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Other ways to Implement a Dictionary

IDEA1: Store in an array indexed by the keys

= really fast lookups/insertions/. ..

PROBLEM: VERY poor utilization of space

IDEAZ2: Store in an array indexed by results of applying

a (hash) function H on the keys

= requirement: 0 < f(k) < Mor0< f(k) <M
where M is the size of the hash table.
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Example

Let H be a hash function with range {1,..., M }:

Hash
Keys Function Hash Table
1
2
H(kl) =3 ]fl . U1
4
ki, ko, . .. "
M —2:
H(k’g):M—li ]4322 V2
M -
k;. keys

v;. values associated with the keys
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Considerations

We need to solve two problems:

1. How do we design the hash function?

e static case (we know all the keys in advance):
perfect hash functions
= every key IS mapped to a separate value
= the table size is O(number of keys)

e dynamic case (we don’'t know the keys in advance)
= “mostly injective”

2. What do we do if two or more records “hash” to the
same place (a collision occurs)?

= conflict (collision) resolution
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Hash Functions

e Selection-based Hash Function
Choose a part of the key to be the hash value

= common choices:

e first couple of bits
o fixed pattern of bits

= problems with non-uniformly distributed keys

e Division-based Hash Function
Take the key modulo the table size

= choose table size to be prime number

e Folding-based Hash Function
Take bit patterns and add them together

= may need an adjustment to match the table size
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Collision Resolution

How good is a particular hashing scheme?
= measured by load factor

number of stored items
size of table

load factor =

The number of probes (accesses needed to locate a key)
IS compared against the load factor.

= |oad factor closer to 1
= more collisions
= more probes
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Separate Chaining

IDEA: buckets contain lists of elements
e USe H to determine bucket

e retrieve by searching the bucket (a list!)
e insert by adding to the list

Advantages:
= flexible size of buckets
= deletion is easy (how?)

Disadvantages:
= worst case: linear search
= pointers take space

Data Types and Structures CS 234 University of Waterloo



Hashing: 8

Example Data

Insert
BEAR HORSE
CAT JAGUAR
COow KOALA
DOG LION
ELEPHANT RABBIT
FOX RAT
FROG SNAKE
GAZELLE TIGER
HAMSTER TOAD

Into a 26-bucket Hash table based on
a Hash function H (k) = the 3rd letter of k.
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Example

TOAD ° SNAKE . KOALA . BEAR X

— | RABBIT X

— | ELEPHANT e DEER X

— | TIGER ° JAGUAR . DOG X

— | HAMSTER X

— | LION ° FROG X

— | HORSE X

— | RAT ° CAT X

— | COW X

— | FOX X

N X ITET3LI0TVO0OZI RS~ QIEoQE -
TXTTXXTXTXXTXTXXXXXTXTXXT.

— | GAZELLE X
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Coalesced Chaining

IDEA: Store “overflow” in empty cells of the table
= and remember where you put it
a pointer from the “original” bucket

e Lookup k:

— look at H (k),
— if different from £ follow pointers till you find it

— or till you find a nil (k not found)

e INnsert k:

— similar, if not found
— store In the next free cell
— update the last pointer

Problem: deletion is quite difficult.
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Example

BEAR

ELEPHANT

JAGUAR

KOALA

DEER

|« |X|XT|O

LION

DOG

RABBIT

RAT

SNAKE

TIGER

TOAD

HAMSTER

FROG

HORSE

CAT

cow

FOX

N<N§<Qﬂmm©ﬁ02§hxﬁijﬁjmUQU:JD>

GAZELLE
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Open Addressing

IDEA don’t use pointers

= use fixed probe sequence
= H(k,14) is a hash function used for the i-th probe
= H(k, i) should cover the whole table for varying ¢

Most common version: Sequential (linear) probing:

H(k1) = H(k)
H(ki+1) = (H(k,4)+1))modM

Problem: primary clustering

= “clogging” parts of the table
=- long chains of probes
to insert “TOAD” we need 10 probes

= using different “offset” doesn’t help
and may miss parts of the table
one reason to pick M prime

Another problem: deletion

= only possibility: mark as deleted.
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Example

BEAR

KOALA

RABBIT

SNAKE

DEER

ELEPHANT

DOG

JAGUAR

TIGER

TOAD

HAMSTER

FROG

LION

HORSE

CAT

RAT

cow

FOX

NTHI TGO UOZI RS~ mTQWe

GAZELLE

Hashing: 13

Data Types and Structures

CS 234 University of Waterloo



Hashing: 14

Double Hashing

IDEA: use 2nd hash function to determine the probe
sequence for £

H(k,i+1) = (H(k,7)+ Ho(k)))mod M
= Hy (k) must be relatively prime to M!

In our Example:

Hy (k) = i if the first letter of k is ' in alphabet.
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Example

BEAR

RABBIT

DEER

DOG

RAT

ELEPHANT

TIGER

KOALA

HAMSTER

FROG

JAGUAR

HORSE

CAT

TOAD

cow

FOX

GAZELLE

LION

_l\_Dr_f?N“<><§<Q'HCQZU©“UOZEhﬁk?ﬁ@ﬁ@@@@b

SNAKE
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Probe Sequences

Key Probes
BEAR A,CEG,...
CAT TW/Z,2,...
Cow W,Z,2,C,...
DOG G,K,O,S,...
ELEPHANT EJOT,...
FOX X,AGM...
FROG O,U,0,D,...
GAZELLE Z,DJ,P.,...
HAMSTER M,U,2,H,. ..

Data Types and Structures CS 234 University of Waterloo



Hashing: 17

Summary

e Fast array-like search
= degenerates for high load factors (> .7)

e Easy implementation

= No pointer overhead

e Many versions

= extensible/linear hashing
the table grows/shrinks with inserts/deletes
disk (block-based) versions
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