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Abstract

In a recent paper [7], the authors develop a fast, iterative, look-ahead algorithm for
numerically computing Padé-Hermite systems and simultaneous Padé systems along
a diagonal of the associated Padé tables. Included in [7] is a detailed error analysis
showing that the algorithm is weakly stable. In this paper, we describe a Fortran im-
plementation, VECTOR PADE, of this algorithm together with a number of numerical
experiments. These experiments show that the theoretical error bounds obtained in [7]
reflect the general behavior of the actual error, but that in practice these bounds are
large over-estimates.

Categories and Subject Descriptors: G.1 [Numerical Analysis]: G.1.2 Approximation
Theory - Rational approximation; G.1.3 Numerical Linear Algebra - Error analysis, linear
systems, matrix inversion

General Terms: Algorithms, experimentation

Additional Key Words and Phrases: Padé-Hermite approximants, simultaneous Padé
approximants, Sylvester matrix, Toeplitz matrix, Hankel matrix, numerical stability

1 Introduction

Let At(z) = [a0(z), . . . , ak(z)], k ≥ 1, with

aβ(z) =
∞∑

`=0

a
(`)
β z`,
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be a vector of formal power series over the real numbers with a
(0)
0 6= 0 and let n = [n0, . . . , nk]

be a vector1 of integers with nβ ≥ 0, 0 ≤ β ≤ k. A Padé-Hermite approximant of type n
for A(z) is a nontrivial vector [q0(z), . . . , qk(z)] of polynomials qβ(z) over the real numbers
having degrees at most nβ, 0 ≤ β ≤ k, such that

a0(z)q0(z) + · · ·+ ak(z)qk(z) = O(z‖n‖+k) (1)

with ‖n‖ = n0+ . . .+nk. A simultaneous Padé approximant of type n for A(z) is a nontrivial
vector [q∗0(z), . . . , q

∗
k(z)] of polynomials q∗β(z) over the real numbers having degrees of at most

‖n‖ − nβ, 0 ≤ β ≤ k, such that

q∗0(z) · aβ(z) + q∗β(z) · a0(z) = O(z‖n‖+1), (2)

for β = 1, · · · , k. For the special case At(z) = [−1, a(z)], the Padé-Hermite and the si-
multaneous Padé approximation problems each become the classical Padé approximation
problem for a(z). Padé-Hermite approximation also includes other classical approximation
problems such as algebraic approximants with At(z) = [1, a(z), a2(z), . . . , ak(z)] (e.g. [13] for
the special case k = 2) and G3J approximants with At(z) = [1, a(z), a′(z)]. Simultaneous
Padé approximants were first used by Hermite in 1873 in his famous proof of the transcen-
dence of e. Additional examples, along with historical motivations and applications of these
approximants, can be found in numerous references (cf., [1, 7, 10, 14]).

By equating coefficients in (1) and (2), the problem of computing a Padé-Hermite or
simultaneous Padé approximant of type n becomes that of solving some systems of linear
equations of order O(‖n‖). As such, one can use Gaussian elimination to solve this problem
with a complexity of O(‖n‖3) operations. However, the coefficient matrix of the correspond-
ing linear systems has a structured form so it is not surprising that there are a number of
fast O(‖n‖2) methods (cf., [14, 7, 10]) and superfast O(‖n‖ log2 ‖n‖) (cf., [3, 9]) methods for
determining these approximants. However, unlike the Gaussian elimination method, which is
weakly stable (in the class of problems involving these structured matrices) [5], the fast and
superfast methods, with one exception, can encounter problems with numerical instabilities.
The exception, for general k, is the algorithm VECTOR PADE described in [7], which is
proven there to be weakly stable.

The primary focus of this paper is the numerical experimentation with a Fortran imple-
mentation of the VECTOR PADE algorithm. This algorithm is a look-ahead procedure that
iteratively computes the approximants at all the “well-conditioned points” along a piece-wise
diagonal path passing through the point n. In the case of the classical Padé approximation
problem (k = 1), the algorithm reduces to the Cabay-Meleshko algorithm [11].

The paper is organized as follows: §2 and §3 give a summary of those results obtained
in [7] that are relevant to this discussion, including the basic iterative step in the VEC-
TOR PADE algorithm. The results of the numerical experiments, which confirm the weak
stability of the algorithm, are discussed in §4. This section also includes a discussion of some
practical error bounds that are seen to be much better than those obtained theoretically in
[7]. Some concluding remarks are made in §5. The paper has two appendices. Appendix A
gives a detailed example of how VECTOR PADE advances the computation of approximants

1Zero subscripting is used here and in the remainder of this presentation.

2



along the diagonal path from one well-conditioned point to the next. Appendix B gives an
upper bound for a stability parameter that is central to the operation of VECTOR PADE
and to the error bounds.

2 Multi-dimensional Padé Systems

In this section, we review some basic results from [7], which gives the VECTOR PADE
algorithm and a detailed error analysis. The analysis provides some insight into the behavior
of the algorithm and is used in particular to show that it is weakly stable.

The VECTOR PADE algorithm actually computes numerical Padé-Hermite and simul-
taneous Padé systems (denoted by NPHS and NSPS, respectively) rather than just the
respective approximants. For k+1 power series, these systems are square matrix polynomi-
als of order k + 1 which can be partitioned into their respective Padé approximants along
with weakened versions of these approximants (cf., [10]). The NPHS and NSPS are defined
in a way similar to their corresponding approximants in that they are required to satisfy an
order condition, a set of degree bounds and a non-singularity condition.

An NPHS of type n is represented by

S(z) =




z2p(z) u1(z) · · · uk(z)
z2q1(z) v1,1(z) · · · v1,k(z)

...
...

...
z2qk(z) vk,1(z) · · · vk,k(z)



,

where, for 1 ≤ α, β ≤ k,

p(z) =
n0−1∑

`=0

p(`)z`, uβ(z) =
n0∑

`=0

u
(`)
β z`,

qα(z) =
nα−1∑

`=0

q(`)
α z`, vα,β(z) =

nα∑

`=0

v
(`)
α,βz

`.

The order condition for a NPHS S(z) of type n, in the case of floating point arithmetic, is
given by

At(z) · S(z) = z‖n‖+1T t(z) + δT t(z) (3)

with T t(z) the residual vector of power series and δT t(z) a vector of small error terms
(δT t(z) = 0 using exact arithmetic). The non-singularity condition requires that, for
1 ≤ α, β ≤ k,

v
(0)
α,β =

{
γβ 6= 0, α = β
0, α 6= β

and, in addition, that [T t(0)]0 = γ0 6= 0.
Only the first column of S(z) gives a Padé-Hermite approximant as defined in §1, this

being of type [n0 − 1, . . . , nk − 1]. The remaining columns S(z) do not quite satisfy the order
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condition (1) and are therefore not Padé-Hermite approximants; these columns serve primar-
ily to facilitate the computation of the first column using the algorithm VECTOR PADE
described briefly in §3. But there are other uses for these columns of S(z), such as that of
expressing the inverse of a striped Sylvester matrix [6, 8]. Note that a Padé-Hermite approx-
imant of type [n0 − 1, . . . , nk − 1] satisfying (1) requires terms of At(z) up to and including
z‖n‖−2 only, whereas the NSPS of type n satisfying (3) requires terms up to and including
z‖n‖. So, to compute a Padé-Hermite approximant of type [n0 − 1, . . . , nk − 1] using VEC-
TOR PADE, the user may first have to manufacture artificial and arbitrary values for the
coefficients of z‖n‖−1 and z‖n‖ in At(z).

An NSPS of type n is represented by2

S∗(z) =




v∗(z) u∗1(z) · · · u∗k(z)
z2q∗1(z) z2p∗1,1(z) · · · z2p∗1,k(z)

...
...

...
z2q∗k(z) z2p∗k,1(z) · · · z2p∗k,k(z)



,

where, for 1 ≤ α, β ≤ k,

v∗(z) =
‖n‖−n0∑

`=0

v∗(`)z`, u∗β(z) =
‖n‖−nβ∑

`=0

u
∗(`)
β z`,

q∗α(z) =
‖n‖−n0−1∑

`=0

q∗(`)α z`, p∗α,β(z) =
‖n‖−nβ−1∑

`=0

p
∗(`)
α,β z

`.

The order condition for a NSPS S∗(z) of type n has a similar form except that multiplication
is on the right rather than the left; namely,

S∗(z) · A∗(z) = z‖n‖+1T ∗(z) + δT ∗(z) (4)

with A∗(z) given by

A∗(z) =




−a1(z) · · · −ak(z)
a0(z)

. . .

a0(z)



.

The non-singularity condition requires that, for 1 ≤ α, β ≤ k,

[T ∗(0)]α,β =

{
γ∗β 6= 0, α = β
0, α 6= β

and, in addition, that v∗(0) = γ∗0 6= 0.
Only the first row of S∗(z) is a simultaneous Padé approximant as defined in §1, this

being of type n. The remaining rows S∗(z) do not quite satisfy the order condition (2) and

2For notational convenience, in [8], the z2 terms in the last k rows of S∗(z) are replaced by z and, similarly,

the z2 terms in the first column of S(z) are replaced by z.
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are therefore not simultaneous Padé approximants; these rows serve primarily to facilitate
the computation of the first row using VECTOR PADE.

One of the main reasons for working with Padé systems rather than approximants is
their relation to the linear systems of equations associated with (1) and (2). A Padé-Hermite
system of type n with the non-singularity conditions above exists if and only if the coefficient
matrix, a generalized striped Sylvester matrix

Mn =




a
(0)
0 a

(0)
k

. . . . . .
... a

(0)
0 · · ·

... a
(0)
k

...
...

a
(‖n‖−1)
0 · · · a

(‖n‖−n0)
0 a

(‖n‖−1)
k · · · a

(‖n‖−nk)
k




, (5)

of the linear system generated by equation (1) is nonsingular. Similarly, a simultaneous Padé
system of type n with the non-singularity conditions above exists if and only if the coefficient
matrix of the linear system generated by equation (2) is nonsingular. The coefficient matrix
is now a certain mosaic Sylvester matrix

M∗
n =




S∗0,1 · · · S∗0,k
...

...
S∗k,1 · · · S∗k,k


 , (6)

where, for 1 ≤ β ≤ k,

S∗0,β = −




a
(0)
β · · · a

(‖n‖−1)
β

. . .
...

a
(0)
β · · · a

(nα)
β




and, for 1 ≤ α ≤ k,

S∗α,α =




a
(0)
0 · · · a

(‖n‖−1)
0

. . .
...

a
(0)
0 · · · a

(nα)
0




and the remaining S∗α,β = 0. In addition, the inverses of these matrices are completely
determined by the components of the two Padé systems [8].

In the case of exact arithmetic, the above observations lead to an efficient, iterative
algorithm [10] for computing all the nonsingular Padé systems along a particular path of the
corresponding Padé tables. The success of the algorithm depends on the ability to recognize
nonsingular systems and is provided by the non-singularity condition above. In the case of
floating-point arithmetic, it is necessary instead to be able to recognize situations where the
associated Sylvester matrices are unstable. The central result of [8] gives the quantity (called
the stability parameter)

κ =
k∑

β=0

1

|γβ · γ∗β|
(7)

as the estimate of the condition number of these matrices.
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3 The Algorithm

Let τ be a fixed number, the stability tolerance set by a user. For the point n, let

N = min
{
n0, max

1≤β≤k
{nβ}

}
+ 1,

and define integer vectors n(i) = (n
(i)
0 , . . . , n

(i)
k ) for 0 ≤ i ≤ N by n(0) = e0 = [1, 0, . . . , 0]

and, for i > 0,

n
(i)
β = max{0, nβ − N + i}, β = 0, . . . , k.

Then the sequence {n(i)}i=0,1,... lies on a piecewise linear path with n
(i+1)
β ≥ n

(i)
β for each i, β

and n(N) = n. A subsequence {m(σ)}i=0,... of {n
(i)} is called a sequence of stable points

for A(z) and A∗(z) if at each point m(σ) = n(iσ), with i0 = 0 and iσ+1 > iσ, the stability
criterion κ(σ) < τ is satisfied (κ(σ) is the stability parameter (7) computed from the NPHS
and NSPS of type m(σ)).

A single iteration of the algorithm is given as follows. Assume that S(z) and S∗(z) are
the NPHS and NSPS, respectively, of type m(σ) (when σ = 0, S(z) = S∗(z) = I, the identity
matrix) and that m(σ) is iσ units from the start (i.e., m(σ) = n(iσ)). Let T (z) and T ∗(z) be
the residuals of S(z) and S∗(z), respectively, and initialize j = 1.

• Step 1: Let ν(j) = n(iσ+j) − m(σ) − e0 and compute these residuals T (z) and T ∗(z)
up to order ‖ν(j)‖. Use the Gaussian elimination method to triangulate the Sylvester
matrices M̂ν and M̂∗

ν associated with T (z) and T ∗(z), respectively, to determine the
NPHS Ŝ(z) and SPS Ŝ∗(z) of type ν(j) for the residuals.

• Step 2: Compute the products S(z) · Ŝ(z) and Ŝ∗(z) · S∗(z). These are, respectively,
the NPHS of type n(iσ+j) for A(z) and the NSPS of type n(iσ+j) for A∗(z). Scale the
products so that each column of the NPHS and each row of the NSPS has norm 1 (the
norms used for this scaling are given in the next section).

• Step 3: Compute the stability parameter from the scaled NPHS and NSPS of type
n(iσ+j). If the stability parameter κ(σ+1) computed from the scaled NPHS and NSPS
of type n(iσ+j) is less than the stability tolerance τ , then the iterative step is complete
and we set m(σ+1) = n(iσ+j). Otherwise increment j by 1 and go to Step 1.

The algorithm fails when the associated Sylvester matrices at the last point, n, are
numerically singular.3 Nevertheless, in this case, VECTOR PADE still computes a Padé-
Hermite approximant (the first column of S(z)) of type (n0 − 1, . . . , nk − 1) satisfying (1)
except for a “small” residual error, and a simultaneous Padé approximant (the first row of
S∗(z)) of type n satisfying (2) except for a “small” residual error. When the associated
Sylvester matrices at the last point n are not numerically singular, the algorithm succeeds
in computing a NPHS and a NSPS even in the case when the stability criterion at n is not
satisfied. In this latter case, there may be a large error in the solutions, but the residual
errors are known to remain “small”.

3By numerical singularity, we mean that a zero pivot element is encountered during the triangular de-

composition process of Gaussian elimination with partial pivoting.
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4 Theoretical versus Experimental Results

Numerous numerical experiments have been performed to compare the analysis of the al-
gorithm [7] with its practice. These experiments were performed on a “SPARCCompiler
Fortran 4.0 for Solaris 2.x and 1.x” implementation of the algorithm VECTOR PADE. All
calculations were performed in double precision with unit error µ = 2−56. The linear sys-
tems arising at intermediate steps of the algorithm were solved using the LINPACK routines
SGEFA and SGESL. The results were then compared with more accurate answers, obtained
via the Maple computer algebra system using 50 decimal digits of precision.

Tables 1, 2 and 3 summarize the results of experiments with one particular vector of
power series. These results are typical of numerous other experiments which were performed
but which are not reported here. The coefficients of the power series used in the experiments
were randomly and uniformly generated with values between −1 and 1 and then modified
so as to introduce some pronounced instabilities. To introduce an instability at m(σ+1), the
coefficients of aβ(z), 1 ≤ β ≤ k, were modified to make almost dependent the columns of the

coefficient matrix M̂ν(σ) corresponding to the residual T (z) at the point m(j). The power
series were then scaled.

The tables give results at all intermediate points along the diagonal passing through a
specified point n. These results include the errors in the solutions δS (σ)(z) = S(σ)(z)− S

(σ)
E (z)

and δS∗(σ)(z) = S∗(σ)(z)− S
∗(σ)
E (z) (where the subscript E denotes the “exact” solution, ob-

tained using MAPLE) and the corresponding residuals errors δT (σ)t(z) and δT ∗(σ)(z), re-
spectively, at the point m(σ). In Tables 1 and 2, for purposes of comparison, also given are
the errors δS

(σ)
G (z) = S

(σ)
G (z)− S

(σ)
E (z) and δS

∗(σ)
G (z) = S

∗(σ)
G (z)− S

∗(σ)
E (z) in the solutions

obtained directly by the Gaussian elimination method using the LINPACK routines SGEFA
and SGESL. Since the input power series as well as S

(σ)
E (z) and S

∗(σ)
E (z) are scaled, these also

give the relative errors. The floating-point entries in the tables are represented in scientific
notation with two digits of accuracy and with the exponent enclosed in parenthesis.

The caption in each table specifies the stability threshold τ used for the experiment.
This threshold indicates a willingness to accept only those striped Sylvester matricesMm(σ)

and mosaic Sylvester matrices M∗
m(σ) with condition numbers less than τ (i.e., those for

which κ(σ) ≤ τ). Striped and mosaic Sylvester matrices not satisfying this criterion are
assumed to lie in an unstable block and are skipped over. An unstable point is identified by
the value “-” in the column labelled “σ”.

Tables 1 and 2 give the results of identical experiments but with different stability
thresholds τ . The value τ = 109 in Table 2, as opposed to τ = 105 in Table 1, permits a
much greater tolerance for ill-conditioning and results in an expected deterioration in the
accuracy. A comparison of the results of these two tables illustrates the efficacy of the
look-a-head strategy of the algorithm in stepping over instabilities.

Table 3 gives the results of the same experiment as in Table 2 with the exception that
a

(0)
0 has been changed so that ‖a0(z)(mod z‖n‖+1) = 2.7 in Table 2 becomes 8.2 × 1014 in

Table 3. These two tables illustrate the deterioration of the accuracy of results obtained by
VECTOR PADE as the size of the inverse of a0(z) increases.

In order to compare the results presented in these tables with theoretical ones, we
now briefly summarize the errors bounds derived in [7]. Denote the last stable point prior
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σ κ(σ) κ

(
M

m(σ)

)
κ(M∗

m(σ)
) ‖δT (σ)t(z)‖ ‖δS(σ)(z)‖ ‖δS

(σ)

G
(z)‖ ‖δT∗(σ)(z)‖ ‖δS∗(σ)(z)‖ ‖δS

∗(σ)

G
(z)‖

1 3.2 - - 0.0 9.8(-17) 9.8(-17) 6.9(-18) 7.6(-17) 7.6(-17)

2 3.9(3) 2.8(2) 3.8(2) 1.5(-17) 7.1(-17) 8.7(-17) 1.7(-17) 4.7(-16) 2.7(-16)

3 3.7(3) 4.6(2) 5.9(2) 3.6(-17) 6.6(-16) 3.5(-16) 2.5(-17) 2.9(-15) 4.8(-16)

4 7.7(3) 6.3(2) 8.2(2) 1.0(-16) 5.7(-15) 2.6(-16) 3.6(-17) 2.7(-15) 5.8(-16)

- 6.4(14) 1.3(8) 1.3(8) 1.1(-16) 1.0(-14) 5.2(-16) 4.5(-17) 3.6(-10) 6.8(-11)

5 1.1(4) 1.1(3) 1.2(3) 9.3(-17) 1.5(-14) 1.7(-15) 5.7(-17) 8.4(-15) 1.5(-15)

- 3.8(5) 1.0(4) 8.2(3) 9.2(-17) 1.3(-14) 6.1(-16) 4.1(-16) 2.0(-14) 2.8(-15)

6 1.1(4) 1.1(3) 1.1(3) 1.1(-16) 8.5(-15) 6.9(-16) 4.2(-16) 2.2(-14) 1.4(-15)

- 1.3(14) 9.6(7) 1.3(8) 1.1(-16) 2.1(-14) 6.2(-16) 2.1(-16) 8.2(-10) 3.2(-11)

7 3.9(4) 1.6(3) 2.0(3) 1.2(-16) 7.7(-15) 1.2(-15) 4.2(-16) 3.5(-14) 2.8(-15)

- 3.8(8) 3.6(7) 3.4(7) 9.4(-17) 3.2(-11) 2.1(-11) 4.3(-16) 5.1(-10) 5.0(-11)

- 1.9(9) 1.2(8) 1.3(8) 8.9(-17) 1.7(-10) 1.9(-10) 4.1(-16) 7.1(-10) 3.9(-10)

- 1.1(15) 9.8(8) 1.5(9) 9.0(-17) 2.7(-10) 1.4(-10) 4.0(-16) 2.8(-9) 8.3(-10)

- 1.3(9) 9.1(7) 1.2(8) 9.2(-17) 1.9(-10) 6.2(-11) 4.5(-16) 1.0(-9) 5.9(-11)

- 2.1(5) 9.7(3) 8.0(3) 3.3(-16) 6.2(-14) 1.5(-15) 4.4(-16) 3.5(-14) 5.2(-15)

8 3.0(4) 2.4(3) 2.7(3) 3.2(-16) 6.9(-14) 2.8(-15) 4.2(-16) 4.9(-14) 3.7(-15)

- 1.4(13) 7.9(7) 8.4(7) 3.2(-16) 2.3(-13) 5.8(-15) 5.1(-16) 6.9(-10) 1.1(-10)

9 6.4(4) 6.5(3) 7.6(3) 5.4(-16) 7.6(-13) 9.5(-15) 6.0(-16) 2.1(-13) 1.6(-14)

- 2.3(5) 1.4(4) 1.2(4) 5.5(-16) 5.3(-13) 9.7(-15) 2.3(-15) 4.6(-13) 7.1(-15)

- 1.9(9) 4.4(7) 9.2(7) 6.0(-16) 6.5(-10) 1.5(-11) 4.3(-15) 1.4(-8) 1.2(-10)

- 1.8(14) 1.2(8) 2.8(8) 6.2(-16) 2.9(-9) 1.2(-10) 2.9(-15) 7.8(-9) 9.8(-11)

10 6.1(4) 4.9(3) 4.4(3) 5.5(-16) 2.1(-13) 3.8(-15) 2.3(-15) 8.1(-13) 2.3(-14)

- 1.6(13) 3.2(7) 4.2(7) 2.2(-16) 1.9(-13) 3.3(-15) 1.4(-15) 6.7(-10) 1.9(-11)

11 8.9(4) 2.7(3) 3.3(3) 7.1(-16) 9.7(-14) 3.5(-15) 2.5(-15) 4.0(-13) 7.5(-15)

- 3.9(12) 2.6(7) 2.5(7) 2.7(-16) 1.3(-13) 4.2(-15) 3.8(-15) 1.7(-9) 8.1(-11)

12 7.7(4) 3.7(3) 3.9(3) 1.2(-15) 2.8(-13) 3.7(-15) 3.3(-15) 9.6(-13) 8.1(-15)

13 4.3(4) 2.1(3) 2.8(3) 2.0(-15) 1.0(-13) 1.6(-15) 4.2(-15) 1.4(-12) 1.0(-14)

14 9.3(4) 2.4(3) 5.2(3) 2.1(-15) 1.8(-13) 3.9(-15) 5.3(-15) 6.6(-12) 7.6(-15)

15 9.0(4) 3.6(3) 6.0(3) 2.5(-15) 1.5(-13) 4.4(-15) 8.1(-15) 1.8(-11) 1.6(-14)

16 8.7(4) 3.6(3) 7.9(3) 3.0(-15) 2.6(-13) 1.7(-15) 7.6(-15) 7.4(-12) 2.4(-14)

17 1.1(4) 8.0(2) 2.0(3) 4.7(-15) 4.5(-13) 1.5(-15) 6.5(-15) 1.5(-12) 2.8(-15)

18 2.9(4) 1.4(3) 3.2(3) 5.6(-15) 5.6(-13) 2.0(-15) 1.1(-14) 2.1(-12) 5.8(-15)

19 2.4(4) 2.4(3) 4.5(3) 5.5(-15) 4.0(-13) 4.0(-15) 1.8(-14) 7.6(-12) 1.1(-14)

20 6.0(4) 1.0(4) 1.2(4) 6.1(-15) 3.5(-13) 3.0(-15) 1.8(-14) 6.8(-12) 6.1(-15)

21 1.2(4) 3.7(3) 3.2(3) 5.8(-15) 3.0(-13) 2.3(-15) 1.7(-14) 4.1(-12) 5.8(-15)

22 6.5(3) 1.8(3) 1.3(3) 6.7(-15) 6.7(-13) 2.0(-15) 1.6(-14) 9.5(-13) 2.5(-15)

- 6.9(5) 3.8(4) 1.7(4) 4.9(-15) 6.4(-12) 3.4(-15) 2.5(-14) 1.1(-12) 2.5(-15)

23 3.2(4) 9.9(3) 3.4(3) 8.7(-15) 7.8(-12) 6.0(-15) 3.2(-14) 8.3(-12) 1.1(-14)

Table 1: k = 2; n = (37, 37, 37); ‖a−1
0 (z)(mod z‖n‖+1)‖ = 2.7(1); τ = 105
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σ κ(σ) κ

(
M

m(σ)

)
κ(M∗

m(σ)
) ‖δT (σ)t(z)‖ ‖δS(σ)(z)‖ ‖δS

(σ)

G
(z)‖ ‖δT∗(σ)(z)‖ ‖δS∗(σ)(z)‖ ‖δS

∗(σ)

G
(z)‖

1 3.2(0) - - 0.0 9.8(-17) 9.8(-17) 6.9(-18) 7.6(-17) 7.6(-17)

2 3.9(3) 2.8(2) 3.8(2) 1.5(-17) 7.1(-17) 8.7(-17) 1.7(-17) 4.7(-16) 2.7(-16)

3 3.7(3) 4.6(2) 5.9(2) 3.6(-17) 6.6(-15) 3.5(-16) 2.5(-17) 2.9(-15) 4.8(-16)

4 7.7(3) 6.3(2) 8.2(2) 1.0(-16) 5.7(-15) 2.6(-16) 3.6(-17) 2.7(-15) 5.8(-16)

- 6.4(14) 1.3(8) 1.3(8) 1.1(-16) 1.0(-14) 5.2(-16) 4.5(-17) 3.6(-10) 6.8(-11)

5 1.1(4) 1.1(3) 1.2(3) 9.3(-17) 1.5(-14) 1.7(-15) 5.7(-17) 8.4(-15) 1.5(-15)

6 3.8(5) 1.0(4) 8.2(3) 9.2(-17) 1.3(-14) 6.1(-16) 4.1(-16) 2.0(-14) 2.8(-15)

7 1.1(4) 1.1(3) 1.1(3) 2.2(-16) 1.1(-14) 6.9(-16) 1.6(-15) 1.1(-13) 1.4(-15)

- 1.3(14) 9.6(7) 1.3(8) 1.1(-16) 1.1(-14) 6.2(-16) 6.7(-15) 7.7(-9) 3.2(-11)

8 3.9(4) 1.6(3) 2.0(3) 2.5(-16) 1.1(-14) 1.2(-15) 4.8(-15) 2.3(-13) 2.8(-15)

9 3.8(8) 3.6(7) 3.4(7) 1.7(-16) 1.6(-10) 2.1(-11) 6.0(-15) 4.1(-9) 5.0(-11)

- 1.9(9) 1.2(8) 1.3(8) 1.6(-16) 2.9(-10) 1.9(-10) 8.9(-15) 1.6(-8) 3.9(-10)

- 1.1(15) 9.8(8) 1.5(9) 1.1(-16) 1.0(-9) 1.4(-10) 8.2(-15) 4.1(-8) 8.3(-10)

- 1.3(9) 9.1(7) 1.2(8) 1.3(-16) 1.6(-10) 6.2(-11) 6.9(-15) 1.3(-8) 5.9(-11)

10 2.1(5) 9.7(3) 8.0(3) 1.3(-12) 1.9(-10) 1.5(-15) 2.2(-13) 2.1(-10) 5.2(-15)

11 3.0(4) 2.4(3) 2.7(3) 1.9(-11) 2.3(-9) 2.8(-15) 8.3(-13) 2.8(-10) 3.7(-15)

- 1.4(13) 7.9(7) 8.4(7) 7.2(-12) 1.1(-9) 5.8(-15) 1.6(-12) 1.4(-6) 1.1(-10)

12 6.4(4) 6.5(3) 7.6(3) 1.7(-11) 1.3(-9) 9.5(-15) 3.8(-12) 1.0(-9) 1.6(-14)

13 2.3(5) 1.4(4) 1.2(4) 3.4(-11) 1.1(-9) 9.7(-15) 2.1(-11) 3.7(-9) 7.1(-15)

- 1.9(9) 4.4(7) 9.2(7) 4.2(-11) 1.8(-6) 1.5(-11) 4.6(-11) 7.7(-6) 1.2(-10)

- 1.8(14) 1.2(8) 2.8(8) 3.8(-11) 7.9(-6) 1.2(-10) 3.9(-11) 3.7(-5) 9.8(-11)

14 6.1(4) 4.9(3) 4.4(3) 3.4(-11) 1.5(-9) 3.8(-15) 3.0(-11) 1.2(-8) 2.3(-14)

- 1.6(13) 3.2(7) 4.2(7) 5.2(-12) 9.7(-10) 3.3(-15) 2.0(-11) 1.1(-5) 1.9(-11)

15 8.9(4) 2.7(3) 3.3(3) 3.8(-11) 2.0(-9) 3.5(-15) 2.5(-11) 4.6(-9) 7.5(-15)

- 3.9(12) 2.6(7) 2.5(7) 1.0(-11) 1.4(-9) 4.2(-15) 3.8(-11) 2.9(-5) 8.1(-11)

16 7.7(4) 3.7(3) 3.9(3) 8.8(-11) 9.9(-9) 3.7(-15) 3.3(-11) 4.9(-9) 8.1(-15)

17 4.3(4) 2.1(3) 2.8(3) 1.4(-10) 5.6(-9) 1.6(-15) 6.8(-11) 5.6(-9) 1.0(-14)

18 9.3(4) 2.4(3) 5.2(3) 1.6(-10) 8.0(-9) 3.9(-15) 5.8(-11) 2.0(-8) 7.6(-15)

19 9.0(4) 3.6(3) 6.0(3) 1.8(-10) 8.4(-9) 4.4(-15) 8.3(-11) 7.0(-8) 1.6(-14)

20 8.7(4) 3.6(3) 7.9(3) 1.8(-10) 7.2(-9) 1.7(-15) 7.9(-11) 3.4(-8) 2.4(-14)

21 1.1(4) 8.0(2) 2.0(3) 2.1(-10) 7.2(-9) 1.5(-15) 6.3(-11) 7.7(-9) 2.8(-15)

22 2.9(4) 1.4(3) 3.2(3) 2.3(-10) 1.0(-8) 2.0(-15) 4.5(-11) 4.0(-9) 5.8(-15)

23 2.4(4) 2.4(3) 4.5(3) 2.5(-10) 9.0(-9) 4.0(-15) 1.1(-10) 3.2(-8) 1.1(-14)

24 6.0(4) 1.0(4) 1.2(4) 2.6(-10) 1.5(-8) 3.0(-15) 1.2(-10) 2.6(-8) 6.1(-15)

25 1.2(4) 3.7(3) 3.2(3) 2.4(-10) 1.0(-8) 2.3(-15) 1.1(-10) 1.6(-8) 5.8(-15)

26 6.5(3) 1.8(3) 1.3(3) 3.9(-10) 4.3(-8) 2.0(-15) 9.4(-11) 3.7(-9) 2.5(-15)

27 6.9(5) 3.8(4) 1.7(4) 2.9(-10) 2.1(-7) 3.4(-15) 4.2(-11) 1.1(-9) 2.5(-15)

28 3.2(4) 9.9(3) 3.4(3) 5.2(-10) 3.0(-7) 6.0(-15) 3.5(-11) 1.4(-9) 1.1(-14)

Table 2: k = 2; n = (37, 37, 37); ‖a−1
0 (z)(mod z‖n‖+1)‖ = 2.7(1); τ = 109
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σ κ(σ) κ

(
M

m(σ)

)
κ(M∗

m(σ)
) ‖δT (σ)t(z)‖ ‖δS(σ)(z)‖ ‖δT∗(σ)(z)‖ ‖δS∗(σ)(z)‖

1 1.7( 3) - - 1.7(-18) 1.2(-17) 8.7(-19) 6.4(-17)

2 1.4( 4) 2.6( 1) 1.3( 2) 2.4(-18) 2.7(-16) 2.2(-18) 4.8(-16)

3 5.7( 4) 7.3( 1) 1.5( 3) 9.7(-18) 6.0(-16) 4.8(-18) 7.0(-15)

4 1.7( 7) 1.7( 3) 8.2( 4) 1.6(-17) 1.2(-14) 4.1(-18) 1.5(-14)

5 6.6( 5) 3.4( 2) 2.4( 4) 3.8(-16) 3.0(-14) 2.2(-16) 1.1(-13)

6 9.3( 4) 1.7( 2) 1.2( 4) 2.3(-15) 4.7(-13) 2.5(-15) 2.3(-13)

7 1.2( 5) 2.1( 2) 2.8( 4) 2.7(-15) 6.8(-13) 5.3(-15) 3.9(-12)

8 1.2( 5) 2.1( 2) 8.8( 4) 3.4(-15) 7.6(-13) 5.1(-15) 5.0(-12)

9 4.8( 5) 4.5( 2) 2.8( 5) 4.1(-15) 8.0(-13) 6.4(-15) 8.9(-12)

10 3.3( 6) 1.8( 3) 2.5( 6) 3.7(-15) 1.9(-12) 3.9(-15) 4.2(-11)

11 3.9( 6) 2.2( 3) 9.1( 6) 3.1(-15) 2.9(-12) 4.1(-15) 6.9(-11)

12 8.4( 6) 2.5( 3) 5.1( 7) 3.3(-15) 4.6(-12) 4.1(-15) 7.2(-11)

13 2.4( 6) 2.6( 3) 6.3( 7) 3.5(-15) 1.7(-12) 4.1(-15) 8.9(-10)

14 9.8( 5) 1.6( 3) 6.3( 7) 2.6(-15) 2.6(-12) 4.2(-15) 3.2(-10)

15 3.2( 6) 2.7( 3) 3.9( 8) 6.6(-15) 2.4(-12) 4.1(-15) 2.3(-10)

16 2.1( 6) 4.3( 3) 9.3( 8) 4.7(-15) 6.8(-12) 3.3(-15) 1.6( -9)

17 4.4( 7) 1.6( 4) 2.7( 9) 4.6(-15) 3.9(-12) 4.4(-15) 3.3(-10)

18 3.6( 6) 5.3( 3) 8.4( 8) 4.5(-15) 1.7(-12) 4.7(-15) 4.8(-10)

19 1.7( 6) 4.3( 3) 4.7( 9) 5.8(-15) 3.6(-12) 7.9(-15) 7.6( -9)

20 1.4( 7) 8.5( 3) 1.3( 10) 4.1(-15) 2.6(-12) 8.8(-15) 1.2( -8)

21 3.8( 6) 8.3( 3) 2.4( 10) 5.8(-15) 2.5(-12) 9.8(-15) 7.2( -8)

22 7.5( 5) 2.7( 3) 5.5( 10) 4.1(-15) 3.2(-12) 1.0(-14) 1.5( -7)

23 5.5( 6) 4.3( 3) 5.9( 11) 2.9(-15) 3.6(-12) 1.1(-14) 1.0( -6)

24 1.3( 7) 1.2( 4) 1.1( 12) 7.1(-15) 1.3(-11) 9.0(-15) 1.0( -6)

25 5.0( 8) 8.1( 4) 5.9( 12) 9.3(-15) 7.7(-12) 9.7(-15) 3.4( -7)

26 2.1( 6) 1.2( 4) 2.3( 12) 5.0(-15) 3.6(-12) 1.0(-14) 1.5( -6)

27 2.5( 6) 1.0( 4) 2.3( 12) 4.9(-15) 3.2(-12) 9.3(-15) 6.5( -7)

- 1.3( 9) 1.2( 5) 2.0( 13) 3.0(-15) 1.9(-12) 8.7(-15) 3.6( -7)

28 6.3( 6) 9.2( 3) 4.6( 12) 8.3(-15) 1.6(-11) 8.6(-15) 2.3( -6)

29 1.0( 6) 6.6( 3) 4.5( 12) 8.5(-15) 4.8(-12) 1.1(-14) 2.0( -6)

30 1.5( 6) 9.1( 3) 1.1( 13) 6.4(-15) 5.5(-12) 1.2(-14) 8.5( -6)

31 8.4( 5) 1.0( 4) 2.1( 13) 5.3(-15) 3.5(-12) 1.1(-14) 6.7( -6)

32 2.0( 6) 1.4( 4) 7.3( 13) 2.4(-15) 1.6(-12) 2.0(-14) 1.2( -5)

33 4.5( 6) 7.2( 4) 2.2( 14) 2.8(-15) 3.9(-12) 1.6(-14) 1.9( -5)

34 6.8( 6) 6.6( 4) 7.8( 14) 3.4(-15) 4.5(-12) 2.1(-14) 2.6( -5)

35 1.0( 6) 1.7( 4) 5.7( 14) 3.4(-15) 2.3(-12) 2.8(-14) 6.9( -5)

36 3.4( 5) 1.2( 4) 1.1( 15) 5.7(-15) 2.3(-12) 4.2(-14) 3.3( -4)

37 4.1( 5) 1.2( 4) 9.6( 15) 6.3(-15) 3.3(-12) 5.6(-14) 1.8( -3)

Table 3: k = 2; n = (37, 37, 37); ‖a−1
0 (z)(mod z‖n‖+1)‖ = 8.2(14); τ = 109
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to the point n along the diagonal passing through n by m(σf ) (i.e., κ(σf ) ≤ τ), and let
ν(σf ) = n − m(σf ) − e0. Then the bounds derived in [7] at the point n, for a numerically
nonsingular point n, are

‖δT t(z)‖ ≤ Fσf + 2(k + 1) · |a
(0)
0 |

σf−1∑

σ=0

κ(σ+1)Fσ, (8)

‖δT ∗(z)‖ ≤ F ∗σf + 2(k + 1) · |a
(0)
0 |

σf−1∑

σ=0

κ(σ+1)F ∗σ , (9)

‖δS(z)‖ ≤ 2κ · |a
(0)
0 | · ‖a

−1
0 (z)(mod z‖n‖+1)‖ (10)

·



Fσf + 2(k + 1) · |a

(0)
0 |

σf−1∑

σ=0

κ(σ+1)Fσ



 ,

‖δS∗(z)‖ ≤ 2κ(k + 1)2 · |a
(0)
0 | · ‖a

−1
0 (z)(mod z‖n‖+1)‖ (11)

·



F ∗σf + 2(k + 1) · |a

(0)
0 |

σf−1∑

σ=0

κ(σ+1)F ∗σ



 ,

where

Fσ = 4κ(σ)(k + 1) · |a
(0)
0 | · µ

·
{
(||m(σ)||+ k + 1) + 4ρσ||ν

(σ)||3 + (||ν(σ)||+ k + 1)
}
,

F ∗σ = 8κ(σ)(k + 1)2 · |a
(0)
0 | · µ

·
{
(||m(σ)||+ 1) + 4(k + 1)5ρ∗σ||ν

(σ)||3 + (||ν(σ)||+ k + 1)
}
.

The constants ρσ, ρ
∗
σ are growth factors (in practice of size O(10) ) associated with the

Gaussian elimination method when solving the subsystems at the point m(σ).
In the above, the norms used are as follows. For the polynomial s(z) =

∑∂
`=0 s

(`) z`,
define ‖s(z)‖ =

∑∂
`=0 |s

(`)|; and, for the power series a(z) =
∑∞

`=0 a
(`) z`, define ‖a(z)‖ =∑∞

`=0 |a
(`)| (this norm exists in practice since the power series are truncated). For vectors

and matrices over these power series and polynomial domains, the 1-norm is used. So,
‖At(z)‖ = max0≤β≤k {‖aβ(z)‖} and ‖S(z)‖ = max0≤β≤k

{∑k
α=0 ‖Sα,β(z)‖

}
. It is assumed in

the analysis that At(z) is scaled; that is, ‖aβ(z)‖ = 1, 0 ≤ β ≤ k.
Observation 1: The experimental results imply that the large powers of ‖m(σ)‖ and

‖ν(σ)‖ that occur in the bounds above are not manifested in the experiments. Also, ‖δT t(z)‖
and ‖δT ∗(z)‖ appear to depend on κ(σ) and not on κ(σ)κ(σ+1). In addition, the overall error is
proportional to the largest κ(σ) encountered. Thus, the bounds are crude, but they do appear
to reflect the behavior of the error. As Wilkinson points out [15, page 567], “The main object
of such an analysis is to expose the potential instabilities, if any, of an algorithm so that
hopefully from the insight thus obtained one might be led to improved algorithms. Usually
the bound itself is weaker than it might have been because of the necessity of restricting the
mass of detail to a reasonable level and because of the limitations imposed by expressing the
errors in terms of matrix norms.”

Operational bounds on the errors in the order conditions (as for the case k=1 reported
in [11]) appear to be
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‖δT t(z)‖ ≤ C(k + 1)µ

( σf∑

σ=0

κ(σ)ρσ‖m
(σ)‖

)

and

‖δT ∗(z)‖ ≤ C(k + 1)2µ

( σf∑

σ=0

κ(σ)ρ∗σ‖m
(σ)‖2

)
,

where C is a moderate constant. In addition, for the errors in the solutions, operational
bounds appear to be

‖δS(z)‖ ≤ Cκ(k + 1)µ · ‖

( σf∑

σ=0

κ(σ)ρσ‖m
(σ)‖

)

and

‖δS∗(z)‖ ≤ Cκ(k + 1)3µ · |a
(0)
0 | · ‖a

−1
0 (z)(mod z‖n‖+1)‖

( σf∑

σ=0

κ(σ)ρ∗σ‖m
(σ)‖2

)
.

Note that, as predicted by the bound (11), the accuracy of S∗(z) deteriorates dramatically
with an increase in ‖a−1

0 (z) (mod z‖n‖+1)‖ (see Tables 2 and 3) The accuracy of S(z), on the
other hand, has remained unaffected in these and many other experiments contrary to what
is suggested by the bound (10).

Observation 2: For δT t(z) and δT ∗(z) sufficiently small, bounds for M−1
n and M∗−1

n

are derived in [8] to be

‖M−1
n ‖1, ‖M

∗−1
n ‖∞ ≤ 2κ · |a

(0)
0 | · ‖a

−1
0 (z) (mod z‖n‖+1)‖.

This gives lower bounds for κ in terms of κ1 (Mn), or κ∞ (M∗
n) (note that ‖Mn‖1 = 1 and

‖M∗
n‖∞ = k). On the other hand, Appendix B gives the upper bound

κ ≤
6(k + 1)

|a
(0)
0 |

·
κ1 (Mn)κ∞ (M∗

n)

[1− ε · κ1 (Mn)] [1− ε · κ∞ (M∗
n)]

,

where ε is an upper bound for ‖δT t(z)‖1 and ‖δT ∗(z)‖∞. In the experiments, the term

|a
(0)
0 | · ‖a

−1
0 (z) (mod z‖n‖+1)‖ does not seem to appear in the upper bound for ‖M−1

n ‖1. In
addition, κ is usually closer to the lower bounds than to the upper bound; however, at “un-
stable” points, κ appears to drift towards its upper bound.

Observation 3: The most suitable choice for the stability tolerance τ is difficult to
determine, a priori. Too small a choice can cause the algorithm to take large steps (to step
over large unstable blocks) and thereby increasing computational costs (up to as much as
O(‖n‖4) operations if τ is set so small that all points are deemed unstable). Too large a
choice can result in needless loss of accuracy when a smaller choice of τ would give better
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accuracy with about the same computational costs. As an aid in selecting τ , we recommend
a trial run through just a few steps of the algorithm in order to derive some insight into the
behavior of subsequent κ(i)’s. The algorithm VECTOR PADE provides a list of such κ(i)’s.
Alternatively, a dynamic strategy for choosing the step size may be possible.

Observation 4: The residual errors appear to increase only upon exit from an unstable
block (see, for example, Table 2: σ = 10) Indeed, the residual errors do not appear to increase
as long κ(σ) continues to grow. This observation suggests a behavior that is not captured by
the residual error bounds (8) and (9). Its truth would be useful in some applications, such
as in accelerating convergence of vector sequence [12].

5 Conclusions

The experiments have both verified that the VECTOR PADE algorithm is indeed weakly
stable and illustrated the pessimism of the error bounds derived in [7]. They have also
illustrated that the bounds do give an indication of what mostly contributes to the growth
of errors in the system. We see that the error is primarily determined by the intermediate
system that is most ill conditioned. By skipping over such systems using the look-ahead
strategy, the error is kept small and accurate results are obtained. The numerical results
also confirm that large errors in the NSPS may arise when the power series a0(z) has a large
inverse.

We remark that the computation of a NPHS and NSPS of type n provide all the compo-
nents necessary to invert the coefficient matrices of the associated linear systems [8]. When
the initial power series [a0(z)]

−1 does not have large terms, then the formulae given in [8] en-
able the computation of these inverses in a fast, numerically stable manner. This is the case,
for example, when one is interested simply in inverting striped and mosaic Hankel matrices
(since in this case this corresponds to the case where a0(z) = 1). However, when [a0(z)]

−1

is large, then it is inadvisable to use these formulae, because in this case VECTOR PADE
may not accurately compute S∗(z) upon which the formulae depend.

It has been noted that the cost complexity of VECTOR PADE becomes O(‖n‖4) in the
exceptional case that length of unstable block is O(‖n‖) (e.g., if the stability tolerance τ is set
too low). By modifying the algorithm to use QR factorization with bordering (as in [2] for the
case k = 1) rather than the Gaussian elimination method to solve the intermediate systems,
we expect to be able to maintain stability while guaranteeing a worst case complexity of
O(‖n‖3). This needs confirmation. Recently, another algorithm [4] for the QR factorization
of a Toeplitz matrix (which is the generalized Sylvester matrix with a0(z) = 1 and k = 1)
with a worst case complexity of O(‖n‖2) has been shown to be weakly stable. Perhaps this
algorithm, too, can be generalized to arbitrary k.
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Appendix A
An Example

Consider the power series A(z) = [a0(z), a1(z), a2(z)]
t, where

a0(z) = 1− z + 2z2 − 2z3 + 3z4 − 3z5 + 4z6 − 4z7 + 5z8 − 5z9 . . . ,

a1(z) = 2z + 3z3 + 4z5 + 5z7 + 6z9 . . . ,

a2(z) = −1 + z + 5z2 + 3z3 + 2z4 − 2z5 − 6z6 + z7 − 8z8 + 5z9 . . . .

The Padé-Hermite system S(z) of type n=[2,3,1] for A(z) is

S(z) =




z2(−4 + 44z) −73z − 48z2 37− 44z + 3z2

z2(−22 + 36z − 9z2) 37− 13z − 9z2 − 7z3 −131z + 137z2 + 123z3

z2(−4) z 37− 44z


 .

Only the first column of S(z) yields a Padé-Hermite approximant, this being of type [1, 2, 0].

Note that

At(z)S(z) = z7 T t(z),

where

T t(z) =
[
37 + 20z + 42z2 + . . . , −5 + 8z − 4z2 + . . . , 516− 130z + 805z2 + . . .

]
.

If we wish to compute the NPHS of type [3, 4, 2], we can advance the solution S(z) above

using the steps outlined in §3. To do this, we first compute the NPHS of type ν = [3, 4, 2]−

[2, 3, 1]− [1, 0, 0] = [0, 1, 1] for the residual T (z) in (12). This is given by

Ŝ(z) =




0 5 −48504

z2(19092) 37− 24z −59984z

z2(185) −z 3478 + 2175z


 .

By multiplying S(z) in (12) on the right by Ŝ(z), we obtain the NPHS of type [3, 4, 2],

(37)2




z2(5− 1024z − 669z2) −2z + z3 94− 53z + 3278z2 + 549z3

z2(516− 199z − 107z2 − 81z3) 1− z −1954z + 1489z2 − 351z3 + 821z4

z2(5 + 8z) 0 94− 53z + 28z2


 ,

the first column of S(z) yields a Padé-Hermite approximant of type [2, 3, 1].

The simultaneous Padé system of type [2,3,1] for

A∗(z) =




−a1(z) −a2(z)

a0(z) 0

0 a0(z)



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is

S∗(z) =




37− 57z + 10z2 + 5z4 74z − 40z2 − 57z3

z2(22− 48z + 37z2 − 24z3) z2(44z − 52z2)

z2(4− 2z − z3) z2(8z + 4z2)

−37 + 57z + 249z2 − 103z3 − 428z4 − 159z5

z2(−22 + 48z + 117z2 − 136z3 − 147z4)

z2(−4 + 2z + 28z2 + 19z3 − 20z4)


 .

Only the first row of S∗(z) is a simultaneous Padé approximant, this being of type [2, 3, 1].

Note that

S∗(z)A∗(z) = z7T ∗(z),

where

T ∗(z) =








5 −516

37 0

0 37


+




0 329

0 131

−1 7


 z +




10 −772

74 −373

0 23


 z

2 + · · ·




.

To compute the NSPS of type [3, 4, 2], we proceed as before by first computing an NSPS of

type ν = [0, 1, 1] for the residual T ∗(z). This is given by

Ŝ∗(z) =




3478− 81z − 3032z2 −470 + 1017z 48504− 39568z

z2(−9546− 7565z) z2(2580) z2(−266256)

z2(−185− 396z) z2(25) z2(−2580)


 .

By multiplying S∗(z) on the left by Ŝ∗(z), we obtain the NSPS of type [3, 4, 2], namely

(37)2




94− 147 z + 81 z2 − 28 z3 188 z − 106 z2 − 38 z3 + 53 z4 − 28 z5

z2(−516 + 386 z − 246 z2 + 188 z3 + 94 z5) z2(−1032 z − 260 z2 − 236 z3 − 246 z4)

z2(−5− 3 z + 8 z2) z2(−10 z − 16 z2 + 5 z3 + 8 z4)

−94 + 147 z + 577 z2 − 249 z3 − 703 z4 − 153 z5 − 351 z6 + 821 z7

z2(516− 386 z − 3366 z2 − 1614 z3 + 1882 z4 + 2996 z5 + 5370 z6)

z2(5 + 3 z − 43 z2 − 61 z3 + 37 z4 + 107z5 + 81 z6)


 ,

where the first row of S∗(z) is a simultaneous Padé approximant of type [3, 4, 2].

Note that each of the Padé-Hermite systems computed above is unique except for the

scaling of columns (VECTOR PADE scales the columns to have a 1-norm length of 1),

and each of the simultaneous Padé systems is unique except for the scaling of rows (VEC-

TOR PADE scales the rows to have a 1-norm length of 1).
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Appendix B

An upper bound for the stability parameter κ

THEOREM: Let ε = max{‖δT t(z)‖1, ‖δT
∗(z)‖∞}. If ε ·κ1 (Mn) , ε ·κ∞ (M∗

n) < 1, then4

κ ≤
6(k + 1)

|a
(0)
0 |

·
κ1 (Mn)κ∞ (M∗

n)

[1− ε · κ1 (Mn)] [1− ε · κ∞ (M∗
n)]

. (12)

PROOF: We begin by obtaining lower bounds for γβ and γ∗β, 0 ≤ β ≤ k. First, we obtain

a lower bound for γ0. ¿From (3) (see also [7, eqn. (13)]),

Mn · X = [0, . . . , 0, γ0]
t + [δr(0), . . . , δr(‖n‖−1)]t,

where

X =
[
p(0), . . . , p(n0−1)|q

(0)
1 , . . . , q

(n1−1)
1 | · · · |q

(0)
k , . . . , q

(nk−1)
k

]t
.

So,

‖X‖1 ≤ ‖M−1
n ‖1 · (|γ0|+ ‖δr(z)‖) ≤ ‖M

−1
n ‖1 · (|γ0|+ ε).

However, because At(z) is scaled, then ‖Mn‖1 = 1; and because S(z) is scaled, then

‖X‖1 = 1. Thus,

1 ≤ κ1 (Mn) · (|γ0|+ ε);

or,
1

γ0

≤
κ1 (Mn)

1− ε · κ1 (Mn)
· (13)

Next, to obtain a lower bound for the remaining γβ, 1 ≤ β ≤ k, we observe from (3)

(see also [7, eqn. (17)]) that

Mn · Yβ = −γβ · [a
(1)
β , · · · , a

(‖n‖)
β ]t + γβ ·

a
(0)
β

a
(0)
0

· [a
(1)
0 , · · · , a

(‖n‖)
0 ]t

+[δw
(1)
β , . . . , δw

(‖n‖)
β ]t,

where

Yβ =
[
u

(1)
β , . . . , u

(n0)
β |v

(1)
1,β, . . . , v

(n1)
1,β | · · · |v

(1)
k,β, . . . , v

(nk)
k,β

]t
.

4If the power series are ordered so that |a
(0)
β | ≤ |a

(0)
0 |, 1 ≤ β ≤ k, then the term |a

(0)
0 | need not appear in

upper bound (12).
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So,

‖Yβ‖1 ≤ ‖M−1
n ‖1 ·



|γβ|


 |a

(0)
β |

|a
(0)
0 |
‖a0(z)‖+ ‖aβ(z)‖


+ ‖δwβ(z)‖)





≤ ‖M−1
n ‖1 ·



|γβ|


 |a

(0)
β |

|a
(0)
0 |

+ 1


+ ε



 ·

In addition, because S(z) is scaled and normalized, we get

‖Yβ‖ = 1− |u
(0)
β | − |γβ| = 1− |γβ|

|a
(0)
β |+ |a

(0)
0 |

|a
(0)
0 |

·

Therefore,

1 ≤ |γβ|
|a

(0)
β |+ |a

(0)
0 |

|a
(0)
0 |

+ ‖M−1
n ‖1 ·



|γβ|

|a
(0)
β |+ |a

(0)
0 |

|a
(0)
0 |

+ ε





≤ κ1 (Mn) ·



2|γβ|

|a
(0)
β |+ |a

(0)
0 |

|a
(0)
0 |

+ ε



 ,

from which it follows that

1

γβ
≤ 2

|a
(0)
β |+ |a

(0)
0 |

|a
(0)
0 |

·
κ1 (Mn)

1− ε · κ1 (Mn)
· (14)

Next, to obtain a lower bound for γ∗0 , from (4) (see also [7, eqn. (30)]), we have

X ∗t · M∗
n = v∗(0)

[
a
∗(1)
1 , . . . , a

∗(‖n‖)
1 , · · · , a

∗(1)
k , . . . , a

∗(‖n‖)
k

]

−
[
u
∗(0)
1 [a

∗(1)
0 , . . . , a

∗(‖n‖)
0 ], · · · , u

∗(0)
k [a

∗(1)
0 , . . . , a

∗(‖n‖)
0 ]

]

+
[
δw

∗(1)
1 , . . . , δw

∗(‖n‖)
1 , · · · , δw

∗(1)
k , . . . , δw

∗(‖n‖)
k

]
,

where

X ∗t = [v∗(1), . . . , v∗(‖n‖−n0)|u
∗(1)
1 , . . . , u

∗(‖n‖−n1)
1 | · · · |u

∗(1)
k , . . . , u

∗(‖n‖−nk)
k ].

Consequently,

‖X ∗t‖∞ ≤ ‖M∗
n
−1‖∞ {|γ

∗
0 | (‖a1(z)‖+ · · ·+ ‖ak(z)‖)

+
|γ∗0 |

|a
(0)
0 |
· ‖a0(z)‖ ·

(
|a

(0)
1 |+ · · ·+ |a

(0)
k |
)
+ (‖δw∗1(z)‖+ · · ·+ ‖δw

∗
k(z)‖)

}

≤ ‖M∗
n
−1‖∞

{
|γ∗0 | · ‖M

∗
n‖∞ +

|γ∗0 |

|a
(0)
0 |
· ‖M∗

n‖∞ ·
(
|a

(0)
1 |+ · · ·+ |a

(0)
k |
)
+ ε

}

≤ κ∞ (M∗
n)

{
|γ∗0 |

|a
(0)
0 |
·
(
|a

(0)
0 |+ · · ·+ |a

(0)
k |
)
+ ε

}
.
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But, since S∗(z) is scaled and normalized, we get

‖X ∗t‖∞ = 1− |γ∗0 | − u
∗(0)
1 | − · · · − |u

∗(0)
k

= 1−
|γ∗0 |

|a
(0)
0 |
·
(
|a

(0)
0 |+ · · ·+ |a

(0)
k |
)
,

and so

1 ≤ κ∞ (M∗
n)

{
2 ·

|γ∗0 |

|a
(0)
0 |
·
(
|a

(0)
0 |+ · · ·+ |a

(0)
k |
)
+ ε

}
.

It now follows that

1

|γ∗0 |
≤

2
(
|a

(0)
0 |+ · · ·+ |a

(0)
k |
)

|a
(0)
0 |

·
κ∞ (M∗

n)

1− ε · κ∞ (M∗
n)

. (15)

Finally, to obtain lower bounds for the remaining γ∗α, 1 ≤ α ≤ k, from (4) (see also

[7, eqn. (32)]), we have

Y∗tα · M
∗
n = γ∗αE

t
α‖n‖ +

[
δr
∗(0)
α,1 , . . . , δr

∗(‖n‖−1)
α,1 , · · · , δr

∗(0)
α,k , . . . , δr

∗(‖n‖−1)
α,k

]
, 1 ≤ α ≤ k,

where

Y∗tα =
[
q∗(0)α , . . . , q∗(‖n‖−n0−1)

α |p
∗(0)
α,1 , . . . , p

∗(‖n‖−n1−1)
α,1 | · · · |p

∗(0)
α,k , . . . , p

∗(‖n‖−nk−1)
α,k

]

and Et
α‖n‖ is the unit row vector of length k‖n‖ with a single 1 in position α‖n‖. Because

S∗(z) is scaled,

1 = Y∗tα ‖∞ ≤ ‖M
∗
n
−1‖∞ · (|γ

∗
α|+ 1)

and so

1

|γ∗α|
≤

κ∞ (M∗
n)

1− ε · κ∞ (M∗
n)

. (16)

The bound (12) for κ =
∑k

β=0 1/|γβγ
∗
β| now follows from (13), (14), (15) and (16), since

|a
(0)
β | ≤ 1, 1 ≤ β ≤ k.

19


