SNAP: A Maple 8 package for arithmetic with numeric polynomials

Claude-Pierre Jeannerod
Laboratoire LIP
INRIA - ENS Lyon
France

George Labahn
Symbolic Computation Group
University of Waterloo
Canada

Data: Univariate polynomials with real floating-point coefficients

Data: Univariate polynomials with real floating-point coefficients

Computations: Division, remainder, GCD, ...

Data: Univariate polynomials with real floating-point coefficients

Computations: Division, remainder, GCD, ...

Model: IEEE 754 floating-point standard

Data: Univariate polynomials with real floating-point coefficients

Computations: Division, remainder, GCD, ...

Model: IEEE 754 floating-point standard

Goal: Implement provably fast and numerically stable algorithms

ICMS 2002 : Introduction

Example: numerical coprimeness test

```
> with(SNAP):
> a := 0.1*z^2+1.5*z-0.2:
> b := 0.2*z^3+0.15:
> AreCoprime(a,b,z,0.5);

false
> AreCoprime(a,b,z,0.1);

true
```

ICMS 2002: Introduction

Why look at symbolic-numeric problems?

- Linear systems theory
- Control theory
- Computer aided design

• ...

ICMS 2002 : Introduction

AreCoprime

DistanceToCommonDivisors

DistanceToSingularPolynomials

EpsilonGCD

EuclideanReduction

IsSingular

QuasiGCD

Quotient

Remainder

ICMS 2002 : SNAP contents

AreCoprime

DistanceToCommonDivisors

DistanceToSingularPolynomials

EpsilonGCD

EuclideanReduction

IsSingular

QuasiGCD

Quotient

Remainder

Division

ICMS 2002 : SNAP contents

AreCoprime

DistanceToCommonDivisors

DistanceToSingularPolynomials

EpsilonGCD

EuclideanReduction

IsSingular

QuasiGCD

Quotient

Remainder

Division

Distance problems

ICMS 2002 : SNAP contents

AreCoprime

DistanceToCommonDivisors

DistanceToSingularPolynomials

EpsilonGCD

EuclideanReduction

IsSingular

QuasiGCD

Quotient

Remainder

Division

Distance problems

Tests

AreCoprime

DistanceToCommonDivisors

DistanceToSingularPolynomials

EpsilonGCD

EuclideanReduction

IsSingular Division

QuasiGCD Distance problems

Quotient Tests

Remainder Approximate GCDs

ICMS 2002: SNAP contents

Algorithmic Structure of SNAP package

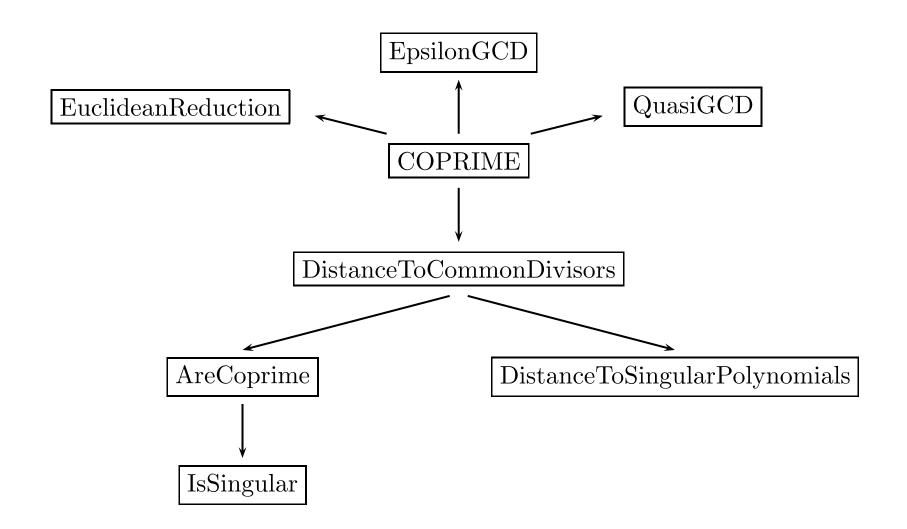
Algorithmic Structure of SNAP package

• Central procedure is COPRIME algorithm which solves :

$$a(z) \cdot s(z) + b(z) \cdot t(z) \approx 1$$

 $a(z) \cdot u(z) + b(z) \cdot v(z) \approx z^{m+n-1}$

- Can use for efficient numerical coprimeness test
- Solved via a numerically stable Euclidean-like reduction algorithm
- Can use to often find certified approximate GCDs



Efficient numerical coprimeness test

Timings (in seconds) for polynomials of degrees m, n

m=n+1	LinearAlgebra*	SNAP
50	0.33	0.34
100	1.30	1.34
250	8.6	8.7
500	43	33
10^{3}	307	126
$2 \cdot 10^3$	3360	515

Pentium III 800 MHz with 512MB of RAM, under Linux

^{* =} solve a Sylvester linear system with LinearAlgebra[LinearS olve].

DistanceToCommonDivisors $(a(z), b(z), \epsilon)$

Given
$$a(z) = \sum_{i=0}^{m} a_i z^i$$
 and $b(z) = \sum_{i=0}^{n} b_i z^i$, the set

$$P = \{(p,q) : \deg p \le m, \deg q \le n, \deg \gcd(p,q) > 0\}$$

and a suitable norm $\|\cdot\|$, estimate the distance

dist =
$$\inf_{P} ||(a, b) - (p, q)||$$
 ?

DistanceToCommonDivisors $(a(z), b(z), \epsilon)$

Given
$$a(z) = \sum_{i=0}^{m} a_i z^i$$
 and $b(z) = \sum_{i=0}^{n} b_i z^i$, the set

$$P = \{(p,q) : \deg p \le m, \deg q \le n, \deg \gcd(p,q) > 0\}$$

and a suitable norm $\|\cdot\|$, estimate the distance

dist =
$$\inf_{P} ||(a, b) - (p, q)||$$
 ?

Can solve this using linear algebra.

Norms

View $c \in \mathbb{C}[z]$, $c(z) = c_0 + ... + c_n z^n$ as the vector $\vec{c} = (c_0, ..., c_n)^T$.

- ullet Norm for $\mathbb{C}[z]$: $||c|| = ||ec{c}||_1 = \sum_j |c_j|$
- Norm for $\mathbb{C}[z]^{r \times s}$: $||(c_{j,k})|| = ||(||c_{j,k}||)||_1 = \max_k \sum_j ||c_{j,k}||$.

Linear algebra formulation

• Sylvester matrix for a(z) and b(z):

$$S = egin{bmatrix} a_0 & b_0 & & & & & \\ a_1 & a_0 & b_1 & b_0 & & & \\ a_2 & a_1 & b_2 & b_1 & b_0 & & \\ a_3 & a_2 & & b_2 & b_1 & \\ & & a_3 & & & b_2 & \end{bmatrix}$$

Linear algebra formulation

• Sylvester matrix for a(z) and b(z):

$$S = egin{bmatrix} a_0 & b_0 & & & & \ a_1 & a_0 & b_1 & b_0 & & \ a_2 & a_1 & b_2 & b_1 & b_0 \ a_3 & a_2 & & b_2 & b_1 \ & & a_3 & & & b_2 \end{bmatrix}$$

• Well known: $\det S \neq 0 \iff \gcd(a,b) = 1$

 \iff can solve a(z)s(z) + b(z)t(z) = 1.

Linear algebra formulation (cont'd)

Also well known: classical lower bound $\frac{1}{||S^{-1}||_1} \leq \text{dist}$.

$$Proof: \ ||S||_1 = ||(a,b)|| \ \text{where} \ ||B||_1 = \max_{x \neq 0} \frac{||Bx||_1}{||x||}$$

$$\implies \quad \text{dist} = \inf\{||S - S(p,q)||_1 : S(p,q) \text{ singular}\}$$

$$\geq \min\{||S - B||_1 : \ B \text{ singular}\} = \frac{1}{||S^{-1}||_1}$$

Note: $||S||_1$ can be computed via SVD.

A better lower bound [Beckermann & Labahn - 1998]

Sylvester matrix for a(z) and b(z) and its inverse:

$$\frac{1}{\|S^{-1}\|_1} \le \frac{1}{\kappa} \le \text{dist} \quad \text{defined by } \kappa = \max(\sum_i |*_i|, \sum_i |*_i|).$$

EuclideanReduction $(a(z),b(z),\epsilon)$

Euclidean Reduction $(a(z), b(z), \epsilon)$

- Numerically stable euclidean reduction.
 - algorithm "jumps" remainders resulting from ill-conditioned subproblems
 - finds such ill-conditioned subsystems via estimating condition numbers
 - fast : quadratic rather than cubic
 - used to determine if two numeric polynomials are coprime
 - can be used for additional numerical GCD computations

Certified approximate GCDs (Rupprecht 's example)

$$a(z) = (z^4 - 1.000001)(z^3 - 3.000001z + 0.99999999)$$

$$b(z) = (z^4 - 0.9999999)(z^4 - 3.0000003z - 2.9999999)$$

SNAP [EpsilonGCD] (a,b,z) with 10 digits yields the ϵ -GCD

$$z^4 + 5.198691325 \, 10^{-8} z^3 + 5.804634175 \, 10^{-7} z^2 + 9.873862873 \, 10^{-7} z - 1.000000584$$

with $\epsilon = 0.0006481143605$.

Satisfactory answers from Euclidean reduction

$$a(z) = z^6 - 12.4z^5 + 62.53z^4 - 163.542z^3 + 232.9776z^2 - 170.69184z + 50.18112$$

$$b(z) = z^5 - 17.6z^4 + 118.26z^3 - 372.992z^2 + 538.3333z - 274.09272$$

SNAP [EuclideanReduction] (a,b,z,tau=1e-8) with 10 digits yields the reduced pair

$$0.2500000000z^{2} - 0.8750003765z + 0.6600005057,$$
$$-0.90726410^{-7}z + 0.133529610^{-6}.$$

Euclidean algorithm

• Typical polynomial remainder sequence:

$$\begin{bmatrix} a & b \end{bmatrix} \xrightarrow{\times \boldsymbol{U^{(1)}}} \begin{bmatrix} a^{(1)} & b^{(1)} \end{bmatrix} \xrightarrow{\times \boldsymbol{U^{(2)}}} \begin{bmatrix} a^{(2)} & b^{(2)} \end{bmatrix} \xrightarrow{\times \boldsymbol{U^{(3)}}} \begin{bmatrix} a^{(3)} & b^{(3)} \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$3 \quad 2 \qquad \qquad 2 \qquad 1 \qquad \qquad 1 \qquad 0 \qquad \qquad 0 \quad -\infty$$

Euclidean algorithm

• Typical polynomial remainder sequence:

$$\begin{bmatrix} a & b \end{bmatrix} \xrightarrow{\times \boldsymbol{U^{(1)}}} \begin{bmatrix} a^{(1)} & b^{(1)} \end{bmatrix} \xrightarrow{\times \boldsymbol{U^{(2)}}} \begin{bmatrix} a^{(2)} & b^{(2)} \end{bmatrix} \xrightarrow{\times \boldsymbol{U^{(3)}}} \begin{bmatrix} a^{(3)} & b^{(3)} \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

The first column of $U^{(1)}U^{(2)}U^{(3)}$ is $\begin{bmatrix} s(z) \\ t(z) \end{bmatrix}$ s.t. as + bt = 1.

Fast but unstable!

$$a(z) = 1 + \epsilon z + (1 + \epsilon) z^2 + z^3 + z^4, \qquad b(z) = -2 + 3 z - z^2 + z^3$$

$$S = \begin{bmatrix} 1 & 0 & 0 & | -2 & 0 & 0 & 0 \\ \epsilon & 1 & 0 & | 3 & -2 & 0 & 0 \\ 1 + \epsilon & \epsilon & 1 & | -1 & 3 & -2 & 0 \\ 1 & 1 + \epsilon & \epsilon & | 1 & -1 & 3 & -2 \\ 1 & 1 & 1 + \epsilon & | 0 & 1 & -1 & 3 \\ 0 & 1 & 1 & | 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & | 0 & 0 & 0 & 1 \end{bmatrix}$$

Euclid's algorithm solves linear subsystems.

$$a(z) = 1 + \epsilon z + (1 + \epsilon) z^2 + z^3 + z^4, \qquad b(z) = -2 + 3 z - z^2 + z^3$$

$$S = \begin{bmatrix} 1 & 0 & 0 & | -2 & 0 & 0 & 0 \\ \epsilon & 1 & 0 & | 3 & -2 & 0 & 0 \\ 1 + \epsilon & \epsilon & 1 & | -1 & 3 & -2 & 0 \\ 1 & 1 + \epsilon & \epsilon & | 1 & -1 & 3 & -2 \\ 1 & 1 & 1 + \epsilon & | 0 & 1 & -1 & 3 \\ 0 & 1 & 1 & | 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & | 0 & 0 & 0 & 1 \end{bmatrix}$$

Euclid's algorithm solves linear subsystems.

$$a(z) = 1 + \epsilon z + (1 + \epsilon) z^2 + z^3 + z^4, \qquad b(z) = -2 + 3 z - z^2 + z^3$$

$$S = \begin{bmatrix} 1 & 0 & 0 & | -2 & 0 & 0 & 0 \\ \epsilon & 1 & 0 & | 3 & -2 & 0 & 0 \\ 1 + \epsilon & \epsilon & 1 & | -1 & 3 & -2 & 0 \\ 1 & 1 + \epsilon & \epsilon & | 1 & -1 & 3 & -2 \\ 1 & 1 & 1 + \epsilon & | 0 & 1 & -1 & 3 \\ 0 & 1 & 1 & | 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & | 0 & 0 & 0 & 1 \end{bmatrix}$$

Euclid's algorithm solves linear subsystems.

$$a(z) = 1 + \epsilon z + (1 + \epsilon) z^2 + z^3 + z^4, \qquad b(z) = -2 + 3 z - z^2 + z^3$$

$$S = \begin{bmatrix} 1 & 0 & 0 & | -2 & 0 & 0 & 0 \\ \epsilon & 1 & 0 & | 3 & -2 & 0 & 0 \\ 1 + \epsilon & \epsilon & 1 & | -1 & 3 & -2 & 0 \\ 1 & 1 + \epsilon & \epsilon & | 1 & -1 & 3 & -2 \\ 1 & 1 & 1 + \epsilon & | 0 & 1 & -1 & 3 \\ 0 & 1 & 1 & | 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & | 0 & 0 & 0 & 1 \end{bmatrix}$$

Euclid's algorithm solves linear subsystems.

Problem: what to do with ill-conditioned subsystems?

COPRIME algorithm [Beckermann & Labahn - 1998]

Look-ahead process: if $|U^{(2)}(0)|$ too small, jump over $\begin{bmatrix} a^{(2)} & b^{(2)} \end{bmatrix}$:

$$\begin{bmatrix} a & b \end{bmatrix} \xrightarrow{\times U^{(1)}} \begin{bmatrix} a^{(1)} & b^{(1)} \end{bmatrix} \xrightarrow{\times U^{(2)}} \begin{bmatrix} a^{(2)} & b^{(2)} \end{bmatrix} \xrightarrow{\times U^{(3)}} \begin{bmatrix} a^{(3)} & b^{(3)} \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

COPRIME algorithm [Beckermann & Labahn - 1998]

Look-ahead process: if $|U^{(2)}(0)|$ too small, jump over $\begin{bmatrix} a^{(2)} & b^{(2)} \end{bmatrix}$:

$$\begin{bmatrix} a & b \end{bmatrix} \xrightarrow{\times U^{(1)}} \begin{bmatrix} a^{(1)} & b^{(1)} \end{bmatrix} \xrightarrow{\times U^{(2)}} \begin{bmatrix} a^{(2)} & b^{(2)} \end{bmatrix} \xrightarrow{\times U^{(3)}} \begin{bmatrix} a^{(3)} & b^{(3)} \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

- Unstability related to the ill-conditioning of some $U^{(i)}$ at z=0.
- ullet Effective way of deducing $\begin{bmatrix} a^{(3)} & b^{(3)} \end{bmatrix}$ from $\begin{bmatrix} a^{(1)} & b^{(1)} \end{bmatrix}$.
- Skipping all the small $|U^{(i)}(0)|$ yields a small residual error.
- Provably stable (weak stability).

What about speed?

- At most $\max(m, n)$ jumps where $m = \deg a$ and $n = \deg b$.
- One jump of size s costs $O(s^3)$ flops.

- \hookrightarrow In most cases, $s \leq 3 \ll m+n$ and we have a $O((m+n)^2)$ algo.
- \hookrightarrow Worst-case: one large jump (i.e. $s \sim m+n$) costs $O((m+n)^3)$.

Summary

- COPRIME algorithm:
 - Fast in most cases
 - Proven weak (or forward) stability
 - Distance estimate + coprimeness test

Summary

- COPRIME algorithm:
 - Fast in most cases
 - Proven weak (or forward) stability
 - Distance estimate + coprimeness test
- Not only a numerical coprimeness test:
 - $-\epsilon$ -GCD
 - quasi-GCD

can be guaranteed from the last accepted basis $[a^{(k)} b^{(k)}]$.

Concluding remarks

• User's guide available at www.ens-lyon.fr/~cpjeanne

Concluding remarks

User's guide available at www.ens-lyon.fr/~cpjeanne

Extensions:

- Other kinds of approximate GCDs (≥ 6 definitions)
- Complex polynomials, multivariate polynomials, systems of polynomials
- Approximate factorization
- Symbolic-numerics for matrix polynomials