName

SupervisedBy

Degrees
- StudentNumber
- Degree

Professor
- ProfessorName

Table Ex.

<table>
<thead>
<tr>
<th>Student</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>StudentNumber</td>
<td>StudentName</td>
</tr>
<tr>
<td>ProfessorName</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graduate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>StudentNumber</td>
<td>ProfessorName</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>StudentNumber</td>
</tr>
</tbody>
</table>
Representing Generalization

Create a table for each lower-level entity set only

Columns of new tables should include

- Attributes of lower level entity set
- Attributes of the superset

The higher-level entity set can be defined as a view on the tables for the lower-level entity sets
Representing Generalization (cont’d)

Ex.

```
<table>
<thead>
<tr>
<th>LicenceNum</th>
<th>MakeAndModel</th>
<th>Price</th>
<th>Tonnage</th>
<th>AxelCount</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS338</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>LicenceNum</th>
<th>MakeAndModel</th>
<th>Price</th>
<th>MaxSpeed</th>
<th>PassengerCount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Normal Forms

What is a good relational database schema?

How can we evaluate an existing relational schema?

Goals:

- Intuitive and straightforward changes
- Nonredundant storage of data

We review:

- Boyce-Codd Normal Form (BCNF)
- Third Normal Form (3NF)
Change Anomalies

Assume we are given the E-R diagram
Change Anomalies (cont’d)

This maps to

<table>
<thead>
<tr>
<th>Sno</th>
<th>Sname</th>
<th>City</th>
<th>Ino</th>
<th>Iname</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>I1</td>
<td>Bolt</td>
<td>0.50</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>I2</td>
<td>Nut</td>
<td>0.25</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>I3</td>
<td>Screw</td>
<td>0.30</td>
</tr>
<tr>
<td>S2</td>
<td>Budd</td>
<td>Hull</td>
<td>I3</td>
<td>Screw</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Problems

1. Update problems (e.g. changing name of supplier)
2. Insert problems (e.g. add a new item)
3. Delete problems (e.g. Budd no longer supplies screws)
4. Likely increase in space requirements
Change Anomalies (cont’d)

Now compare to

<table>
<thead>
<tr>
<th>Sno</th>
<th>Sname</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
</tr>
<tr>
<td>S2</td>
<td>Budd</td>
<td>Hull</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ino</th>
<th>Iname</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Bolt</td>
</tr>
<tr>
<td>I2</td>
<td>Nut</td>
</tr>
<tr>
<td>I3</td>
<td>Screw</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sno</th>
<th>Ino</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>I1</td>
<td>0.50</td>
</tr>
<tr>
<td>S1</td>
<td>I2</td>
<td>0.25</td>
</tr>
<tr>
<td>S1</td>
<td>I3</td>
<td>0.30</td>
</tr>
<tr>
<td>S2</td>
<td>I3</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Change Anomalies (cont’d)

But other extreme is also undesirable (information about relationships is lost)

<table>
<thead>
<tr>
<th>Snos</th>
<th>Snames</th>
<th>Cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sno</td>
<td>Sname</td>
<td>City</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
</tr>
<tr>
<td></td>
<td>Budd</td>
<td>Hull</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inums</th>
<th>Inames</th>
<th>Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inum</td>
<td>Iname</td>
<td>Price</td>
</tr>
<tr>
<td>I1</td>
<td>Bolt</td>
<td>0.50</td>
</tr>
<tr>
<td>I2</td>
<td>Nut</td>
<td>0.25</td>
</tr>
<tr>
<td>I3</td>
<td>Screw</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.40</td>
</tr>
</tbody>
</table>
Good Database Design

What is a “good” relational database schema?

Rule of thumb: Independent facts in separate tables

or: Each relation schema should consist of a primary key and a set of mutually independent attributes
Functional Dependencies

Generalizes notion of superkey

Used to characterize BCNF and 3NF

Some notation: Allow projection operation on tuples

Ex. when \(t \) is the first tuple in Supplier,

- \(t[Sno] = (S1) \)
- \(t[Sname, City] = (Magna, Ajax) \)
Examples of Functional Dependencies

Consider

```
EmpProj
| SIN | PNum | Hours | EName | PName | PLoc | Allowance |
```

Key constraint forbids two different rows t and u in EmpProj with $t[SIN, PNum] = u[SIN, PNum]$

Also disallowed

- one SIN with two employee names
- one project number with two project names or two locations
- different allowances for the same number of hours at the same location

Notation

- $SIN \rightarrow EName$
- $PNum \rightarrow PName, Ploc$
- $PLoc, Hours \rightarrow Allowance$
Formal Definitions

Let R be a relation schema, and $X, Y \subseteq R$. The **functional dependency**

$$X \rightarrow Y$$

holds on R if no legal instance of R contains two tuples t and u with $t[X] = u[X]$ and $t[Y] \neq u[Y]$

X functionally determines Y, Y is functionally dependent on X

Keys again: $K \subseteq R$ is a superkey for relation schema R if dependency $K \rightarrow R$ holds on R

Functional dependencies are constraints on all instances of a schema; they are design decisions based on the semantics of the attributes

A relation can confirm that a functional dependency does not hold; the relation cannot confirm that a functional dependency must always hold.
Formal Definitions (cont’d)

Ex.

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Course</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>Data Structures</td>
<td>Bartram</td>
</tr>
<tr>
<td>Smith</td>
<td>Data Management</td>
<td>Al-Nour</td>
</tr>
<tr>
<td>Hall</td>
<td>Compilers</td>
<td>Hoffman</td>
</tr>
<tr>
<td>Brown</td>
<td>Data Structures</td>
<td>Augenthaler</td>
</tr>
</tbody>
</table>

Let F denote a set of functional dependencies over R. The closure of F, denoted by F^+ is the set of all functional dependencies that are satisfied by every relation instance that satisfies F.

($=\text{logical implications of } F$)

Note: $F \subseteq F^+$
Reasoning About Functional Dependencies

Need to be able to

- find superkeys
- decide membership in F^+
- find minimal covers

There are different sets of functional dependencies that have the same logical implications. Small simples sets are desirable, and are called **minimal covers**.
Reasoning About Functional Dependencies (cont’d)

Logical implications can be derived by using inference rules called Armstrong’s axioms

- (reflexivity) \(Y \subseteq X \Rightarrow X \rightarrow Y \)
- (augmentation) \(X \rightarrow Y \Rightarrow XZ \rightarrow YZ \)
- (transitivity) \(X \rightarrow Y, Y \rightarrow Z \Rightarrow X \rightarrow Z \)

Additional rules can be derived

- (union) \(X \rightarrow Y, X \rightarrow Z \Rightarrow X \rightarrow YZ \)
- (decomposition) \(X \rightarrow YZ \Rightarrow X \rightarrow Y \)

The axioms are

- sound (anything derived from \(F \) is in \(F^+ \))
- complete (anything in \(F^+ \) can be derived)
Reasoning (cont’d)

Ex. Let F consist of

\[
\begin{align*}
\text{SIN, PNum} &\rightarrow \text{Hours} \\
\text{SIN} &\rightarrow \text{EName} \\
\text{PNum} &\rightarrow \text{PName, PLoc} \\
\text{PLoc, Hours} &\rightarrow \text{Allowance}
\end{align*}
\]

A derivation of: SIN, PNum \rightarrow Allowance

1. SIN, PNum \rightarrow Hours \hspace{1cm} ($\in F'$)
2. PNum \rightarrow PName, PLoc \hspace{1cm} ($\in F'$)
3. PLoc, Hours \rightarrow Allowance \hspace{1cm} ($\in F'$)
4. SIN, PNum \rightarrow PNum \hspace{1cm} (reflexivity)
5. SIN, PNum \rightarrow PName, PLoc \hspace{1cm} (transitivity, 4 and 2)
6. SIN, PNum \rightarrow PLoc \hspace{1cm} (decomposition, 5)
7. SIN, PNum \rightarrow PLoc, Hours \hspace{1cm} (union, 6, 1)
8. SIN, PNum \rightarrow Allowance \hspace{1cm} (transitivity, 7 and 3)
Reasoning (cont’d)

There is a more efficient way of using Armstrong’s axioms

function $\text{Compute}X^+(X, F)$
begin
 $X^+ := X$;
 while true do
 if there exists $(Y \rightarrow Z) \in F$ such that
 (1) $Y \subseteq X^+$, and
 (2) $Z \not\subseteq X^+$
 then $X^+ := X^+ \cup Z$
 else exit;
 return X^+;
end

Let R be a relational schema and F a set of functional dependencies on R. Then

Theorem: X is a superkey of R if and only if

\[\text{Compute}X^+(X, F) = R \]

Theorem: $X \rightarrow Y \in F^+$ if and only if

\[Y \subseteq \text{Compute}X^+(X, F) \]
Finding Minimal Covers

A minimal cover for F can be computed in four steps. Note that each step must be repeated until it no longer succeeds in updating F.

Step 1. Replace $X \rightarrow YZ$ with the pair $X \rightarrow Y$ and $X \rightarrow Z$.

Step 2. Remove $X \rightarrow A$ from F if $A \in \text{Compute}X^+(X, F - \{X \rightarrow A\})$.

Step 3. Remove A from the left-hand-side of $X \rightarrow B$ in F if B is in $\text{Compute}X^+(X - \{A\}, F)$.

Step 4. Replace $X \rightarrow Y$ and $X \rightarrow Z$ in F by $X \rightarrow YZ$.
Boyce-Codd Normal Form (BCNF)

Formalization of the goal that independent relationships are stored in separate tables

Let R be a relation schema and F a set of functional dependencies. A functional dependency $X \rightarrow Y$ is **trivial** if $Y \subseteq X$.

Schema R is in **BCNF** if and only if whenever $(X \rightarrow Y) \in F^+$ and $XY \subseteq R$, then either

- $(X \rightarrow Y)$ is trivial, or
- X is a superkey of R

A database schema $\{R_1, \ldots, R_n\}$ is in BCNF if each relation schema R_i is in BCNF
BCNF (cont’d)

Why does BCNF avoid redundancy?

For schema Supplied_Items we had

\[FD: \text{Sno} \rightarrow \text{Sname, City} \]

Implies: supplier name “Magna” and city “Ajax” must be repeated for each item supplied by supplier S1.

Assume FD holds over a schema \(R \) that is in BCNF. This implies

- Sno is a superkey for \(R \)
- each Sno value appears on one row only
- no need to repeat Sname and City values

(Cf. the original Supplier table)
Computing a Normal Form

What to do if a given relational schema is not in BCNF?

Strategy: identify undesirable dependencies,
decompose schema

Let R be a relation schema (= set of attributes). Collection
$\{R_1, \ldots, R_n\}$ of relation schemas is a *decomposition* of R if

$$R = R_1 \cup R_2 \cup \cdots \cup R_n$$

A good decomposition does not

- lose information
- complicate checking of constraints
Lossless-Join Decompositions

We should be able to construct the original table from its decomposition

Ex. Consider replacing

<table>
<thead>
<tr>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Student</td>
</tr>
<tr>
<td>Ann</td>
</tr>
<tr>
<td>Ann</td>
</tr>
<tr>
<td>Bob</td>
</tr>
</tbody>
</table>

by decomposing (i.e. projecting) into two tables

<table>
<thead>
<tr>
<th>SGM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Student</td>
</tr>
<tr>
<td>Ann</td>
</tr>
<tr>
<td>Ann</td>
</tr>
<tr>
<td>Bob</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Assignment</td>
</tr>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
</tr>
<tr>
<td>A1</td>
</tr>
</tbody>
</table>
Lossless-Join Decompositions (cont’d)

But computing the natural join of SGM and AM produces

<table>
<thead>
<tr>
<th>Student</th>
<th>Assignment</th>
<th>Group</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
<td>A1</td>
<td>G1</td>
<td>80</td>
</tr>
<tr>
<td>Ann</td>
<td>A2</td>
<td>G3</td>
<td>60</td>
</tr>
<tr>
<td>Ann</td>
<td>A1</td>
<td>G3</td>
<td>60 !</td>
</tr>
<tr>
<td>Bob</td>
<td>A2</td>
<td>G2</td>
<td>60 !</td>
</tr>
<tr>
<td>Bob</td>
<td>A1</td>
<td>G2</td>
<td>60</td>
</tr>
</tbody>
</table>

We get extra data, spurious tuples, and would therefore lose information if we were to replace Marks by SGM and AM.

If converse is true, if re-joining SGM and AM would always produce exactly the tuples in Marks, then we call SGM and AM a lossless-join decomposition.
Identifying Lossless-Join Decompositions

A decomposition \(\{ R_1, R_2 \} \) of \(R \) is lossless if and only if the common attributes of \(R_1 \) and \(R_2 \) form a superkey for either schema, that is

\[
R_1 \cap R_2 \to R_1 \text{ or } R_1 \cap R_2 \to R_2
\]

Ex. In the previous example we had

\[
R = \{ \text{Student, Assignment, Group, Mark} \}, \\
F = \{ (\text{Student, Assignment} \rightarrow \text{Group, Mark}) \}, \\
R_1 = \{ \text{Student, Group, Mark} \}, \\
R_2 = \{ \text{Assignment, Mark} \}
\]

Decomposition \(\{ R_1, R_2 \} \) is lossy because \(R_1 \cap R_2 (= \{ M \}) \) is not a superkey of either SGM or AM
Dependency Preservation

Goal: efficient testing of constraints on the decomposed schema

Ex. A table for a company database could be

\[
\begin{array}{ccc}
\text{Proj} & \text{Dept} & \text{Div} \\
\end{array}
\]

with functional dependencies

- FD1: Proj → Dept,
- FD2: Dept → Div, and
- FD3: Proj → Div

Consider two decompositions

\[
D_1 = \{\text{R1}[\text{Proj, Dept}], \text{R2}[\text{Dept, Div}]\}
\]

\[
D_2 = \{\text{R1}[\text{Proj, Dept}], \text{R3}[\text{Proj, Div}]\}
\]

Both are lossless. (Why?)
Dependency Preservation (cont’d)

Decomposition D_1 lets us test FD1 on table R1 and FD2 on table R2; if they are both satisfied, FD3 is automatically satisfied

In decomposition D_2 we can test FD1 on table R1 and FD3 on table R3. Dependency FD2 is an \textbf{interrelational constraint}: testing it requires joining tables R1 and R3

Let R be a relation schema and F a set of functional dependencies on R.

A decomposition $D = \{R_1, \ldots, R_n\}$ of R is \textbf{dependency preserving} if there is an equivalent set F' of functional dependencies, none of which is interrelational in D
Computing a Lossless-Join BCNF Decomposition

function $ComputeBCNF(R, F)$

begin

Result := \{R\};

while some $R_i \in$ Result and $(X \rightarrow Y) \in F^+$

violate the BCNF condition **do begin**

Replace R_i by $R_i - (Y - X)$;

Add \{X, Y\} to Result;

end;

return Result;

end

No efficient procedure to do this exists.

It is possible that no dependency preserving BCNF decomposition exists.

Ex. Consider $R = \{A, B, C\}$ and $F = \{AB \rightarrow C, C \rightarrow B\}$.
Third Normal Form (3NF)

Let R be a relation schema and F a set of functional dependencies.

Schema R is in $3NF$ if and only if whenever $(X \rightarrow Y) \in F^+$ and $XY \subseteq R$, then either

- $(X \rightarrow Y)$ is trivial, or
- X is a superkey of R, or
- each attribute of Y is contained in a candidate key of R

A database schema $\{R_1, \ldots, R_n\}$ is in $3NF$ if each relation schema R_i is in $3NF$

Because $3NF$ is looser than BCNF, it allows more redundancy

A lossless-join, dependency preserving decomposition into $3NF$ relation schemas always exists.
Computing a 3NF Decomposition

A lossless-join 3NF decomposition that is dependency preserving can be efficiently computed

\[
\text{function } \text{Compute3NF}(R, F') \\begin{align*}
\text{begin} \\
\text{Result} := \emptyset; \\
F' := \text{a minimal cover for } F; \\
\text{for each } (X \rightarrow Y) \in F' \text{ do} \\
\text{Result} := \text{Result } \cup \{XY\}; \\
\text{if there is no } R_i \in \text{Result such that} \\
R_i \text{ contains a candidate key for } R \text{ then begin} \\
\text{compute a candidate key } K \text{ for } R; \\
\text{Result} := \text{Result } \cup \{K\}; \\
\text{end}; \\
\text{return Result}; \\
\text{end}
\end{align*}
\]