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Abstract

Recently, a uniform approach was given [5] for different concepts of matrix-type
Padé approximants, such as descriptions of vector and matrix Padé approximants
along with generalizations of simultaneous and Hermite Padé approximants. The
considerations in this paper are based on this generalized form of the classical scalar
Hermite Padé approximation problem, power Hermite Padé approzimation. In par-
ticular we study the problem of computing these new approximants.

A recurrence relation is presented for the computation of a basis for the corre-
sponding linear solution space of these approximants. This recurrence also provides
bases for particular subproblems. This generalizes previous work by Van Barel and
Bultheel and, in a more general form, by Beckermann. The computation of the
bases has complexity O(c?) where o is the order of the desired approximant, and
requires no conditions on the input data. A second algorithm using the same recur-
rence relation along with divide-and-conquer methods is also presented. When the
coeflicient field allows for fast polynomial multiplication this second algorithm com-
putes a basis in the superfast complexity O(clog® o). In both cases the algorithms
are reliable in exact arithmetic, that is, they never break down, and the complex-
ity depends neither on any normality assumptions nor on the singular structure of
the corresponding solution table. As a further application, our methods result in
fast (and superfast), reliable algorithms for the inversion of striped Hankel, layered
Hankel and (rectangular) block-Hankel matrices.
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1 Introduction

Let F = (f1,..., fm)T (with m > 2) be an m-tuple of formal power series with coef-
ficients from a field IK (typically a subfield of either the real or complex numbers) and

n = (n1, ... ,ns,) an m-tuple of integers, n; > —1. A Hermite Padé approzimant for
F of type n is a nontrivial tuple P = (Py,...,P,) of polynomials P, over IK having
degrees bounded by the n; such that

P(z)-F(z) = Pi(2)fi(2) + ... + Pu(2) f(2) = enz™ +engpr 2NN 4L (1)

with N=n;4+...+n,, + m — 1.

The Hermite Padé approzimation problem was introduced in 1873 by Hermite and
has been widely studied by several authors (for a bibliography, see, e.g. [2, 3, 4] or [25]).
Note that when m = 2, F = (f, —1)T equation (1) is the same as

Py(2)f(2) = Pa(2) = O(z"FH)

and hence as a special case we have the classical Padé approximation problem for a
power series f. Hermite Padé approximation also includes other classical approximation
problems such as algebraic approximants (F = (1, f, f%,..., f™1)7T) (e.g. [23] for the
special case m = 2) and G°.J approximants (m = 3,F = (f', f,1)T). We refer the reader to
[1, pp.32-40] for additional examples. More generally, there is the M-Padé approzimation
problem which requires that P -F vanishes at a given set of knots zg, 21, ..., zy_1, counting
multiplicities ([2, 3, 4], [20], [21]). The case where all the z; are equal to 0 is just the
Hermite Padé problem.

Hermite also defined a second type of approximant to a vector of power series, the so-
called simultaneous Padé approximants and used them in his proof of the transcendence
of e. Close connections between these two approximation problems have been pointed out

in [7, 14, 16, 17, 21].

In recent years, several vector and matrix generalizations of these approximation
problems have been given (see Section 2). The aim of this paper is to study a uniform
approach not only to Hermite Padé and simultaneous Padé approximants but also to
their matrix-type generalizations. To this end, we consider the following generalized
scalar Hermite Padé approximation problem [5]:

Definition 1.1. (PHPA) Let 0 >0, s > 0, ny,...,n,, be integers, n; > —1 and
n = (n1,...,ny). Then a Power Hermite Padé approximant (PHPA) P = (Py,...,P,)
of type (n, 0, s) consists of scalar polynomials P, having degrees bounded by the n; with

R(z) =P(2°)-F(z) = Pi(2°) f1(2) + ... + P(2°) fn(2) = 027 + ca+1z”+1 +..., (2)
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that is, has order o. The power series R will be referred to as the s-residual. O

The power s appearing in Definition 1.1 provides a method of converting a vector
problem into a scalar problem (see Section 2). By defining these approximants in a similar
way to Hermite Padé approximants we can borrow from the (successful) computational
techniques for the Hermite Padé problem used in [2, 4, 25]. Of course the classical Hermite
Padé approximation problem is included by setting s = 1 and ¢ = ||n|| — 1, where the
norm of multi-indices n = (ny,...,n,) € (INoU {—1})™ is defined by |n|| := (n; + 1) +

.+ (nm + 1). Note that, by equating coefficients, equation (2) results in a system of
homogeneous linear equations. By comparing the number of unknowns to equations one
can conclude that there exist at least ||n|| — o PHPA’s of type (n, o, s) which are linearly
independent over K.

The paper is organized as follows: Section 2 gives examples of matrix-type general-
izations of existing approximation problems. These are shown to be special cases of the
PHPA problem for various values of s and o. In Section 3 we provide a recursive algorithm
to efficiently and reliably solve the PHPA problem in exact arithmetic. Some interesting
properties of our algorithm along with a cost analysis is given in Section 4. It is shown
that the algorithm is at least as fast or faster than existing methods for special cases.
Thus our results provide a uniform method of computing matrix-type generalizations of
Padé approximation problems. Section 5 gives an example of the use of this algorithm
in the context of square-matrix Padé approximants. Section 6 considers a modification
of our algorithm that combines divide-and-conquer techniques along with the recurrence
relation of Section 3. When the field IK allows fast polynomial multiplication the resulting
new algorithm solves the PHPA problem with superfast complexity. Finally, the paper
closes with a discussion of a number of research directions that follow from our work.

For purposes of presentation, we adopt the following notations. Let S be a space
with scalars from IK, for instance § = K (pxq), the space of p X ¢ matrices over IK. Then
S[z] will denote the set of polynomials in z with coefficients from S while S[[z]] represents
the set of formal power series in z with coeflicients from §. Multi-indices and PHPA’s
will be denoted in bold face letters; they are both (1 x m) row vectors. Also, throughout
this paper the parameter s and the multi-index n will be fixed. The algorithm of Section
3 follows along an m-dimensional ‘diagonal’ path (n(d))secz induced by n which is defined
as follows:

d€Z,n=(ny,...,np): n(d) =(ny,...,n,,) with n; = max{—1,n; + §}. (3)

m

This notion allows us to discuss not only one approximation problem corresponding to
n = n(0), but also simultaneously all subproblems associated with n(d), § < 0 (cf. Table
3). Finally, the set of all PHPA’s of type (n(d),0,s) is denoted as L§; it is a finite-
dimensional space over K.

Parallel to and independently of [5] and our present work, another uniforming ap-



proach has been proposed in [26] by Van Barel and Bultheel based on the concept of
vector M-Padé approximation. Their approach does not reduce to a simple scalar concept
as does the notion of our PHPA’s. However, their approach does have the advantage of
handling matrix rational interpolation and so it can be seen complementary to this paper.

2 Matrix-type Padé approximants as special PHPA’s

In this section we give examples of a number of matrix-type generalizations of classical
Padé approximation problems. Let A be a p x ¢ matrix of power series over IK and suppose

r €IN and M, N € IN,.

Example 2.1. (Right-hand square and rectangular Matrix-Padé Forms)
Find P € K (pxr)[z], Q € K (qxr)[z], with deg P < M, deg Q < N and the columns of ()
being linearly independent over K such that

A(2) - Q(2) — P(2) = 2. R(2),

with R € IK®7[[2]]. O

Example 2.2. (Left-hand square and rectangular Matrix-Padé Forms) Find
P cK (qu)[z], Q c K (rxp)[z], with deg P < M, deg Q < N and the rows of () being

linearly independent over IK such that
Q(z) - A(2) = P(z) = M+ R(2),

with R € K "™9[[2]]. O

When p = ¢ = r = 1 this is the classical scalar Padé approximation problem. When
p = q = r > 1 these are square right-hand or left-hand matrix Padé approximants [19].
In the rectangular (p # q) case, two natural matrix Padé approximations occur when
either p = r or ¢ = r. Both of these rectangular-matrix types of Padé forms are used, for
example, to compute the inverse of matrices partitioned into a rectangular-block Hankel
structure [18].

We remark that, in the examples where (z) is square, it is of special interest to
determine those cases where we can form a Padé fraction P(z)-Q(z)™* or Q(2)™* - P(z)
as an approximant to A(z). In both cases we are therefore interested in necessary and
sufficient conditions under which Q(z) is non-singular.
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Motivated by the well-known connections between left-hand and right-hand square
matrix Padé forms and by inversion formulas of block Hankel-like matrices, one of the

authors [17] introduced for p,p € IN and po,...,p. >0, p=po+ ...+ pu, Ao,..., Ay €
IK?*P[[2]]:
Example 2.3. (Matrix Hermite Padé Form) Find polynomials P,,...,P, €

IK?*P[z] with deg P, < p; — 1, 0 <1 < p and
Ao(2)Po(2) + ...+ Au(z)Pu(z) = 2P7L. R(z),
R € IKP*?([2]] such that the matrix [Py, ..., P,] € KP*UFYP[2] has full rank over K. O

Example 2.4. (Matrix Simultaneous Padé Form) Find polynomials Q, . .
IK?*P[2] with deg Q; < p — p1, 0 <1 < p and

Qo(2)Ai(2) — Qu(2) Ao(2) = 27" - Ri(2),
1 <1< p, R € KP*P[[2]] such that the matrix [Qo, ..., Q,] € KP*+VP[2] has full rank
over K. O

Q€

Beside the classical scalar simultaneous Padé approximants (p = 1, Ag(z) = 1),
Example 2.4 also includes the simultaneous partial Padé approximation problem where
we have prescribed poles and zeros for the approximants [8]. Following [22], the ques-
tion of irreducible Hermite Padé forms is of special interest, i.e., we also require that
[Po(0), ..., P(0)] € KP*(HYP i different from zero (or moreover has full rank over K ).
Similarly, in Example 2.4 we are interested in approximants where Qo(0) is a non-singular
matrix.

We remark that the order conditions in Examples 2.1 to 2.4 are all such that at
least one solution exists for each approximation problem. In addition, the so-called Weak
Matriz Hermite Padé Form and Weak Matriz Simultaneous Padé Form are connected to
Examples 2.3 and 2.4 (see [17]). In this case the order conditions are weakened to allow
for more linearly independent solutions. Other examples of matrix-type generalizations of
Padé approximants include Hermite Padé Systems [11] and Simultaneous Padé Systems
[12], [17]. These, however, only exist in certain cases.

Note that the Matrix Simultaneous Padé Form is closely connected to a rectangular
Matrix Hermite Padé Form if the interpolation conditions are written as follows:

[ AT (2) | [ —Af(2) ] 0 RY(z)
Ag(z) 0 0 Rg(z)
A3 (2) |- QT(2) + 0 QT(2) + ...+ 0 -QT(z) = 21 . | R3(2)

| AT(2) 0 | —4I(2) | RY(z)




All examples given here are special cases of so-called Vector Hermite Padé approxi-
mants.

Example 2.5. (Vector Hermite Padé approximant) Let m,s,7 € INg,
m,s > 2, Gy,...,Gn € K**[[2]] and let n be a multi-index. Find linearly indepen-
dent polynomial tuples (Pi,...,Py), P, € K[z] with deg P, <mn;, 1 <1< m such that

Gi1(2)Pi(z)+ ...+ Gu(2)Pu(z) = 27 - R(2),
with R € IK**'[[2]]. O

By setting
for 1 <l1<m: fi(z) = (1,2,2°,...,2°7") - Gi(2*), (4)

we see that computing Vector Hermite Padé approximants of type (n,7) and dimension
s is equivalent to the determination of PHPA’s of type (n,7s,s), i.e. of the solution set
L7*. Indeed the above technique of converting a vector problem to a scalar problem via
the raising of z to the s-th power provides the motivation for our Definition 1.1.

In Table 1, we have listed the particular choices of m,n, s, o, F with respect to Ex-
amples 2.1, 2.2 and 2.3. Instead of 2.4, we consider the special case of scalar simultaneous
Padé approximation.

‘ Example ‘ m ‘ s ‘ o ‘ n, F ‘ No. sol. ‘
classical (1 eeey M),
Hermite Padé m 1 ]l =1 FT(2) = (fi(2), .., fm(2)) 1
(M,.,M,N,..,N),
21 pra [P PN D] Rt 2 (s, (LoAG) |
(M,.,M,N,..,N),
2.2 p+q |q|eM+N+1) B I T r
F(z) = ( A ) (12,2070
(PO - 1a,1'11 Po — 11 s Pu— 1a 9 Pu— 1)7
25 |pw+)|p| plo-1) F7(2) = (L7, #7): ;
(Ao(27), ... A7)
2 4 with (p_pov"vp_!o_ﬂ)a
p:]_ A =1 :u'—l_]- 14 lu'(p—l_]') fl(z):_zlgjguzj 1Aj(zu) 1
e J21: fi(z) =271

TABLE 1:  Specification of the PHPA parameters used in (2) for some
Matrix-type Padé Approximation problems. The integer in the last
column denotes the number of PHPA solutions required to construct
the corresponding Matrix-type Padé approximant.



3 Recursive computation of PHPA bases

In this section, we construct systems of m PHPA’s by recurrence on o. This allows
us to describe all the PHPA’s of type (n(d),0,s), § < 0, when a fixed s, F and n are
given. Therefore we not only solve the Hermite Padé approximation problem of type n
or the corresponding matrix-type Padé approximation problem (see Section 2) but also
all subproblems of type n(d), § < 0 (cf. Eqn. (3)) belonging to a ‘diagonal path’ in the
solution table. The recurrence formula and the resulting algorithm do not require any
assumptions on the input data F. Moreover, the algorithm is fast, i.e. it always has a
complexity of O(||n||?) arithmetic operations whereas the classical Gaussian algorithm,
applied on the corresponding system of linear equations, has complexity O(||n||®) because
it does not take into account the special structure of the matrix of coefficients. Finally,
our method is also reliable which in this context means that it also recognizes insoluble
problems or gives representations if the solution sets of type n(d), § < 0 are multi-
dimensional (assuming that exact arithmetic is available). We remark that our algorithm
does not consider the case of floating point arithmetic, and hence does not consider the
issue of numerical stability in the presence of roundoff errors

Several fast algorithms for special cases of PHPA’s are well-known but most of them
require a normal or perfect solution table (i.e. PHPA’s of different type are distinct). As
far as we know, only the methods proposed in [19] for square matrix Padé approximation
and the Jacobi-Perron continued fraction algorithm of [6] for simultaneous Padé approxi-
mation and [2, 4, 11, 12, 25] for scalar Hermite Padé approximation are also reliable. All
of them still require slight assumptions on the input data (A(0) regular, F(0) nontrivial),
moreover, the algorithms of [11], [12], [19] might reach a complexity O(||n|]*) if none of
the subproblems of type n(é), § < 0 has a unique solution.

For the special case s = 1 ( i.e. scalar Hermite Padé approximation), the recurrence
formula of our new algorithm is similar to that used in [2, 4, 25]. The fast Gaussian
algorithm [2, Sec.5] is motivated by the close connections to the factorization of the
corresponding matrix of coefficients via the Gaussian algorithm with partial pivoting, a
‘special rule’ reduces the complexity to O(||nl|?). It provides solutions to all subproblems
on the ‘diagonal path’ (n(d))s<o. The methods of [2, 4] both are developed for the more
general M-Padé approximation problem (arbitrary interpolation knots), moreover, by the
algorithm given in [4] we can compute solutions by recurrence on ‘arbitrary paths’ or
‘staircases’ (nz) where the multi-index ng; differs from nj by increasing one component
(also the decreasing of a second component is allowed). Parallel to [2, 4], Van Barel and
Bultheel proposed a fast, reliable method for computing Hermite Padé approximants on
‘diagonal paths’ [25]. Their version is similar to [2] but notationally less complicated. The
ideas developed in [26] for a recursive computation of vector M-Padé approximants have
close connections to [4, 25]. The authors propose three alternative ‘basic steps’ which
includes considerable freedom in solving certain subproblems.



There seems to be no connection between the methods described above and the
reliable Jacobi-Perron continued fraction algorithm of [6] for simultaneous Padé approxi-
mation. For this approximation problem, using our formalism we obtain a more compact
method with at most the same complexity, in addition we get more information about
singular cases.

Before describing bases for PHPA solution sets let us introduce the following:

Definition 3.1. (defect, order) The defect of a P = (Py,..., P,) € K™[z] (with

respect to the fixed multi-index n = (nq,...,n,)) is

det P := mlin{nl +1—deg P}

where the zero polynomial has degree —oco. The order of P (with respect to s € IN and
F) is defined by

ord P :=sup{o € N, : P(2°) - F(z) = 27 - R(z) with R € K[[z]]}.

The definition of the defect is a natural extension of that found in the case of the
M-Padé problem (cf., [3, 4] ) and its special case of rational interpolation (some authors
use a slightly different definition). The defect is also closely connected to the T-degree of
[25].

Using Definition 3.1, we get an equivalent characterization for PHPA solution sets:
Foro € Ng, 6 € Z U {+o00}: L§T={P € K™[z]: dct P > —6,0rd P > o}. (5)
Now we are able to describe so-called o-bases of PHPAs.

Definition 3.2. (o-bases) Let 0 € No. The system Pyq,...,P,, € K™[z] is called
a o-basis if and only if:

(a) Py,....P,, €L ,iec. ord P, >0

+o0?

(b) For each § € Z U {+o0} and for each Q € L{ there exists one and only one tuple of
polynomials (ay,...,an), deg ay < dct Py + § such that Q = a1 -P1+ ...+ Py, O

Note that, as a consequence of Definition 3.2, a o-basis Py, ..., P,, must be linearly
independent with respect to polynomial coefficients. Moreover we have

¢ =span{z’ -P;:1<1<m,0<j < dct P+ 4} (6)
dimL{ = max{dct P, + 6,0} + ... + max{dct P, + §,0}. (7)
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The existence of o-bases for the case s =1 was given in [2, 3, 4, 25] and for the case
s > 1 in [5]. Before giving an algorithm for their computation, let us state some simple
rules for the defect and order of linear combinations of PHPA's.

Lemma 3.3 For P,Q € K™[z], c € K \ {0}:
det (¢-P)=dct P, det (P + Q) > min{dct P,dct Q} ,dct (z-P)=dct P -1, (8)
ord (¢-P)=o0rd P, ord (P + Q) > min{ord P,ord Q} ,ord (z-P) =o0ord P +s. (9)

Proof:  Left to the reader. O

From the characterization (5) it is clear that £§ C £§,; and £ C £§. In addition,
if P e L3\ L], ie. ord P = o, then from (8), (9) it is easy to see that for each Q € L]
there exists a ¢ € K such that Q —c¢- P € L. This proves the statement

L3t L], dim £ > dim £f — 1 (10)
and already gives an idea about the computation of ¢-bases by recurrence on the order as

proposed in the procedure FPHPS (‘Fast Power Hermite Padé Solver’) below. We show
in Theorem 3.4 that this method is both correct and produces the desired o-bases.

ALGORITHM FPHPS
INPUT: m >2,8s€IN,F=(f1,...fn)T, multi-index n = (n,...,n,)

INITIALIZATION: Letfor o =0,1=1,...,m:
dio=mn;,P1o=1(0,..,0,1,0,..,0) (Ith unit vector)

RECURSIVE STEP: For o =0,1,2,...:
Let for I=1,....m: ¢1o = 277 - P1,(2*) - F(2) |,=0 and A, = {l: ¢, # 0}

CASE A, ={}, thenfor I=1,...,m:
Pl,o‘—}—l — Pl,o‘ 5 dl,o‘—}-l — dl,o‘

CASE A, # {}, then let m = n, € A, be defined by
dro =max{d;, : 1 € A,}
and compute for [ =1,...,m:

le Ao‘7l % T Pl,o‘—l—l - Pl,o‘ - CI:U : Pﬂ',(r 5 dl,o‘—l—l - dl,o‘

Cr,o
l € Aa': Pl,o‘+1 - Pl,o‘ 5 dl,o‘+1 - dl,a'
= Pﬂ',a'+1 =z Pﬂ',o‘ 5 dﬂ',a'+1 = dﬂ',o‘ -1

OvutpuT: Foro=10,1,2,...:
o-bases Py ,,... ., Py, with det Py, =di, +1,1=1,...,m, ie.
forall §: L ={a1 - Pis+ ...+ @ -Puno: degoy < di, + 0}




Theorem 3.4. (Feasibility of method FPHPS) Method FPHPS is well-defined

and gives the specified results.

Proof: ~ We show the assertion by induction on o for a fixed §.

The case o = 0 follows immediately from the definition of £?. Hence suppose ¢ > 0
and that the algorithm is correct for 0. We will show that the algorithm produces the
correct output for o + 1. Note that by assumption ord P;, > o, i.e. its s-residual takes
the form

P, (2")-F(z) = 27 - Ri(z) with R; € K|[[z]].

Hence ¢, = R;(0) and the recurrence step is well-defined. By construction we have
0rd Piop1 > 0+ 1and det Prypq > djoin + 1.

Moreover, it is easy to see that with Py ,,... . P,,, also Py ,41,..., Py, o141 are linearly
independent with respect to polynomial coefficients.

Consider first the case when £5 = £{*'. By assumption, each Q € £ then has a
representation

Q=01 Pis+...4an -Puns,, degay < det Py, + 4.

This 1s already a suitable linear combination of Py ,41,..., Py s41. To see this, notice
that with a; # 0 we get det Py, +6 > 0 and P, € L] = Eg“, hence ¢;, = 0 and
Pl,a‘+1 - Pl,o‘-

The case L # L5 is also easy to handle. Let

Ls:={a1 Piogri+...+am Prosrr: degoy < det Proyq + 6},

so that in view of Lemma 3.3 we have L5 C L{T'. On the other hand, the dimension of
Ls can be estimated as follows:

dim £5 = max{dct P1,41 + 0,0} + ...+ max{dct P, 41 + 6,0}
> max{di,+1+1+8,0}+ ...+ max{dn,+1 +1+ 6,0}
> max{d;,+1+4+6,0}+...+ max{d,,, +1+ 4,0} —1

dim £§ — 1 = dim L{*,

where for the last two equalities we have applied (7) and (10). Consequently, £; = £
and we have equality in the estimation above. For all A > § we also have that L3" # L3,
since by definition § # £ \ £t C £4 \ LXt!. Therefore, the above equations are also
valid if we replace § by A > §. Choosing A sufficiently large, we can conclude that
det Proy1 = djoqy1+ 1 for Il =1,....m which proves the theorem. O
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4 Some Properties of FPHPS Algorithm

In this section, we discuss some properties of the o-bases obtained by the procedure
FPHPS. In particular, we are interested in simple conditions describing whether some
PHPA’s are irreducible and whether given PHPA’s Py, ..., Py (and its values at zero) are
linearly independent with respect to polynomial coefficients (and constant coeflicients,
respectively) — questions which as explained in Section 2 naturally arise in the context of
Matrix Padé approximation. In addition, for multidimensional solution sets we will clas-
sify PHPA'’s having ‘best’ approximation properties, i.e., maximal order and /or minimal
degree. The complexity of method FPHPS is determined at the end of this section.

Let A, and n, (for a given o) be defined as in Algorithm FPHPS. As given in all
applications of Table 1, in the sequel we will only discuss the case s < m and Ag # {},. ..,
A,_; # {}. This is equivalent to the fact that the matrix (F(0), F’(0),...,F*=1(0)) has
full rank. In the following Theorem, we summarize some facts about reducible PHPA’s.
These results are generalizations of ideas appearing in [25].

Theorem 4.1.
(a) For all ¢ > s, we have cardA, > 1, more precisely

Toes € Ng C Ly U{ms_,}, where L, :={1,... . m} \ {@os, Tost1s -y To_1}- (11)

(b) Let U denote the (m — s) dimensional subspace of vectors which are orthogonal to

all F(0),F'(0),...,Ft=Y(0). Then for o > s

span{P;,(0):1 € L,} =U andforalll ¢ L,: P;,(0)=0. (12)

Proof: ~ Notice that in Algorithm FPHPS we always have ord Py, ,41 = o + s.
Therefore 7, € Apys # {} but 7, &€ Agi1, ..., 75 &€ Asy,—1. This proves (a). The second
part of (b) follows directly from the fact that P;,.; = Py, for all [ ¢ L,4; U L,, and
P;,41(0) = 0 for I = m,. The first assertion of (b) can be shown by a simple recurrence
argument on o > s. Let

Uy := span{P;,(0) : I € L,}.

Then U, C U since we have ord P;, > s. With P;,(0), [ € L,, also the vectors P; ,11(0),
Il € L, N Lyy1, together with P, ,(0) are linearly independent. From the recurrence
relations we know that P, ,(0) =0 and P, _, ,41(0) = ¢- P, »(0) with ¢ # 0. Conse-
quently, P; ,11(0), I € L,41, are linearly independent which proves part (b). O
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Supposing that the vector F contains only polynomial entries, we expect that the
solution set £§ becomes stationary for sufficiently large o. In contrast, due to Theorem
4.1(a) the o-bases will always change if o is increased. In fact, we observe that for large o
the non-constant part of the o-basis described by the sets A, consists only of approximants
with defect smaller than —§, and that, for sufficiently large o, for the representation (6)
of the solution set L£§ we need at most (m — s) elements of the o-basis.

Theorem 4.1(b) yields a simple criterion determining whether the solution set Lf
contains an irreducible element. By definition, the components of an element of the o-
basis can only have a common factor which vanishes at zero. Hence there exists an element
P of L£{ being irreducible, i.e., P(0) # 0, if and only if there is an [ € L, with d;, > —d.

Moreover, we immediately get

Corollary 4.2.
(a) L contains A < m elements Py, ..., Py being linearly independent over K [z] iff there
are distinct Iy,...,Ix € {1,...,m} with dj, , > —6.
(b) L contains A < m — s elements Py,..., Py such that P1(0),...,P,(0) are linearly
independent over K iff there are distinct Iy, ... I\ € L, with dj; , > —J4.
(c) In both cases linearly independent approximants from L§ are given by P; = Py, ,,
j=1..., A O

In most applications, the first s components of F take the simple form f;(z) = 2771,
Here we consider the first s components p and the last (m — s) components q of a PHPA
P = (p,q) separately and ask for approximants Py,..., Py € L£§ with qi,...,q) (or
q:(0),...,qx(0)) being linearly independent. Here also the criteria given in Corollary
4.2.(a),(b) can be applied as long as we can guarantee that there is no P = (p,q) € L§
with p # 0 and q = 0 (p(0) # 0 and q(0) = 0, respectively). But due to the simple
form of F it can be easily verified that P = (p,q) € £§ with q(0) = 0 and ¢ > s also
implies that p(0) = 0. Similarly, if s-(n; +60)+j < o for j =1,...,s (which for the most
interesting PHPA cases of Section 2 is true) and P = (Py,..., P,) = (p,0) € L] then p
must also be identical zero since ord P < max{s-deg P;+j—1:5=1,...,s}.

If the solution set is multi-dimensional, we are interested in classifying particular
solutions which have certain uniqueness properties. The concept of approximants with
correct degree satisfying “best possible” order conditions is discussed in the following
Corollary.

12



Corollary 4.3. Let each P € IK™|z] have finite order and let § + min{ny, ..., n,} >
0. Consider the problem of finding ‘optimal’ PHPA’s Py,... Py, A < m — s with

(i) P1(0),...,P(0) are linearly independent,

(ii) det Py > —4,...,dct Py > —4,

(iii) the number (ord Py + ...+ ord P)) is maximal,

(iv) ord Py =: 0(1) > ord Py =: 0(2) > ... > ord Py =: o(A)

(it is easy to see that condition (iv) only implies a particular ordering for the PHPA’s
determined by (i), (ii), (iii)). A solution for this problem is given by

o(y) := max{a ccard{l € L, : di, > —6} > ]}

and Pj = Pﬂ-au)p-(j), ] = 1, e ,/\. O

Corollary 4.3 is a canonical generalization of the optimal Hermite Padé form of type
n(d) of [22] (s = A = 1). Paszkowski speaks of non-existent optimal Hermite Padé
forms if P; is not unique, i.e., if there is a further (necessarily reducible) PHPA P,
with dct Po > —0 and ord Py > ord P;. For A = m — s = 1, e.g., scalar simultaneous
(partial) Padé approximation, our approach is closely connected to a concept proposed by
de Bruin [8] for non-normal solution tables. Note that, though in view of Corollary 4.2.(b)
the numbers o(1),...,0()) are unique, in general we might get several tuples of optimal
PHPA'’s being essentially different. The significance of the integer () for Matrix Padé
approximation is discussed at the end of Section 5.

Following Corollary 4.3, we always find irreducible approximants with correct degree,
but the order condition might be weakened. In contrast, Van Barel and Bultheel [24, 26]
look for irreducible approximants with correct order and a type of minimal degree. More
precisely, instead of (ii)-(iv) the conditions

(v) ord Py > 0,...,0rd Py > 0o,
(vi) the number (det Py + ...+ det P)) is maximal

are imposed. As above, in general this problem will not have a unique solution. However,
the method FPHPS also gives a solution for this problem: due to Corollary 4.2(b) we can
take those A approximants P;,, [ € L, with maximal defect.

The problem of uniqueness for both concepts is illustrated in the next example.

Example 4.4. Let

. s=2 n=(2222), §=0,

F(z) = (1,2, —— + 2% — 2 + 23T 4 O(219).

1— 24 14 24
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An application of FPHPS gives the values mg, 7y,..., 73 =1,2,1,2,1,3,1,3,1,4,2.4,3.,4.
In particular, we obtain a o-basis for 0 = 10 (output in matrix form with the rows Py 10,
P5.10, P310, and Py ;g as the basis elements) as

2° 02 01 (1)
Pro(z) = 8 ljz —%_—Ifz2 —2% ’
0 -2z z z
with s-residuals
Y4+ 0(2%)
Pu(s?) - F(x) = | wF Lz 2 tOE")

_z _I_Z13_|_Z14_|_O( )
2Z11_|_Z12_|_Z14_|_O( )

The defects for this basis are —2,1,1 and 2, respectively. Hence L3 does not have
dimension 2 (as expected from comparing the number of equations and unknowns) but 4.
For A = 1, a particular solution with ‘minimal degree’ (satisfying conditions (i),(v),(vi)
above) is given by a - Py 10+ b- P30 + (cz 4+ d) - Py o with arbitrary constants a,b, ¢, d,
la| 4+ |b| # 0. A particular solution with ‘maximal order’ o(1) = 12 (satisfying conditions
(1),(i1),(ii),(iv) above) is given by a-P312+b-Py1o = a- (P30 — Pa1o) +b-2z- P4y with
arbitrary constants a,b, a # 0 (the solution proposed in Corollary 4.3 equals P3;5). O

Consider now the problem of determining the complexity of the algorithm FPHPS.
For simplicity, we still impose the conditions before Theorem 4.1 (otherwise, the complex-
ity will be still smaller). As seen in Section 2, in most applications one has to determine
o-bases of PHPA’s for o &~ ||n||. In order to determine the number of arithmetic opera-
tions (AO) required for the computation of a ||n||-basis, we essentially only have to take
into account the computation of ¢14,...,¢mes and of Piyi1,... Py, 0 < o < |n||.
Here the complexity strongly depends on the parameters F and s.

Theorem 4.5. (Complexity) The algorithm FPHPS for computing PHPA’s of

order 0 = 0,1,...,||n|| has a complexity of at most
4(m — ) - [n]|* + O(m? - ||n]|) AO, (13)
roughly half additions and half multiplications plus O(m - ||n||) divisions. At least for the
casen = (n,...,n), we obtain the sharper bound
(1= 2) - (2m = card L) - ]} + O(m? - [n]) AO. (14)

where L = {1 : fi(z) = 2% with a j € INo}.

Proof:  Since ¢r,_,s = Cry_,o—s and Pr_,41 can be easily determined by shifting
some coeflicients, for the complexity it remains to consider the computation of at most ¢;,
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and P;,4 for I € Ly41. In addition, we are not interested in PHPA’s with dct Py, < 0,
since they do not occur in the solution sets £, § < 0 (cf. Eqn (6)). Therefore the
degree of the Ath component of P;, is bounded by n) — d;, < n) and we require for
loop no. ¢ the number of at most 2 - Lot Sh(ry+ 1)+ O(m?) = 2(m — s) - |n]| +
O(m?) additions/subtractions and the same number of multiplications which totally gives

a complexity as stated in (13). For the case n = (n,...,n), we can apply the relation
[Im]| -1 m ontl
2- Y Y (de+1)>..>nf?=2-5-> >
0=0 Il€Ls41 =1 =0
which by using similar arguments leads to (14). O

It should be mentioned that our algorithm can be implemented very efficiently on
a vector or on a parallel processor (with, e.g., m or ||n|| processors). The complexity of
our algorithm for the examples of Section 2 is given in Table 2, whereas in Table 3 some
solved subproblems and their corresponding PHPA solution space are listed.

‘ Example ‘ Complexity via (13) ‘ via (14), special case ‘
classical 9 9 for ny = ... = Ny
Hermite Padé 4(m —1) - |In[* + O(m? - |[n}) 2(m —1) - ||n||* + O(m? - ||n||)

for M = N:
4q[p(M + 1) + q(N +1))?
2.1 qu[g(((p n q;2 . ((]]E/_r 4 N;]) q(29+p)(p + ¢)(M + 1)
+O0((p+ 9)* - M)
for M = N:
4plg(M + 1) + p(N + 1))?
2.2 i[g)(((p n qu . f}(w n N;]) p(2p + q)(p+ q)(M + 1)
+O((p + ¢)* - M)
for po = ... = pu:
23 4 3 2—|—O 2,4 14
pp*p” + O(p"p’p) 2up®p? + O(ipp)
2.4 with for po = ... = pu:
412 0% + O(u p
p=14=1 wot+ Ole) LW+ O(p'p)

TABLE 2: Complexity for solving Matrix-type Padé Approximation problems
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‘ Example ‘ Type of subproblem ‘ PHPA solution space

classical

Hermite Padé (nl = sy My — ])7 J < min{n; 4 1} o

-7

. “ . ) L7727 contains
2.1 (M—],N—]), J < mln{M—l' laN—I' 1} I‘OWJS of (PT QT)

S .
,Cij 7% contains

2.2 (M —j,N—3),7 <min{M +1,N +1} rows of (P, 0)
. “ . ) ,C(:;J " contains
2.3 (po_]v"'apﬂ_])7] Smln{pl} rows of (PO P )
ooy Py
2.4 with . " . ) o—jsem
P14y =1 (Po—J5- s pu—J), § < min{p} L7535

TABLE 3:  Some Matrix-type Padé subproblems solved by FPHPS
and their corresponding PHPA solution spaces,
parameters m,n, s, o, F as in Table 1

5 An Example of Matrix Padé Approximation

In this section we give an example of a matrix Padé approximation problem computed

using the algorithm FPHPS. Let

A(z) = 14224+ 22* — 2° 4+ 25+ O(28) z7—|—(9(z8)

z)= —2° 4+ O(2®) 1+ 224244274 O(2®)

and consider the problem of determining a (2,3) right-hand matrix Padé form for A(z).
Thus we are looking for 2 X 2 matrix polynomials P and ) of degree at most 2 and 3,
respectively, such that

A(z) - Q(z) = P(z) = 2° - R(2)

for some matrix power series R. The suitable choice of the parameters is stated in Table 1,
row 2. Notice that, for any PHPA (P, Py, Ps, Py) of type (M, M,N,N),2(M +N+1),2),
the components P; and Py correspond to a column of an (M, N) right-hand matrix Padé
numerator while P, P, correspond to a column of the denominator (cf. Table 3, for left-
hand matrix Padé approximation, P;, P, and P3, P4 correspond to rows of numerator and
denominator, respectively).

Setting s =2, n = (2,2,3,3) and

F7(z) = [1.2]-[L-A(z))
_ [l,z,—l _ 4 _ 9,8 + 410 + S 12 + (’)(zlG),—z - S SN € S 1 + O(Z16)}

and using the algorithm FPHPS gives a o-basis for o = 12 (output in matrix form with
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the rows as the basis elements) as

—z—22422 0 —z—224223+4 24 0

14 2z— 22 23 14 2—222— 23 23
— 22 0 —22 4 2t 0
0 -1 0 -1+ 22

The defects for this basis are 0,0,0 and 2, respectively. Therefore a basis for the solution
space L3?, as a finite-dimensional space over K, is given by (a+b-2)-Pyja = (a+b-2) -
[0,—1,0,—1 + 2?] with @ and b being arbitrary constants. Translating the solution space
basis into matrix form implies that the columns of P and () are generated by

(a+bz)-[_01] and (a+bz)-l_10ﬂ2],

respectively. This gives a right matrix Padé form of type (2,3) for A(z) as

o= 4 2] i e[ L0, 0]

In this case, such a matrix Padé form is unique up to multiplication on the right by a
non-singular 2 X 2 matrix. In particular, notice that it is not possible to construct a right
matrix Padé fraction of type (2,3) in this instance.

The left matrix Padé forms of type (2,3) for A(z) can also be computed by the
FPHPS procedure. Setting s =2, n = (2,2,3,3) and

1

F B I I z
(Z) = —A(zz) 1Ll T 21 —Z4—228—|—210—I—O(Zl2) )
VR B Qe [ O(le)

and computing the o-basis for ¢ = 12 gives

1422 1 14222 1-—22

0 24 0 z*
—z -1 —z42z2 —1+422
0 —z 0 —z4 23

In this case the defects are 1, —1,1 and 1, respectively, so the solution space £3? is of the
form a-Pq12+b-P3i1s+ ¢ Py with a,b and ¢ arbitrary constants. Again translating
the basis information to matrix form implies that the rows of P and () are generated by

a-[-1+2*1]+b-[-2z,—1]+c-[0,—2]

and

a-[—1—|—2z2,1—z2]—|—b-[—z—|—z3,—1—|—z2]—|—c-[0,—z—|—z3]
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respectively. Unlike the previous example, there 1s not one Padé form that is unique up
to left multiplication by a nonsingular matrix of scalars. One possibility for a left matrix
Padé form in this case is

—z _1 _Z_I_Z3 _1_|_Z2
P(z):[—Hz? 1] and Q(z):l—1+2z2 1— 22

Notice that the denominator has a non-zero determinant, indeed that (0) is non-singular.
Therefore, unlike the case for approximants on the right, one can always form the rational
expression Q(z)~! - P(z).

Using the algorithm FPHPS in the above example also determines, at no added cost,
the o-basis for £*, and £3,. Hence the right matrix Padé forms of type (0,1)

o=y 1] e ]

and (1,2)

ro=[ 3 4], eo-[ 17 L]

(determined uniquely up to matrix multiplication on the right in both cases) are by-
products of the previous computation. In addition, one can continue the computation to
determine the matrix Padé form of type (3,4) since the o-basis for £3* can be used to
determine the o-basis for £1°. In the case of the right matrix Padé form of type (3,4)
this gives (again unique up to matrix multiplication on the right)

P(2) 0 14 2/5+11/52% +4/528
| =22 1/5—2/5z + 2° ’

0(2) = 0 1+ 2/5+6/52% +3/52°> —16/52*
T 24 15— 252+ 1/522 4+ 7/52° |

an example where the denominator matrix polynomial () is nonsingular but has a singular

leading term Q(0).

Our example shows that, in general, the matrix Padé approximation problem does not
have a unique rational solution like in the scalar case. Moreover, there are three distinct
and possible forms of a denominator matrix polynomial (). First, the case occurs when
((z) is singular for all z and hence no matrix rational form exists, this type of degeneracy
is not found in the scalar case. Secondly, it is possible that Q(0) is non-singular (cf.
Corollary 4.2(a),(b) and the following remarks). Here we can form P(z) - Q(z)™' and
its matrix power series agrees with A(z) to the full order condition. Finally, if Q(z) is
non-singular for some z but @(0) is singular, we can cancel P and ) by a common matrix
polynomial factor on the right. Here, similarly to the degenerate case found in scalar Padé
approximation, the resulting matrix rational form P(z) - Q(z)™! does not agree anymore
with A(z) to the full order condition.
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Note that the concept as proposed in Corollary 4.3 (2A = 2s = m) always leads to
a matrix Padé-like form with correct degree and maximal order [ﬂjl] (perhaps less than
(M + N + 1) as required for matrix Padé approximants) where by forming the rational
function P(z) - Q(z)~" we do not obtain an additional order deflation. In fact one can
show that there is no other rational function of the form P(z) - Q(z)™! satisfying the
degree constraints and having an order greater than [@]

6 A superfast PHPA solver

In Section 4 we have shown that algorithm FPHPS computes a o-basis with quadratic
complexity. This is better than using methods such as Gaussian elimination and is op-
timal in special cases for arbitrary fields IK. However, when the field IK allows for fast
polynomial multiplication via the use of the FFT (cf. [15]) then there are faster methods
in special cases. For example, when s = 1 and m = 2 (i.e. the case of Padé approximation)
the algorithms of Brent, Gustavson and Yun [9] and Cabay and Choi [10] compute these
approximants with the superfast complexity O(olog® ¢). Similarly, a recent algorithm of
Cabay and Labahn [12] also solves the Hermite Padé and simultaneous Padé problems
with superfast complexity. In this section we describe a second algorithm that takes
advantage of fast polynomial multiplication when solving the PHPA problem. The new
algorithm has the advantage of always being superfast - the algorithm of [12] sometimes
slows down to quadratic or even cubic complexity (if most of the subproblems of type
n(d), 6 < 0 do not have a unique solution) although in practical problems this is rare.

Algorithm FPHPS of Section 3 provides a o-basis Py, ..., P,, with respect to given F,
n and o (and a fixed parameter s). For convenience, we arrange the P; = (Pr1,..., Piy)
in a matrix P = (Pl7>\)l'\::117f::;;n. Then with d := (d1,...,dn), d :== det P; — 1, we can
symbolize the procedure as follows

(P,d) «— FPHPS (F,0,n).

Note that, in general, the choice of 7, and therefore the output of FPHPS is not unique,
but uniqueness could be easily obtained for instance by the additional restriction that n,
has to be as small as possible.

The basic step of a divide-and-conquer version is described in the next Theorem.

Theorem 6.1. Let p, o be integers with 0 < p < o. Suppose that we have iterated
p < o times the recursive step of FPHPS

(PW, A"y «— FPHPS(F,p,n),
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and then continue iterating
(P® d®) «— FPHPS(F,o,n).
Suppose further that we restart the procedure with new initializations
(P d®) «— FPHPS(FY, o — p,dV), where FM(z) := 277 . PW(2*) . F(2),
where we always use the above uniqueness condition for the values n,. Then

P® — P@.PWY  aud d® = 3@,

Proof: ~ We show Theorem 6.1 by induction on (¢ — p). Extending our notation
slightly, set
(PW,dW) = (PW dW), (PV® d®) = (P® d®), (p(2) d(2)p) = (P®,d®).

p 0P o o o—p) So—

Note that the Theorem is trivially true for ¢ — p = 0. Assume now that the result is true
for 0 — p > 0. Then
PO and d® =d%?,. (15)

p

PO — p®

a—p P

Consequently, the corresponding s-residuals
RO (z) =277 -PP¥(2*) . F(z) and R((,2_)p(z) =zt P((,Z_)p(zs) -FW(z)

are equal. Hence in both cases we have to take the same value « and the assertion (15)
with o replaced by (¢ + 1) follows. O

The basic step of a divide-and-conquer version (15) yields the Superfast Power Her-
mite Padé Solver SPHPS, a reliable algorithm for computing a o-basis of PHPA’s with
complexity O(a -log® o). The reason for the improvement in complexity results from the
use of Fast-Fourier-Transform (FFT) techniques for fast polynomial multiplication. Such
techniques consist of converting to a new coordinate representation via polynomial evalu-
ation at roots of unity, computing the arithmetic operations in these new coordinates and
transfering the results back to the original computation domain via polynomial interpo-
lation. For purposes of efficiency we describe our superfast algorithm in both coordinate
representations. Hence we will require some FFT details needed for our implementation.
Additional details of the FFT procedure can be found in many texts (cf., [15]).

Let w, be the principal sth root of unity (for example, if K is the complex numbers
then w, = cos(%”) +4- sin(%”)) and let

(&)i=0,....26-1 — DFTou(p(2))

denote the evaluation of ¢; := p(wg,i), J =0,...,26 — 1. Then for the classical discrete
FFT-algorithm we split p into its even and odd part p(z) = p.(2?) + 2 - p,(2?) and use the
fact that for j = 0,...,k — 1 we have

fj = fj(.e) + wgm . gj(.o) and €m+j = fj(.e) — ng . gj(.o)
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veey

polynomial interpolation computation of

p(2) «— IDFT,(()j=o,..n—1);

i.e. of the uniquely defined polynomial p of degree less than s with ¢; := p(wi), j =
0,...,k—1, 1s done by

p(z) = Z_) £;2"77 (€)i=0,..n1 —— DFTL(p(2)), then p(z) = % DN,

Polynomials are multiplied componentwise in the new coordinates, that is, if

(€)=
(f;z))jzo,...,n—l — DFTR(Pz

P (2) ¢— IDFT((§" - &)i=0,..m1).

§=0,..,k—1 DFTR(p].

and if ¢ denotes the leading coefficient of p;(z) - p2(2), then

Pz = p(z)-p?(2) mod 2
0 if de ((1)- (2))<h”,
R CO RN ¢ ) g\p P ’
= r(z)p (Z)+{ —c- 2%+ ¢ if deg (ptM) - p@) = k.

For k a power of two, the complexity of converting to the new coordinate representation
and back again (via either DFT, or IDFT,) is at most 3 - & -log & + O(x) multiplications
and k-log k + O(x) additions (the logarithm taken with respect to the basis 2). Therefore
the polynomial multiplication is of complexity O(x - log k).

In the SPHPS algorithm, we use the notations: e; is the lth unit vector, I the unit
matrix of size (m x m) and {E;‘io cjzj} = E';;& c;z? denotes a truncated power series.
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ArcoriTHM SPHPS (F,0,k,n)

INPUT: o,k € Ny, with ¢ <k =2* for a k € N,
n = (ny,...,Ny), vector of integers,
F = (f1,..., fm)T vector of truncated power series,

1.e. of polynomials of degree less than &,

Let G € IK™*’[z] be defined by F(z) = G(2*) - (1, z,. ..

OutpuT: P, ¢ and d where:
d = (di,...,dn), vector of integers,
P = (PL,\);‘::ll’f::;;qT, consisting of rows

Pl = (Pl,la ceey Pl,m) with det Pl = dl + 1,
deg Py < k and for I # X: deg Py < &,

foralld € Z: LT ={a;P1+ ...+ Py, : deg oy < dy + 6}

& =(&)j=0,. 261, €ach & an m by m matrix,

(&)i=0,....26-1 ¢— DF T3, (P(2))
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THE RECURSION:

CASE (0 =0and Kk > 1) OR (6 =k =1 and f1(0) =... = £,(0) = 0):
RETURN (P, ¢,d) = (L(L...,I),n)
2K

CASE 0 =k =1, f(0) # 0 and for all [ with n; > n,: f;(0) = 0:
1 —f1(0)/ f=(0) ]

L —fr1(0)/fx(0)

P+ z

_fﬂ-l-l(o)/fﬂ(o) 1
L _fm(o)/fﬂ(()) 1

RETURN (P,¢,d) = (P, (P(1),P(=1)),n — e,)

CASE 0 > 1 and & > 1: (Divide-and-Conquer step)

Compute basis to order /2:

R+ k)2, +— min{o,®}; FO(2) «— {F(2)}x

(PW ¢W dW) «— SPHPS (F), 7, %, n)
Compute basis to order :

(1)i=0..es —— DFTL(G(2))

GO®(2) «— IDFTL((E - 1)i=0..n1)

FO(2) «— {z7F.GO(2*)- (1,2,...,22 Y }x

(P@, ¢, d®@) «— SPHPS (F®, 0 — 7,5, dWY)
Combine both parts:

fgj) %f;z) -é’;l) fory=0,1,...,k—1

PO)(2) ¢— IDFTo((3)j=0...x1)

If deg Pl(Jl) = deg Pl(j) = &, then PZE?)(Z) — Pl(j’)(z) — 1420

(&341)i=01,.. 51— DFT, (P (@i - 2))
RETURN (P,¢,d) = (P®,¢®),d®)

Consider now the problem of determining the complexity of the SPHPS algorithm.
For simplicity, we still impose the conditions before Theorem 4.1 (otherwise, the complex-
ity will be still smaller). As seen in Section 2, in most applications one has to determine

o-bases of PHPA’s for o ~ ||n||.
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Theorem 6.2. (Complexity) The algorithm SPHPS for computing PHPA’s of

order o has a complexity of at most

g-(m—l—s)-m-0-10g20+(’)(0-10g0)AO, (16)

roughly half multipications as additions.

Proof:  Let ®4(k) and ®p(x) denote the number of additions/subtractions and
multiplications/divisions required for algorithm SPHPS with parameter «, respectively.
We easily obtain ®4(1) < 1 and ®(1) < m — 1. Moreover, in the last case we call the
subroutines DF'T,, or IDFT, at most 2(m + s)m times, hence

Du(r) <2-Dy(k/2)+2-(m+s)-m-k-logk+ O(k)

and

Pu(k) <2-Pp(K/2)+ (m+s)-m-k-logk+ O(k).
This gives the complexity result. O

We remark that, as was the case with method FPHPS, the complexity will be even less
for some special cases. For example, for simultanecous Padé approximation, this number
will be smaller if one carefully checks whether some entries of the matrix G always equal
zero or 1.

7 Conclusions

In this paper we have studied the concept of a Power Hermite Padé Approximant. These
approximants are shown to generalize a number of Padé approximation problems including
for example the classical Hermite Padé and simultaneous Padé approximation problems as
well as matrix-type generalizations of common Padé approximation problems. A fast (and
also a superfast), reliable algorithm to compute these approximants is given. In this way
our work provides a uniform method of both describing and computing a wide variety of
Padé and matrix-Padé approximation problems. As an immediate application, our work
results in new and faster algorithms for a number of problems that rely on matrix-type
Padé computation. For example our algorithms, used in conjunction with the results
of [17] gives faster algorithms for the inversion of striped or layered block Hankel (or
Toeplitz) matrices. Similarly the same algorithms combined with the results of [18] give
similar improvements for the inversion of rectangular-block Hankel (or Toeplitz) matrices.

There are a number of directions for new research in this area. Our algorithm follows
an m-dimensional “diagonal” path. In special cases, however, fast, reliable algorithms are
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given (cf., [4]) that can succeed on arbitrary staircase paths in m-dimensional space. The
methods of [4] could also be extended to compute the more general PHPA’s on arbitrary
staircase paths, leading to a method with smaller complexity (cf., [26]).

Our algorithm does not consider the problem of stability when the computations are
to be done with floating point numbers. Recently Cabay and Meleshko [13] have presented
a (weakly) stable algorithm for the case s = 1 and m = 2. We conjecture that such an
algorithm is also possible for the PHPA problem with arbitrary s and m, though not
necessarily using the same approach as used in this paper. Our algorithm assumes exact
arithmetic and has been implemented in the Maple computer algebra system. However
it does not consider the problem of exponential growth of the coefficients resulting in our
computations. It would be of interest to extend our algorithm to this case. This would
be done by restricting IK to be an integral domain rather than a field and perhaps using
fraction-free methods similar to that used for solving polynomial ged problems (cf., [15]).

Finally, the concept of a PHPA is a scalar generalization of a Hermite-Padé ap-
proximant used to solve matrix-like Padé approximation problems. As shown in [5] this
concept also allows, for example, for a description of the structures in a singular PHPA
solution table by adapting the scalar techniques of [3]. For matrix-like rational inter-
polation problems (with arbitrary knots), a common framework is given by the vector
M-Padé approximation as a canonical extension of Example 2.5 (see [26]). In contrast, we
are interested in a scalar generalization of the M-Padé approximant which can be used for
simple, fast and efficient algorithms, and which — following [3, 5] — might also be help-
ful for obtaining results about the structure of the singular matrix rational interpolation
table.
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