HASHING

University of Waterloo



LIST OF SLIDES

List of Slides

© 00 N O O & W DN P

e L N T o o
~N o o0~ WN P O

Other ways to Implement a Dictionary
Example
Considerations
Hash Functions
Collision Resolution
Separate Chaining
Example Data
Example

Coalesced Chaining
Example

Open Addressing
Example

Double Hashing
Example

Probe Sequences
Summary

1-1



Hashing: 2

Other ways to Implement a Dictionary

IDEA1: Store in an array indexed by the keys

= really fast lookups/insertions/. ..

PROBLEM: VERY poor utilization of space

IDEAZ2: Store in an array indexed by results of applying

a (hash) function H on the keys

= requirement: 0 < f(k) < Mor0< f(k) <M
where M is the size of the hash table.

Data Types and Structures CS 234 University of Waterloo



Hashing: 3

Example

Let H be a hash function with range {1,..., M }:

Hash
Keys Function Hash Table
1
2
H(kl) =3 ]fl . U1
4
ki, ko, . .. "
M —2:
H(k’g):M—li ]4322 V2
M -
k;. keys

v;. values associated with the keys

Data Types and Structures CS 234 University of Waterloo



Hashing: 4

Considerations

We need to solve two problems:

1. How do we design the hash function?

e static case (we know all the keys in advance):
perfect hash functions
= every key IS mapped to a separate value
= the table size is O(number of keys)

e dynamic case (we don’'t know the keys in advance)
= “mostly injective”

2. What do we do if two or more records “hash” to the
same place (a collision occurs)?

= conflict (collision) resolution

Data Types and Structures CS 234 University of Waterloo



Hashing: 5

Hash Functions

e Selection-based Hash Function
Choose a part of the key to be the hash value

= common choices:

e first couple of bits
o fixed pattern of bits

= problems with non-uniformly distributed keys

e Division-based Hash Function
Take the key modulo the table size

= choose table size to be prime number

e Folding-based Hash Function
Take bit patterns and add them together

= may need an adjustment to match the table size

Data Types and Structures CS 234 University of Waterloo



Hashing: 6

Collision Resolution

How good is a particular hashing scheme?
= measured by load factor

number of stored items
size of table

load factor =

The number of probes (accesses needed to locate a key)
IS compared against the load factor.

= |oad factor closer to 1
= more collisions
= more probes

Data Types and Structures CS 234 University of Waterloo



Hashing: 7

Separate Chaining

IDEA: buckets contain lists of elements
e USe H to determine bucket

e retrieve by searching the bucket (a list!)
e insert by adding to the list

Advantages:
= flexible size of buckets
= deletion is easy (how?)

Disadvantages:
= worst case: linear search
= pointers take space

Data Types and Structures CS 234 University of Waterloo



Hashing: 8

Example Data

Insert
BEAR HORSE
CAT JAGUAR
COow KOALA
DOG LION
ELEPHANT RABBIT
FOX RAT
FROG SNAKE
GAZELLE TIGER
HAMSTER TOAD

Into a 26-bucket Hash table based on
a Hash function H (k) = the 3rd letter of k.

Data Types and Structures CS 234 University of Waterloo



Hashing: 9

Example

TOAD ° SNAKE . KOALA . BEAR X

— | RABBIT X

— | ELEPHANT e DEER X

— | TIGER ° JAGUAR . DOG X

— | HAMSTER X

— | LION ° FROG X

— | HORSE X

— | RAT ° CAT X

— | COW X

— | FOX X

N X ITET3LI0TVO0OZI RS~ QIEoQE -
TXTTXXTXTXXTXTXXXXXTXTXXT.

— | GAZELLE X

Data Types and Structures CS 234 University of Waterloo



Hashing: 10

Coalesced Chaining

IDEA: Store “overflow” in empty cells of the table
= and remember where you put it
a pointer from the “original” bucket

e Lookup k:

— look at H (k),
— if different from £ follow pointers till you find it

— or till you find a nil (k not found)

e INnsert k:

— similar, if not found
— store In the next free cell
— update the last pointer

Problem: deletion is quite difficult.

Data Types and Structures CS 234 University of Waterloo



Example

BEAR

ELEPHANT

JAGUAR

KOALA

DEER

|« |X|XT|O

LION

DOG

RABBIT

RAT

SNAKE

TIGER

TOAD

HAMSTER

FROG

HORSE

CAT

cow

FOX

N<N§<Qﬂmm©ﬁ02§hxﬁijﬁjmUQU:JD>

GAZELLE

Hashing: 11

Data Types and Structures

CS 234 University of Waterloo



Hashing: 12
Open Addressing

IDEA don’t use pointers

= use fixed probe sequence
= H(k,14) is a hash function used for the i-th probe
= H(k, i) should cover the whole table for varying ¢

Most common version: Sequential (linear) probing:

H(k1) = H(k)
H(ki+1) = (H(k,4)+1))modM

Problem: primary clustering

= “clogging” parts of the table
=- long chains of probes
to insert “TOAD” we need 10 probes

= using different “offset” doesn’t help
and may miss parts of the table
one reason to pick M prime

Another problem: deletion

= only possibility: mark as deleted.

Data Types and Structures CS 234 University of Waterloo



Example

BEAR

KOALA

RABBIT

SNAKE

DEER

ELEPHANT

DOG

JAGUAR

TIGER

TOAD

HAMSTER

FROG

LION

HORSE

CAT

RAT

cow

FOX

NTHI TGO UOZI RS~ mTQWe

GAZELLE

Hashing: 13

Data Types and Structures

CS 234 University of Waterloo



Hashing: 14

Double Hashing

IDEA: use 2nd hash function to determine the probe
sequence for £

H(k,i+1) = (H(k,7)+ Ho(k)))mod M
= Hy (k) must be relatively prime to M!

In our Example:

Hy (k) = i if the first letter of k is ' in alphabet.

Data Types and Structures CS 234 University of Waterloo



Example

BEAR

RABBIT

DEER

DOG

RAT

ELEPHANT

TIGER

KOALA

HAMSTER

FROG

JAGUAR

HORSE

CAT

TOAD

cow

FOX

GAZELLE

LION

_l\_Dr_f?N“<><§<Q'HCQZU©“UOZEhﬁk?ﬁ@ﬁ@@@@b

SNAKE

Hashing: 15

Data Types and Structures

CS 234 University of Waterloo



Hashing: 16

Probe Sequences

Key Probes
BEAR A,CEG,...
CAT TW/Z,2,...
Cow W,Z,2,C,...
DOG G,K,O,S,...
ELEPHANT EJOT,...
FOX X,AGM...
FROG O,U,0,D,...
GAZELLE Z,DJ,P.,...
HAMSTER M,U,2,H,. ..

Data Types and Structures CS 234 University of Waterloo



Hashing: 17

Summary

e Fast array-like search
= degenerates for high load factors (> .7)

e Easy implementation

= No pointer overhead

e Many versions

= extensible/linear hashing
the table grows/shrinks with inserts/deletes
disk (block-based) versions

Data Types and Structures CS 234 University of Waterloo



