HASHING

University of Waterloo

List of Slides

- 1
- 2 Other ways to Implement a Dictionary
- 3 Example
- 4 Considerations
- 5 Hash Functions
- 6 Collision Resolution
- 7 Separate Chaining
- 8 Example Data
- 9 Example
- 10 Coalesced Chaining
- 11 Example
- 12 Open Addressing
- 13 Example
- 14 Double Hashing
- 15 Example
- 16 Probe Sequences
- 17 Summary

Other ways to Implement a Dictionary

IDEA1: Store in an *array* indexed by the *key*s

⇒ really fast lookups/insertions/...

PROBLEM: VERY poor utilization of space

IDEA2: Store in an *array* indexed by results of applying a **(hash) function** H on the keys

 \Rightarrow requirement: $0 \le f(k) < M$ or $0 < f(k) \le M$ where M is the size of the **hash table**.

Let H be a *hash function* with range $\{1, \ldots, M\}$:

Keys	Hash Function		Hash Table
k_1, k_2, \dots	$\stackrel{H}{\longrightarrow}$	1:	
		2:	
		$H(k_1)=3:$	$k_1: v_1$
		4:	
		:	
		M-2:	
		$H(k_2) = M - 1:$	$k_2: v_2$
		M:	

 k_i : keys

 v_i : values associated with the keys

Considerations

We need to solve two problems:

- 1. How do we design the *hash function*?
 - static case (we know all the keys in advance):
 perfect hash functions
 - ⇒ every key is mapped to a separate value
 - \Rightarrow the table size is O(number of keys)
 - dynamic case (we don't know the keys in advance)
 - ⇒ "mostly injective"
- 2. What do we do if two or more records "hash" to the same place (a **collision** occurs)?
 - ⇒ conflict (collision) resolution

Hash Functions

- Selection-based Hash Function
 Choose a part of the key to be the hash value
 - ⇒ common choices:
 - first couple of bits
 - fixed pattern of bits
 - ⇒ problems with non-uniformly distributed keys
- Division-based Hash Function
 Take the key modulo the table size
 - ⇒ choose table size to be *prime number*
- Folding-based Hash Function
 Take bit patterns and add them together
 - ⇒ may need an adjustment to match the table size

Collision Resolution

How good is a particular hashing scheme?

⇒ measured by load factor

$$load factor = \frac{number of stored items}{size of table}$$

The number of **probes** (accesses needed to locate a key) is compared against the load factor.

- ⇒ load factor closer to 1
 - ⇒ more collisions
 - ⇒ more probes

Separate Chaining

IDEA: buckets contain **lists** of elements

- use H to determine bucket
- retrieve by searching the bucket (a list!)
- insert by adding to the list

Advantages:

- ⇒ flexible size of buckets
- ⇒ deletion is easy (how?)

Disadvantages:

- ⇒ worst case: linear search
- ⇒ pointers take space

Example Data

Insert

BEAR HORSE

CA**T** JA**G**UAR

COW KOALA

DOG LION

EL**E**PHANT RA**B**BIT

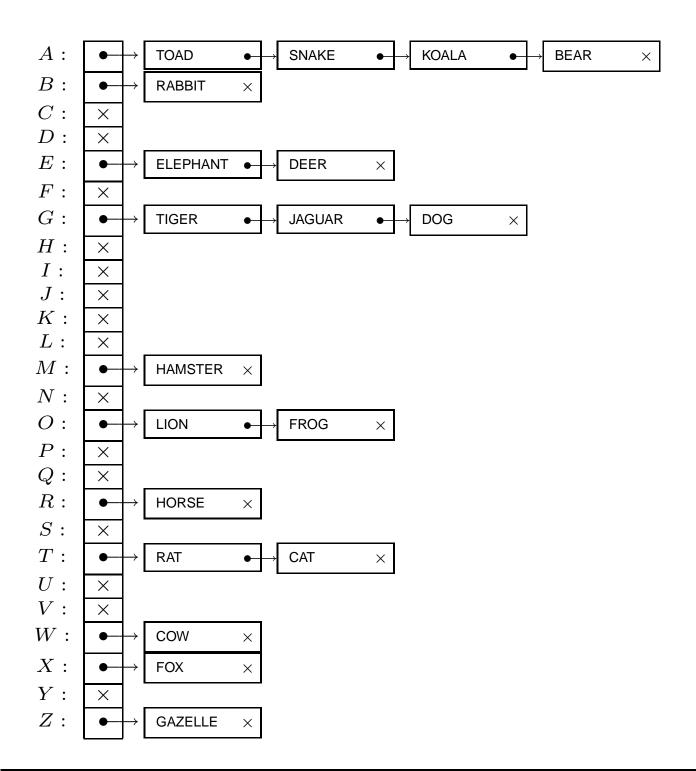
FO**X** RA**T**

FROG SNAKE

GA**Z**ELLE TI**G**ER

HAMSTER TOAD

into a 26-bucket *Hash table* based on a Hash function H(k) = the 3rd letter of k.



Coalesced Chaining

IDEA: Store "overflow" in empty cells of the table⇒ and remember where you put ita pointer from the "original" bucket

- Lookup *k*:
 - look at H(k),
 - if different from k follow pointers till you find it
 - or till you find a *nil* (k not found)
- Insert k:
 - similar, if not found
 - store in the next **free** cell
 - update the last pointer

Problem: deletion is quite difficult.

A:	BEAR	D
B:	ELEPHANT	Н
C:	JAGUAR	K
D:	KOALA	J
E:	DEER	В
F:	LION	
G:	DOG	С
H:	RABBIT	
I:	RAT	
J:	SNAKE	L
K:	TIGER	
L:	TOAD	
M:	HAMSTER	
N:		
O:	FROG	F
P:		
Q:		
R:	HORSE	
S:		
T:	CAT	I
U:		
V:		
W:	COW	
X:	FOX	
Y:		
Z:	GAZELLE	

Open Addressing

IDEA don't use pointers

- ⇒ use *fixed* **probe sequence**
- $\Rightarrow H(k,i)$ is a hash function used for the *i*-th probe
- $\Rightarrow H(k,i)$ should *cover* the whole table for varying i

Most common version: Sequential (linear) probing:

$$\begin{array}{rcl} H(k,1) & = & H(k) \\ H(k,i+1) & = & (H(k,i)+1)) \operatorname{mod} M \end{array}$$

Problem: primary clustering

- ⇒ "clogging" parts of the table
- ⇒ long chains of probes to insert "TOAD" we need 10 probes
- \Rightarrow using different "offset" doesn't help and may miss parts of the table one reason to pick M prime

Another problem: deletion

⇒ only possibility: mark as deleted.

A:	BEAR	
B:	KOALA	
C:	RABBIT	
D:	SNAKE	
E:	DEER	
F:	ELEPHANT	
G:	DOG	
H:	JAGUAR	
I:	TIGER	
J:	TOAD	
K:		
L:		
M:	HAMSTER	
N:		
O:	FROG	
P:	LION	
Q:		
R:	HORSE	
S:		
T:	CAT	
U:	RAT	
V:		
W:	COW	
X: $Y:$	FOX	
Y:		
Z:	GAZELLE	

Double Hashing

IDEA: use 2nd hash function to determine the probe sequence for k

$$H(k,1) = H_1(k)$$

$$H(k,i+1) = (H(k,i) + H_2(k))) \operatorname{mod} M$$

 $\Rightarrow H_2(k)$ must be relatively prime to M!

In our Example:

 $H_2(k) = i$ if the first letter of k is i^{th} in alphabet.

A:	BEAR
B:	RABBIT
C:	
D:	
E:	DEER
F:	
G:	DOG
H:	
I:	RAT
J:	ELEPHANT
K:	TIGER
L:	KOALA
M:	HAMSTER
N:	
O:	FROG
P:	
Q:	JAGUAR
R:	HORSE
S:	
T:	CAT
U:	TOAD
V:	
W:	COW
X:	FOX
Y:	
Z:	GAZELLE
0:	LION
1:	
2:	SNAKE

Probe Sequences

Key	Probes
BEAR	A,C,E,G,
CAT	T,W,Z,2,
COW	W,Z,2,C,
DOG	G,K,O,S,
ELEPHANT	E,J,O T,
FOX	X,A,G,M
FROG	O,U,0,D,
GAZELLE	Z,D,J,P,\dots
HAMSTER	M,U,2,H,

Summary

- Fast array-like search
 - \Rightarrow degenerates for high load factors (> .7)
- Easy implementation
 - ⇒ no pointer overhead
- Many versions
 - ⇒ extensible/linear hashing the table grows/shrinks with inserts/deletes disk (block-based) versions