# Popov Forms of Matrices of Differential Polynomials

George Labahn

Symbolic Computation Group Cheriton School of Computer Science University of Waterloo, Canada

May 13, 2009

## Example

### Consider system of differential equations

We usually deal with such systems by first converting them to first order systems

$$A(t)Y'(t) = B(t)Y(t) + C(t)$$

and then using various techniques to build various solutions or solution types (e.g. existence of rational function or exponential solutions).

## **Example: Matrix Form**

Our original example can be represented by a differential matrix equation

$$\begin{bmatrix} D^2 + (t+2) & t^2D^2 + 1 & D+1 \\ D+3 & D^3 + 2D - 1 & D^3 - 2t^2 \\ D+1 & D^2 + 2tD + 1 & D^4 \end{bmatrix} \cdot \begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix} = \mathbf{0}.$$

In general, systems that we are looking at are of the form

$$A(D)Y(t) = B(t).$$

Question : What form does A(D) need to be in order that one can convert easily to a first order system?

## Example: Matrix Form

Our original example can be represented by a differential matrix equation

$$\begin{bmatrix} D^2 + (t+2) & t^2D^2 + 1 & D+1 \\ D+3 & D^3 + 2D - 1 & D^3 - 2t^2 \\ D+1 & D^2 + 2tD + 1 & D^4 \end{bmatrix} \cdot \begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix} = \mathbf{0}.$$

In general, systems that we are looking at are of the form

$$A(D)Y(t) = B(t).$$

Question : What form does A(D) need to be in order that one can convert easily to a first order system?

## Example (cont.)

Let D be the differentiation operator on t. If the system of equations is represented by:

$$\begin{bmatrix} D^2 + (t+2) & t^2D^2 + 1 & D+1 \\ D+3 & D^3 + 2D - 1 & D^3 - 2t^2 \\ D+1 & D^2 + 2tD + 1 & D^4 \end{bmatrix} \cdot \begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix} = \mathbf{0},$$

then we can rewrite

$$y_1''(t) = -(t+2)y_1(t) - t^2y_2''(t) - y_2(t) - y_3'(t) - y_3(t)$$

$$y_2'''(t) = -y_1'(t) - 3y_1(t) - 2y_2'(t) + y_2(t) - y_3'''(t) + 2t^2y_3(t)$$

$$y_3''''(t) = -y_1'(t) - y_1(t) - y_2''(t) - 2ty_2'(t) - y_2(t)$$

Motivation 000000

- For systems not having this 'special form' one can always do row operations, derivations and eliminations to put a matrix of differential operators into the correct form.
- Basically given A(D) one looks for an invertible U(D) such that

$$U(D) \cdot A(D) = P(D) = \text{matrix in special form}$$

 Special form needs to have columns of highest order in each row and one row cannot 'interfere' with columns of higest order in other rows.

### Questions

• What are these special normal forms?

How to compute such normal forms?

Where does one go for ideas for these normal forms?

WARNING: this is only a preliminary report on this topic.



### **Outline**

#### Motivation

#### Matrix Normal Forms

Introduction

Examples

### Popov Normal Form

Basic Popov Facts

### Computation of Popov Forms

History

Popov Form via Matrix GCLD

Method of Mulders-Strojohann

Fraction-Free Popov Computation

### **Outline**

## Matrix Normal Forms Introduction

History Popov Form via Matrix GCLD Given :  $\mathbf{A}(D) \in \mathbb{K}^{m \times n}[D]$ .

Do row operations

$$\mathbf{A}(D) = \text{easier}$$

### **Todays Topic**

Given :  $\mathbf{A}(D) \in \mathbb{K}^{m \times n}[D]$ .

Do row operations U(D)

$$\mathbf{U}(D)\mathbf{A}(D) = \text{easier}$$

(easier =  $\mathbf{B}(D) \in \mathbb{K}^{m \times n}[D]$  in some sort of normal form)

### **Todays Topic**

Given :  $\mathbf{A}(D) \in \mathbb{K}^{m \times n}[D]$ .

Do row operations U(D)

$$\mathbf{U}(D)\mathbf{A}(D) = \text{easier}$$

(easier =  $\mathbf{B}(D) \in \mathbb{K}^{m \times n}[D]$  in some sort of normal form)

$$\mathbf{U}(D) \in \mathbb{K}^{m \times m}[D]$$
 invertible

Given :  $\mathbf{A}(D) \in \mathbb{K}^{m \times n}[D]$ .

Do row operations U(D)

$$\mathbf{U}(D)\mathbf{A}(D) = \text{easier}$$

(easier =  $\mathbf{B}(D) \in \mathbb{K}^{m \times n}[D]$  in some sort of normal form)

 $\mathbf{U}(D) \in \mathbb{K}^{m \times m}[D]$  invertible

Also wish to do this with matrices of Ore operators

Useful to see how one does these with matrices of polynomials

Given B(z),  $C(z) \in \mathbb{K}^{m \times m}[z]$ :

Given B(z),  $C(z) \in \mathbb{K}^{m \times m}[z]$ :

$$B(z)$$
 $C(z)$ 

Given B(z),  $C(z) \in \mathbb{K}^{m \times m}[z]$ :

$$\left[\begin{array}{cc} U_{11}(z) & U_{12}(z) \\ U_{21}(z) & U_{22}(z) \end{array}\right] \cdot \left[\begin{array}{c} B(z) \\ C(z) \end{array}\right] \ = \ \left[\begin{array}{c} D(z) \\ 0 \end{array}\right]$$

$$\begin{bmatrix} V_{11}(z) & V_{12}(z) \\ V_{21}(z) & V_{22}(z) \end{bmatrix} \cdot \begin{bmatrix} U_{11}(z) & U_{12}(z) \\ U_{21}(z) & U_{22}(z) \end{bmatrix} = \begin{bmatrix} I_m & 0 \\ 0 & I_m \end{bmatrix}$$

Given B(z),  $C(z) \in \mathbb{K}^{m \times m}[z]$ :

$$\begin{bmatrix}
B(z) \\
C(z)
\end{bmatrix} = \begin{bmatrix}
V_{11}(z)D(z) \\
V_{21}(z)D(z)
\end{bmatrix}$$

$$\begin{bmatrix} U_{11}(z) & U_{12}(z) \\ U_{21}(z) & U_{22}(z) \end{bmatrix} \cdot \begin{bmatrix} V_{11}(z) & V_{12}(z) \\ V_{21}(z) & V_{22}(z) \end{bmatrix} = \begin{bmatrix} I_m & 0 \\ 0 & I_m \end{bmatrix}$$

Given B(z),  $C(z) \in \mathbb{K}^{m \times m}[z]$ :

$$\begin{bmatrix} B(z) \\ C(z) \end{bmatrix} = \begin{bmatrix} V_{11}(z)D(z) \\ V_{21}(z)D(z) \end{bmatrix}$$

$$U_{11}(z)V_{11}(z) + U_{12}(z)V_{21}(z) = I_m$$

• Matrix polynomials (in fact rational expressions of form  $A(z) = U(z) \cdot V(z)^{-1}$ ) used in linear control theory

$$v \longrightarrow Av$$

- Matrix GCDs needed for minimal rational matrix expressions
- Builds input-output model for control system
- Concept of Transfer frunctions also seems to exist for nonlinear control (Ziming Li [FoCM'08])

### **Outline**

#### Matrix Normal Forms

Examples

Popov Form via Matrix GCLD

$$\mathbf{H}(z) = \left[ \begin{array}{cccc} h_{1,1}(z) & h_{1,2}(z) & \cdots & h_{1,m}(z) \\ 0 & h_{2,2}(z) & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & & h_{m-1,m}(z) \\ 0 & \cdots & 0 & h_{m,m}(z) \end{array} \right]$$

is in Hermite Normal Form if:

000

Upper triangular

$$\mathbf{H}(z) = \begin{bmatrix} h_{1,1}(z) & h_{1,2}(z) & \cdots & h_{1,m}(z) \\ 0 & h_{2,2}(z) & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & h_{m-1,m}(z) \\ 0 & \cdots & 0 & h_{m,m}(z) \end{bmatrix}$$

#### is in Hermite Normal Form if:

- Upper triangular
- diagonal entries monic

$$\mathbf{H}(z) = \begin{bmatrix} h_{1,1}(z) & h_{1,2}(z) & \cdots & h_{1,m}(z) \\ 0 & h_{2,2}(z) & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & h_{m-1,m}(z) \\ 0 & \cdots & 0 & h_{m,m}(z) \end{bmatrix}$$

#### is in Hermite Normal Form if:

- Upper triangular
- diagonal entries monic
- degrees of diagonal entries max in columns

$$\mathbf{H}(z) = \left[ \begin{array}{cccc} h_{1,1}(z) & h_{1,2}(z) & \cdots & h_{1,m}(z) \\ 0 & h_{2,2}(z) & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & & h_{m-1,m}(z) \\ 0 & \cdots & 0 & h_{m,m}(z) \end{array} \right]$$

#### is in Hermite Normal Form if:

- Upper triangular
- diagonal entries monic
- degrees of diagonal entries max in columns
- any zero rows at bottom

$$\mathbf{H}(z) = \left[ \begin{array}{cccc} h_{1,1}(z) & h_{1,2}(z) & \cdots & h_{1,m}(z) \\ 0 & h_{2,2}(z) & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & & h_{m-1,m}(z) \\ 0 & \cdots & 0 & h_{m,m}(z) \end{array} \right]$$

#### is in Hermite Normal Form if:

- Upper triangular
- diagonal entries monic
- degrees of diagonal entries max in columns
- any zero rows at bottom

Useful in solving linear system  $\mathbf{H}(z)\text{vec}x(z) = \text{vec}b(z)$ 

## Example

Input: 
$$A(z) = \begin{bmatrix} z^2 + 1 & z & z^3 \\ z & 0 & z \\ z & z & z^3 - 1 \end{bmatrix}$$

Output : 
$$B(z) = \begin{bmatrix} 1 & 0 & -z^2 + z + 1 \\ 0 & z & z^2 - z - 1 \\ 0 & 0 & z^3 - z^2 \end{bmatrix}$$

 Also have Smith Normal Form for row and column equivalence.

$$\mathbf{U}(z) \cdot \mathbf{A}(z) \cdot \mathbf{V}(z) = diag(s_1(z), \cdots, s_m(z))$$

where  $s_i(z)|s_{i+1}(z)$  for all i. Determinantal divisors. Invariant factors. Useful for solving

$$\mathbf{A}(z)\mathbf{vec}x(z) = \mathbf{vec}b(z).$$

- Also have noncommutative versions of these normal forms
  - e.g. for matrices A(D) of differential operators
  - again useful for solving systems, but now of the form

$$\mathbf{A}(D)\mathsf{vec}x(z) = \mathsf{vec}b(z).$$

 e.g. used by Singer [1985] for LODE decision procedures for systems

Popov Normal Form 000000

Hermite Normal Form does not have controlled degrees

Popov Normal Form 000000

- Hermite Normal Form does not have controlled degrees

  - e.g. degrees of HNF can be larger than input degree

Popov Normal Form 000000

- Hermite Normal Form does not have controlled degrees
  - e.g. degrees of HNF can be larger than input degree
- Popov's form (1969): purpose was to allow for simple conversion of state space to transfer functions in linear systems theory.

- Hermite Normal Form does not have controlled degrees
  - e.g. degrees of HNF can be larger than input degree
- Popov's form (1969): purpose was to allow for simple conversion of state space to transfer functions in linear systems theory.
- Villard (1996) introduced Popov form to computer algebra community

- Hermite Normal Form does not have controlled degrees
  - e.g. degrees of HNF can be larger than input degree
- Popov's form (1969): purpose was to allow for simple conversion of state space to transfer functions in linear systems theory.
- Villard (1996) introduced Popov form to computer algebra community
- Popov form related to Gröbner bases

- Hermite Normal Form does not have controlled degrees
  - e.g. degrees of HNF can be larger than input degree
- Popov's form (1969): purpose was to allow for simple conversion of state space to transfer functions in linear systems theory.
- Villard (1996) introduced Popov form to computer algebra community
- Popov form related to Gröbner bases
- Can extend to noncommutative domains (e.g. Ore domains)

- Hermite Normal Form does not have controlled degrees
  - e.g. degrees of HNF can be larger than input degree
- Popov's form (1969): purpose was to allow for simple conversion of state space to transfer functions in linear systems theory.
- Villard (1996) introduced Popov form to computer algebra community
- Popov form related to Gröbner bases
- Can extend to noncommutative domains (e.g. Ore domains)
- Question : How to compute (effectively)?



Popov Normal Form

### **Outline**

### Popov Normal Form **Basic Popov Facts**

Popov Form via Matrix GCLD

Popov Normal Form 00000

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{1,2} & f_{1,3} & \cdots & f_{1,n-1} & f_{1,n} \\ f_{21} & f_{2,2} & f_{2,3} & \cdots & f_{2,n-1} & f_{2,n} \\ f_{31} & f_{3,2} & f_{3,3} & \cdots & f_{3,n-1} & f_{3,n} \\ \vdots & & & & & \\ f_{n-1,1} & f_{n-1,,2} & f_{n-1,3} & \cdots & f_{n-1,n-1} & f_{n-1,n} \\ f_{n,1} & f_{n,,2} & \cdots & \cdots & f_{n,n-1} & f_{n,n} \end{bmatrix}$$

# **Definition: Row Popov Form**

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{1,2} & f_{1,3} & \cdots & f_{1,n-1} & f_{1,n} \\ f_{21} & f_{2,2} & f_{2,3} & \cdots & f_{2,n-1} & f_{2,n} \\ f_{31} & f_{3,2} & f_{3,3} & \cdots & f_{3,n-1} & f_{3,n} \\ \vdots & & & & & \\ f_{n-1,1} & f_{n-1,2} & f_{n-1,3} & \cdots & f_{n-1,n-1} & f_{n-1,n} \\ f_{n,1} & f_{n,2} & \cdots & \cdots & f_{n,n-1} & f_{n,n} \end{bmatrix}$$

Diagonal entries monic and of row degree

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{1,2} & f_{1,3} & \cdots & f_{1,n-1} & f_{1,n} \\ f_{21} & f_{2,2} & f_{2,3} & \cdots & f_{2,n-1} & f_{2,n} \\ f_{31} & f_{3,2} & f_{3,3} & \cdots & f_{3,n-1} & f_{3,n} \\ \vdots & & & & & \\ f_{n-1,1} & f_{n-1,,2} & f_{n-1,3} & \cdots & f_{n-1,n-1} & f_{n-1,n} \\ f_{n,1} & f_{n,,2} & \cdots & \cdots & f_{n,n-1} & f_{n,n} \end{bmatrix}$$

- Diagonal entries monic and of row degree
- $\deg f_{j,i} < \deg f_{i,i}$  for  $j \neq i$

# **Definition: Row Popov Form**

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{1,2} & f_{1,3} & \cdots & f_{1,n-1} & f_{1,n} \\ f_{21} & f_{2,2} & f_{2,3} & \cdots & f_{2,n-1} & f_{2,n} \\ f_{31} & f_{3,2} & f_{3,3} & \cdots & f_{3,n-1} & f_{3,n} \\ \vdots & & & & & \\ f_{n-1,1} & f_{n-1,,2} & f_{n-1,3} & \cdots & f_{n-1,n-1} & f_{n-1,n} \\ f_{n,1} & f_{n,,2} & \cdots & \cdots & f_{n,n-1} & f_{n,n} \end{bmatrix}$$

- Diagonal entries monic and of row degree
- $\deg f_{j,i} < \deg f_{i,i}$  for  $j \neq i$
- $\deg f_{i,j} < \deg f_{i,i}$  for j < i

# Definition: Row Popov Form

Popov Normal Form 00000

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{1,2} & f_{1,3} & \cdots & f_{1,n-1} & f_{1,n} \\ f_{21} & f_{2,2} & f_{2,3} & \cdots & f_{2,n-1} & f_{2,n} \\ f_{31} & f_{3,2} & f_{3,3} & \cdots & f_{3,n-1} & f_{3,n} \\ \vdots & & & & & \\ f_{n-1,1} & f_{n-1,,2} & f_{n-1,3} & \cdots & f_{n-1,n-1} & f_{n-1,n} \\ f_{n,1} & f_{n,2} & \cdots & \cdots & f_{n,n-1} & f_{n,n} \end{bmatrix}$$

- Diagonal entries monic and of row degree
- deg  $f_{i,i}$  < deg  $f_{i,i}$  for  $i \neq i$
- $\deg f_{i,i} < \deg f_{i,i}$  for j < i
- $\deg f_{i,i} \leq \deg f_{i,i}$  for j > i
- zero rows at bottom

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{1,2} & f_{1,3} & \cdots & f_{1,n-1} & f_{1,n} \\ f_{21} & f_{2,2} & f_{2,3} & \cdots & f_{2,n-1} & f_{2,n} \\ f_{31} & f_{3,2} & f_{3,3} & \cdots & f_{3,n-1} & f_{3,n} \\ \vdots & & & & & \\ f_{n-1,1} & f_{n-1,,2} & f_{n-1,3} & \cdots & f_{n-1,n-1} & f_{n-1,n} \\ f_{n,1} & f_{n,2} & \cdots & \cdots & f_{n,n-1} & f_{n,n} \end{bmatrix}$$

- Diagonal entries monic and of row degree
- deg  $f_{i,i}$  < deg  $f_{i,i}$  for  $i \neq i$
- $\deg f_{i,i} < \deg f_{i,i}$  for j < i
- $\deg f_{i,i} \leq \deg f_{i,i}$  for j > i
- zero rows at bottom

Lots of variations (via reordering).

# Example

Popov Normal Form 000000

#### E.g.: Input degree bounds

$$\begin{bmatrix} 3 & 3 & 2 & 3 \\ 3 & 4 & 3 & 3 \\ 4 & 4 & 4 & 4 \\ 6 & 7 & 6 & 7 \end{bmatrix}$$

#### Output degree bounds for Popov form

$$\begin{bmatrix}
3 & 3 & 2 & 3 \\
2 & 4 & 3 & 3 \\
2 & 3 & 4 & 4 \\
2 & 3 & 3 & 7
\end{bmatrix}$$

## Alternatively

#### An polynomial matrix A(z) is in Popov Form if:

- 1. it has rank A(z) non-zero rows;
- the leading row coefficient is triangular, with monic leading entries;
- 3. the leading entry of each row has the highest degree in its columns.

#### **Alternatively**

#### An polynomial matrix A(z) is in Popov Form if:

- 1. it has rank A(z) non-zero rows;
- the leading row coefficient is triangular, with monic leading entries;
- 3. the leading entry of each row has the highest degree in its columns.

Also called a Polynomial Echelon Form (Kailath book [1980]).

#### **Alternatively**

An polynomial matrix A(z) is in Popov Form if:

- 1. it has rank A(z) non-zero rows;
- the leading row coefficient is triangular, with monic leading entries;
- 3. the leading entry of each row has the highest degree in its columns.

Also called a Polynomial Echelon Form (Kailath book [1980]).

Any input matrix A(z) can be transformed into a unique Popov form by row operations.

Monomials on vectors  $\mathbb{K}^{1\times n}[z]$ :

$$z^{\alpha}e_{j} = [0, \dots, 0, z^{\alpha}, 0, \dots, 0]$$

Ordering on monomials of  $\mathbb{K}^{1\times n}[z]$ :

Position over Term (POT):

$$z^{\alpha}e_i < z^{\beta}e_j \iff i < j \text{ or } i = j \text{ and } \alpha < \beta$$

#### Monomials on vectors $\mathbb{K}^{1\times n}[z]$ :

$$z^{\alpha}e_{i} = [0, \dots, 0, z^{\alpha}, 0, \dots, 0]$$

Ordering on monomials of  $\mathbb{K}^{1\times n}[z]$ :

Position over Term (POT):

$$z^{\alpha}e_i < z^{\beta}e_j \iff i < j \text{ or } i = j \text{ and } \alpha < \beta$$

Term over Position (TOP):

$$z^{\alpha}e_i < z^{\beta}e_i \iff \alpha < \beta \text{ or } \alpha = \beta \text{ and } i < j.$$

#### Monomials on vectors $\mathbb{K}^{1\times n}[z]$ :

$$z^{\alpha}e_{i} = [0, \dots, 0, z^{\alpha}, 0, \dots, 0]$$

Ordering on monomials of  $\mathbb{K}^{1\times n}[z]$ :

Position over Term (POT):

$$z^{\alpha}e_i < z^{\beta}e_j \iff i < j \text{ or } i = j \text{ and } \alpha < \beta$$

Term over Position (TOP):

$$z^{\alpha}e_i < z^{\beta}e_i \iff \alpha < \beta \text{ or } \alpha = \beta \text{ and } i < j.$$

If M is a submodule of  $\mathbb{K}^{1\times n}[z]$  then we can now speak of Gröbner bases for the module M.

# Popov form as Gröbner Bases

(Kojima, Rapisarda, Takaba [System & Control Letters 2007])

Let M be a submodule of  $\mathbb{K}^{1\times m}[z]$  with a *term over position* ordering. Then

 $\{f_i\}_{i=1,\dots,s}$  is a reduced Gröbner basis for the module  $M\iff$ :

- (a)  $M = \langle f_1, \ldots, f_s \rangle$ ;
- (b) The matrix  $row(f_1, ..., f_s)$  is in Popov form.

If TOP is replaced by *position over term* ordering then Popov form in (b) is replaced by Hermite form.

#### Outline

#### Computation of Popov Forms History

Popov Form via Matrix GCLD

#### **Previous Works**

- Popov form algorithm for polynomial matrices:
  - Villard
  - Mulders and Storjohann
  - Beckermann, Labahn, Villard
  - •

#### **Previous Works**

- Popov form algorithm for polynomial matrices:
  - Villard
  - Mulders and Storjohann
  - Beckermann, Labahn, Villard
  - ...
- A number of other algorithms for row/column-reduced form of polynomial matrices:
  - Beelen, van den Hurk, Praagman
  - Neven and Praagman
  - ...

 Elimination-based approaches for Ore Popov form (Giesbrecht, Labahn, Zhang).

- Elimination-based approaches for Ore Popov form (Giesbrecht, Labahn, Zhang).
- EG elimination and variants (Abramov, Abramov and Bronstein).

- Elimination-based approaches for Ore Popov form (Giesbrecht, Labahn, Zhang).
- EG elimination and variants (Abramov, Abramov and Bronstein).
- The FFreduce algorithm (Beckermann, Cheng, Labahn) computes:

- Elimination-based approaches for Ore Popov form (Giesbrecht, Labahn, Zhang).
- EG elimination and variants (Abramov, Abramov and Bronstein).
- The FFreduce algorithm (Beckermann, Cheng, Labahn) computes:
  - a minimal polynomial basis for the left nullspace (in Popov form);

- Elimination-based approaches for Ore Popov form (Giesbrecht, Labahn, Zhang).
- EG elimination and variants (Abramov, Abramov and Bronstein).
- The FFreduce algorithm (Beckermann, Cheng, Labahn) computes:
  - a minimal polynomial basis for the left nullspace (in Popov form);
  - GCRD and LCLM (special cases only)

- Elimination-based approaches for Ore Popov form (Giesbrecht, Labahn, Zhang).
- EG elimination and variants (Abramov, Abramov and Bronstein).
- The FFreduce algorithm (Beckermann, Cheng, Labahn) computes:
  - a minimal polynomial basis for the left nullspace (in Popov form);
  - GCRD and LCLM (special cases only)
- The FFreduce algorithm is fraction-free.
   i.e. No fractions are introduced while controlling coefficient growth.

- Elimination-based approaches for Ore Popov form (Giesbrecht, Labahn, Zhang).
- EG elimination and variants (Abramov, Abramov and Bronstein).
- The FFreduce algorithm (Beckermann, Cheng, Labahn) computes:
  - a minimal polynomial basis for the left nullspace (in Popov form);
  - GCRD and LCLM (special cases only)
- The FFreduce algorithm is fraction-free.
   i.e. No fractions are introduced while controlling coefficient growth.
- A modular algorithm (Cheng, Labahn) for the same computations

#### Outline

#### Computation of Popov Forms

History

#### Popov Form via Matrix GCLD

# Method of G. Villard (1996)

- $\mathbf{A}(z)^{-1} = \Delta(z)^{-1}\mathbf{A}^*(z)$  where:
  - $A^*(z)$  is adjoint of A(z)
  - $\Delta(z)$  is diagonal matrix with det  $\mathbf{A}(z)$  on diagonals.
- $\mathbf{A}^*(z)\mathbf{A}(z) = \Delta(z)$  and  $\mathbf{A}^*(z) \cdot I = \mathbf{A}^*(z)$  so :
  - $A^*(z)$  is a gcld of  $\Delta(z)$  and  $A^*(z)$ .
  - All other gcld's G(z) are then multiples, i.e.
    - $\mathbf{G}(z) = \mathbf{A}^*(z)\mathbf{V}(z)$  with  $\mathbf{V}(z)$  unimodular

# Method of G. Villard (1996)

- $\mathbf{A}(z)^{-1} = \Delta(z)^{-1}\mathbf{A}^*(z)$
- If  $A(z)^{-1} = D(z)^{-1}N(z)$  with D(z) of minimal determinant degree in Popov form then

$$D(z) = \mathbf{G}(z)^{-1} \Delta(z) = \mathbf{V}(z)^{-1} \mathbf{A}^*(z)^{-1} \Delta(z) = \mathbf{U}(z) \mathbf{A}(z)$$

with  $\mathbf{U}(z)$  unimodular.

- Therefore find a minimal realization of A(z)<sup>-1</sup> having a denominator in Popov form.
- Algorithm exists for the above computation.
- Good for parallel computation

#### Outline

#### Computation of Popov Forms

History Popov Form via Matrix GCLD

Method of Mulders-Strojohann

First transform A(z) to Weak Popov Form - basically where pivots are on seperate rows but nothing more. Then convert to Popov Form

$$\begin{bmatrix} 3 & 3 & 2 & 3 \\ 3 & 4 & 3 & 3 \\ 4 & 4 & 4 & 4 \\ 6 & 7 & 6 & 7 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & 3 & 3 & 3 \\ 3 & 3 & 3 & 4 \\ 4 & 4 & 4 & 4 \\ 6 & 6 & 7 & 7 \end{bmatrix}$$

First transform  $\mathbf{A}(z)$  to Weak Popov Form - basically where pivots are on seperate rows but nothing more. Then convert to Popov Form

$$\begin{bmatrix} 3 & 3 & 2 & 3 \\ 2 & 4 & 3 & 3 \\ 4 & 4 & 4 & 4 \\ 6 & 7 & 6 & 7 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & 3 & 3 & 3 \\ 3 & 2 & 3 & 4 \\ 4 & 4 & 4 & 4 \\ 6 & 6 & 7 & 7 \end{bmatrix}$$

First transform  $\mathbf{A}(z)$  to Weak Popov Form - basically where pivots are on seperate rows but nothing more. Then convert to Popov Form

$$\begin{bmatrix} 3 & 3 & 2 & 3 \\ 2 & 4 & 3 & 3 \\ 2 & 4 & 4 & 4 \\ 6 & 7 & 6 & 7 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & 3 & 3 & 3 \\ 3 & 2 & 3 & 4 \\ 4 & 2 & 4 & 4 \\ 6 & 6 & 7 & 7 \end{bmatrix}$$

First transform A(z) to Weak Popov Form - basically where pivots are on seperate rows but nothing more. Then convert to Popov Form

$$\begin{bmatrix} 3 & 3 & 2 & 3 \\ 2 & 4 & 3 & 3 \\ 2 & 3 & 4 & 4 \\ 6 & 7 & 6 & 7 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & 3 & 3 & 3 \\ 3 & 2 & 3 & 4 \\ 4 & 2 & 4 & 3 \\ 6 & 6 & 7 & 7 \end{bmatrix}$$

First transform A(z) to Weak Popov Form - basically where pivots are on seperate rows but nothing more. Then convert to Popov Form

$$\begin{bmatrix} 3 & 3 & 2 & 3 \\ 2 & 4 & 3 & 3 \\ 2 & 3 & 4 & 4 \\ 2 & 7 & 6 & 7 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & 3 & 3 & 3 \\ 3 & 2 & 3 & 4 \\ 4 & 2 & 4 & 3 \\ 6 & 2 & 7 & 7 \end{bmatrix}$$

First transform A(z) to Weak Popov Form - basically where pivots are on seperate rows but nothing more. Then convert to Popov Form

$$\begin{bmatrix} 3 & 3 & 2 & 3 \\ 2 & 4 & 3 & 3 \\ 2 & 3 & 4 & 4 \\ 5 & 3 & 6 & 7 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & 3 & 3 & 3 \\ 3 & 2 & 3 & 4 \\ 4 & 2 & 4 & 3 \\ 6 & 5 & 7 & 3 \end{bmatrix}$$

First transform A(z) to Weak Popov Form - basically where pivots are on seperate rows but nothing more. Then convert to Popov Form

$$\begin{bmatrix} 3 & 3 & 2 & 3 \\ 2 & 4 & 3 & 3 \\ 2 & 3 & 4 & 4 \\ 2 & 5 & 6 & 7 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & 3 & 3 & 3 \\ 3 & 2 & 3 & 4 \\ 4 & 2 & 4 & 3 \\ 6 & 2 & 7 & 5 \end{bmatrix}$$

First transform A(z) to Weak Popov Form - basically where pivots are on seperate rows but nothing more. Then convert to Popov Form

$$\begin{bmatrix} 3 & 3 & 2 & 3 \\ 2 & 4 & 3 & 3 \\ 2 & 3 & 4 & 4 \\ 4 & 5 & 3 & 7 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & 3 & 3 & 3 \\ 3 & 2 & 3 & 4 \\ 4 & 2 & 4 & 3 \\ 3 & 4 & 7 & 5 \end{bmatrix}$$

First transform A(z) to Weak Popov Form - basically where pivots are on seperate rows but nothing more. Then convert to Popov Form

$$\begin{bmatrix} 3 & 3 & 2 & 3 \\ 2 & 4 & 3 & 3 \\ 2 & 3 & 4 & 4 \\ 2 & 5 & 3 & 7 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & 3 & 3 & 3 \\ 3 & 2 & 3 & 4 \\ 4 & 2 & 4 & 3 \\ 3 & 2 & 7 & 5 \end{bmatrix}$$

# Mulders-Storjohann Procedure

First transform  $\mathbf{A}(z)$  to Weak Popov Form - basically where pivots are on seperate rows but nothing more. Then convert to Popov Form

E.g. : degree bounds

$$\begin{bmatrix} 3 & 3 & 2 & 3 \\ 2 & 4 & 3 & 3 \\ 2 & 3 & 4 & 4 \\ 3 & 3 & 4 & 7 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & 3 & 3 & 3 \\ 3 & 2 & 3 & 4 \\ 4 & 2 & 4 & 3 \\ 3 & 4 & 7 & 3 \end{bmatrix}$$

# Mulders-Storjohann Procedure

First transform  $\mathbf{A}(z)$  to Weak Popov Form - basically where pivots are on seperate rows but nothing more. Then convert to Popov Form

E.g. : degree bounds (and so on .. )

$$\begin{bmatrix} 3 & 3 & 2 & 3 \\ 2 & 4 & 3 & 3 \\ 2 & 3 & 4 & 4 \\ 2 & 3 & 3 & 7 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & 3 & 3 & 3 \\ 3 & 2 & 3 & 4 \\ 4 & 2 & 4 & 4 \\ 3 & 2 & 7 & 3 \end{bmatrix}$$

#### **Outline**

#### Motivation

Matrix Normal Forms Introduction Examples

Popov Normal Form Basic Popov Facts

#### Computation of Popov Forms

History
Popov Form via Matrix GCLD
Method of Mulders-Strojohanr

Fraction-Free Popov Computation

# Symbolic Domains

- Basic coefficient domain: Quotient field:  $\mathbb{F}(\alpha_1, \dots, \alpha_k)$ 
  - symbols are first class objects in CA environments.
- Polynomial arithmetic easier than arithmetic with rational functions

$$\frac{a(x)}{b(x)} + \frac{c(x)}{d(x)} = \frac{a(x) \cdot d(x) + b(x) \cdot c(x)}{b(x) \cdot d(x)}$$

Need to rcognize 0: need to normalize out gcd's at every step

- Basic goal:
  - To work with polynomial arithmetic in integral domain (e.g. in  $\mathbb{F}[\alpha_1,\ldots,\alpha_k]$ ) rather than in quotient field.
- Want to do our arithmetic fraction-free but at the same time to minimize growth of intermediate computation.

# Symbolic Domains

$$A = \left[ \begin{array}{cccc} a & b & c & \cdots & \cdots \\ d & e & f & \cdots & \cdots \\ g & h & i & \cdots & \cdots \\ \vdots & \vdots & \vdots & & \end{array} \right] \approx \left[ \begin{array}{cccc} a & b & c & \cdots & \cdots \\ 0 & \tilde{e} & \tilde{f} & \cdots & \cdots \\ 0 & \tilde{h} & \tilde{i} & \cdots & \cdots \\ \vdots & \vdots & \vdots & & \end{array} \right]$$

- Cross multiplication gives exponential growth of coeffs
- Fraction-free Gaussian elimination (FFGE)

$$A \approx \begin{bmatrix} a & b & c & \cdots & \cdots \\ 0 & \tilde{e} & \tilde{f} & \cdots & \cdots \\ 0 & 0 & a(..) & \cdots & a(...) \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & a(..) & \cdots & a(...) \end{bmatrix}.$$

Allows for linear growth of coefficient size.

Important : computes Cramer solution of linear problem.

# Popov Form via Order Basis

- $\mathbf{U}(z)\mathbf{A}(z) = \mathbf{T}(z)$  same as  $[\mathbf{U}(z), \mathbf{T}(z)]\begin{bmatrix} \mathbf{A}(z) \\ -I_n \end{bmatrix} = 0$
- $\mathbf{U}(z)\mathbf{A}(z) = \mathbf{T}(z)$  same as  $[\mathbf{U}(z), \mathbf{T}(z)z^{\mathsf{VeC}r}]\begin{bmatrix} \mathbf{A}(z)z^{\mathsf{VeC}r} \\ -I_n \end{bmatrix} = 0$  for any vector vec*r*.
- Choose vecr intelligently so that  $[\mathbf{U}(z), \mathbf{T}(z)z^{\text{VeC}r}]$  has leading coefficient the same as leading coefficient of  $[0, \mathbf{T}(z)]$ .
- Find Popov form for  $[\mathbf{U}(z), \mathbf{T}(z)z^{\mathsf{VeC}r}]$

#### Popov Form via Order Basis

- $\mathbf{U}(z)\mathbf{A}(z) = \mathbf{T}(z)$  same as  $[\mathbf{U}(z), \mathbf{T}(z)]\begin{bmatrix} \mathbf{A}(z) \\ -I_n \end{bmatrix} = 0$
- $\mathbf{U}(z)\mathbf{A}(z) = \mathbf{T}(z)$  same as  $[\mathbf{U}(z), \mathbf{T}(z)z^{\mathsf{VeC}r}]\begin{bmatrix} \mathbf{A}(z)z^{\mathsf{VeC}r} \\ -I_n \end{bmatrix} = 0$  for any vector vec*r*.
- Choose vecr intelligently so that  $[\mathbf{U}(z), \mathbf{T}(z)z^{\text{VeC}r}]$  has leading coefficient the same as leading coefficient of  $[0, \mathbf{T}(z)]$ .
- Find Popov form for  $[\mathbf{U}(z), \mathbf{T}(z)z^{\mathbf{VeC}r}]$

Works because we can use order bases to solve last problem.

Good because order basis computation can be done via fraction-free methods (FFGE method of Beckermann-Labahn)

#### • Order besig finds a module basis for problem.

$$f_1(z)m_1(z) + \cdots + f_n(z)m_n(z) = O(z^{\sigma})$$

Order basis finds a module basis for problem:

$$f_1(z)m_1(z) + \dots + f_n(z)m_n(z) = O(z^{\sigma})$$

• Order basis is form of an  $n \times n$  matrix polynomial

$$f_1(z)m_1(z) + \cdots + f_n(z)m_n(z) = O(z^{\sigma})$$

- Order basis is form of an  $n \times n$  matrix polynomial
- FFGE computes order basis in a shifted Popov Form using fraction-free arithmetic

$$f_1(z)m_1(z) + \dots + f_n(z)m_n(z) = O(z^{\sigma})$$

- Order basis is form of an  $n \times n$  matrix polynomial
- FFGE computes order basis in a shifted Popov Form using fraction-free arithmetic
- Choose vector vecr intelligently (use adjoint of A(z)) so that one can embed Popov computational inside

$$\begin{bmatrix} \mathbf{M}_{11}(z) & \mathbf{M}_{12}(z) \\ \mathbf{M}_{21}(z) & \mathbf{M}_{22}(z) \end{bmatrix} \begin{bmatrix} \mathbf{A}(z)z^{\mathsf{VPC}r} \\ -I_n \end{bmatrix} = \begin{bmatrix} \mathbf{R}(z)z^{\mathsf{VPC}\sigma} \\ 0 \end{bmatrix}$$

$$f_1(z)m_1(z) + \cdots + f_n(z)m_n(z) = O(z^{\sigma})$$

- Order basis is form of an  $n \times n$  matrix polynomial
- FFGE computes order basis in a shifted Popov Form using fraction-free arithmetic
- Choose vector vecr intelligently (use adjoint of A(z)) so that one can embed Popov computational inside

$$\begin{bmatrix} \mathbf{M}_{11}(z) & \mathbf{M}_{12}(z) \\ \mathbf{M}_{21}(z) & \mathbf{M}_{22}(z) \end{bmatrix} \begin{bmatrix} \mathbf{A}(z)z^{\mathsf{VeC}r} \\ -I_n \end{bmatrix} = \begin{bmatrix} \mathbf{R}(z)z^{\mathsf{VeC}\sigma} \\ 0 \end{bmatrix}$$

# **Future Topics**

1. Want fraction-free reduction procedure

- 1. Want fraction-free reduction procedure
- Relationship of Popov Form (and its computation) to work of Pryce [2001] with Taylor series for numerical solution of DAEs

- 1. Want fraction-free reduction procedure
- Relationship of Popov Form (and its computation) to work of Pryce [2001] with Taylor series for numerical solution of DAEs
- Higher order methods for systems of linear odes without conversion to first order systems

- 1. Want fraction-free reduction procedure
- Relationship of Popov Form (and its computation) to work of Pryce [2001] with Taylor series for numerical solution of DAEs
- Higher order methods for systems of linear odes without conversion to first order systems
- 4. Involve adjoint calculation in process.

- 1. Want fraction-free reduction procedure
- Relationship of Popov Form (and its computation) to work of Pryce [2001] with Taylor series for numerical solution of DAEs
- Higher order methods for systems of linear odes without conversion to first order systems
- 4. Involve adjoint calculation in process.
  - Did this in case of Order Basis (B & L, submitted to ISSAC 2009)