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Abstract

This paper introduces the notion of a power Hermite Padé approximant, a gen-
eralization of the classical scalar Hermite Padé approximant. We show that this
generalized form provides a uniform approach for different concepts of matrix-type
Padé approximants. This includes descriptions of vector and matrix Padé approxi-
mants along with generalizations of simultaneous and Hermite Padé approximants.

A complete description of these new approximants, based on the characterization
of a corresponding linear solution space, is given. A Padé-like table is introduced
and the singular structure is studied. It is shown that the geometric structure of
the singular blocks of this new table is made up of one or more combinations of
triangles. In the special case of matrix Padé approximants the geometric structure
of the combined singular areas consists of square blocks - exactly the same as in the
classical scalar Padé case.

Key words: Vector Padé approximant, Hermite Padé approximant, simultaneous Padé
approximant, matrix Padé approximant.
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1 Introduction

Throughout this paper we will assume that m is an integer with m ≥ 2 and that
F = (f1, . . . , fm)T is an m-tuple of formal power series with coefficients from a field IK
(typically a subfield of either the real or complex numbers). Moreover, for a space S with
scalars from IK (for instance S = IK p×q, the space of p × q matrices over IK ), S[z] will
denote the set of polynomials in z with coefficients from S while S[[z]] represents the set
of formal power series in z with coefficients from S.

Hermite introduced two different types of generalizations of the ordinary Padé table.
Given a multi-index n = (n1, . . . , nm) ∈ (IN0 ∪ {−1})m, a Hermite Padé approximant of
type n is a nontrivial tuple P = (P1, . . . , Pm) ∈ IK 1×m[z] of polynomials Pl having degrees
bounded by the nl such that

P(z) · F(z) = P1(z)f1(z) + . . .+ Pm(z)fm(z) = z‖n‖−1 ·R(z) with R ∈ IK [[z]], (1)

where the norm of the multi-index n is defined by ‖n‖ := (n1 + 1) + . . . + (nm + 1).
In contrast, a simultaneous Padé approximant Q = (Q1, . . . , Qm) ∈ IK 1×m[z] of type n
consists of polynomials Ql having degrees bounded by ‖n‖ − m − nl such that for all
l, λ ∈ {1, . . . ,m}

Ql(z) · fλ(z)−Qλ(z) · fl(z) = z‖n‖−m+1 ·Rl,λ(z) with Rl,λ ∈ IK [[z]]. (2)

Obviously, if for example fm(0) 6= 0, then for (2) it remains to consider the indices
λ = m, l ∈ {1, 2, . . . ,m− 1}. 1

The Hermite Padé approximation problem includes many classical approximation
problems such as Padé approximation (m = 2, F = (1,−f)T ), algebraic approximants
and G3J approximants. We refer the reader to [1, Part II,pp.32-40] for further examples
and [2, 3] or [12] for a bibliography.

As pointed out in [5, 6, 7, 8, 10], a Hermite Padé approximant P of type (n1 −
1, . . . , nl−1 − 1, nl, nl+1 − 1, . . . , nm − 1) and a simultaneous Padé approximant Q of type
(n1, . . . , nλ−1, nλ − 1, nλ+1, . . . , nm) are connected via the duality relation

P(z) ·QT (z) = 0 if l 6= λ and P(z) ·QT (z) = c · z‖n‖−m with c ∈ IK , if l = λ. (3)

This duality relation has been used, for example, to derive algorithms where both types of
approximants are computed simultaneously. Also, by this formula one could determine the
structure of the singular simultaneous Padé solution table since the structure for Hermite
Padé approximation is well-known [2]. The aim of this paper is to give a new uniform
approach for both approximation problems instead of applying duality arguments. This
approach not only includes Hermite Padé and simultaneous Padé approximants but also
their matrix-type generalizations as introduced by several authors in the last years.

The paper is organized as follows: in Section 2 we introduce the power Hermite
Padé approximant - a scalar concept that is a natural generalization of a matrix Padé
approximant. These are also shown to provide a uniform description of both Hermite

1Following [6, 7, 10], P (and Q) is also called the vector of ”Latin” or ”System I” polynomials
(”German” or ”System II” polynomials, respectively).
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Padé and simultaneous Padé approximants. In Section 3 a linear system associated to
these approximants is studied and a basis for this system is determined. In Section 4 we
introduce the notion of a power Hermite Padé table and study its singular structure. A
recursive algorithm to efficiently and reliably solve the power Hermite Padé approximation
problem will be presented in a later paper [4].

2 Vector and Power Hermite Padé Approximants

The original motivation for our work comes from the study of matrix Padé approximants.
These are defined as follows: let p, q, r ∈ IN , M,N ∈ IN0 and A ∈ IK p×q[[z]]. Then a
left-hand rectangular Matrix-Padé Form (P,Q) consists of P ∈ IK r×q[z], Q ∈ IK r×p[z],
with deg P ≤ M , deg Q ≤ N and the rows of Q being linearly independent over IK such
that P (z) − Q(z) · A(z) = zM+N+1 · R(z), R ∈ IK r×q[[z]]. Of course one can also define
a right-hand rectangular Matrix-Padé form in a similar manner. 2 We can rewrite the
order condition for left-hand rectangular forms as P(z) ·G(z) = zM+N+1 · R̃(z) with P

being a row of (P,Q) ∈ IK r×(p+q)[z], G =
(

I
−A

)
∈ IK (p+q)×q[[z]], I denoting an identity

matrix of suitable size and R̃ ∈ IK 1×q[[z]]. This leads to the following canonical extension
of the Hermite Padé definition to the vector case:

Definition 2.1. (Vector Hermite Padé Problem) Let s, τ ∈ IN0 , s ≥ 1,
G ∈ IKm×s[[z]] and let n be a multi-index. Find (at least ‖n‖ − s · τ many) linearly
independent polynomial tuples P = (P1, . . . , Pm) ∈ IK 1×m with deg Pl ≤ nl, 1 ≤ l ≤ m
such that P(z) ·G(z) = zτ ·R(z), R ∈ IK 1×s[[z]]. 2

Note that the problem of computing a simultaneous Padé approximant of type
(ρ1, ρ2, . . . , ρm), ρ = ρ1 + . . .+ρm, also can be translated into the vector Hermite Padé for-
malism by setting n = (ρ−ρ1, . . . , ρ−ρm), s = m−1, τ = ρ+1, (and hence ‖n‖−s·τ = 1)
and

G(z) =


fm(z) 0 . . . 0 −f1(z)

0 fm(z)
. . .

... −f2(z)
...

. . . . . . 0
...

0 . . . 0 fm(z) −fm−1(z)


T

∈ IKm×(m−1)[[z]]. (4)

Further examples of vector Hermite Padé approximants are given in [4].

Since most of the results in this field are obtained for scalar approximation problems,
it is of special interest to imbed the vector Padé approximation problem into a more
general scalar concept. The method of accomplishing this is to apply the small ‘trick’

F(z) := G(zs) · (1, z, . . . , zs−1)T ∈ IKm×1[[z]]. (5)

Definition 2.2. (Power Hermite Padé Approximant) For a P = (P1, . . . , Pm) ∈
IK 1×m[z] we define its defect (with respect to the multi-index n = (n1, . . . , nm)) and its

2Rectangular-matrix types of Padé forms are used, for example, to compute the inverse of matrices
partitioned into a rectangular-block Hankel or Toeplitz structure [9].
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s- order (with respect to s ∈ IN ) by

dctnP := min
l
{nl + 1− deg Pl}

ordsP := sup{σ ∈ IN0 : P(zs) · F(z) = zσ ·R(z) with R ∈ IK [[z]]}.

where the zero polynomial has degree −∞. Then P = (P1, . . . , Pm) is a Power Hermite
Padé Approximant (PHPA) of type (n, σ, s), σ ∈ IN0 , if it satisfies the conditions

ordsP ≥ σ and dctnP > 0. (6)

More generally, we define the finite-dimensional space Lσδ by

for σ ∈ IN0 , δ ∈ ZZ ∪ {+∞}: Lσδ = {P ∈ IK 1×m[z] : dctnP > −δ, ordsP ≥ σ}. (7)

2

Note that the classical Hermite Padé approximation problem is included by setting
s = 1 and σ = ‖n‖ − 1. By equating coefficients, equation (6) results in a system
of homogeneous linear equations. By comparing the number of unknowns to equations
one can conclude that there exist at least ‖n‖ − σ PHPA’s of type (n, σ, s) which are
linearly independent over IK . Finally, we see from (5) that computing Vector Hermite
Padé approximants of type (n, τ) and dimension s is equivalent to the determination of
PHPA’s of type (n, τ · s, s), i.e. of the solution set Lτ ·s0 .

3 The PHPA solution set

Adapting the techniques of [2, Section 4], we obtain

Theorem 3.1. (Bases for the PHPA solution set) For each σ ∈ IN0 and for
each multi-index n = (n1, . . . , nm) there exist P1, . . . ,Pm ∈ IK 1×m[z] such that for all
δ ∈ ZZ ∪ {+∞}

dim Lσδ = max{dctnP1 + δ, 0}+ . . .+ max{dctnPm + δ, 0}. (8)

Lσδ = {α1 ·P1 + . . .+ αm ·Pm : αl ∈ IK [z], deg αl < dctnPl + δ} (9)

Proof: For P,Q ∈ IK 1×m[z], α ∈ IK [z] we have

dctn(P + α ·Q) ≥ min{dctnP, dctnQ− deg α}.

Hence as in [2, p.14] we can construct P1, . . . ,Pm, Pl = (Pl,1, . . . , Pl,m) by recurrence on
−δ using the following rules: set U1 := Lσ+∞ and for λ = 1, 2, . . . ,m

choose Pλ ∈ Uλ such that dctnPλ = max{dctnQ : Q ∈ Uλ} , (10)

choose lλ ∈ {1, . . . ,m} such that deg Pλ,lλ = nlλ + 1− dctnPλ ≥ 0 , (11)

define Uλ+1 := {Q = (Q1, . . . , Qm) ∈ Uλ : deg Qlλ ≤ nlλ − dctnQ} . (12)

2
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Note that, since the components of a Pλ can only contain a common factor of the
form zj, the approximant Pλ is reducible if and only if Pλ(0) = 0.

As an immediate consequence of Theorem 3.1, in general, the (left hand) square
matrix Padé approximation problem as stated in the beginning of Section 2 (p = q = r =:
s and m = 2s) does not have a unique rational solution like in the scalar case. Moreover,
there are three distinct and possible forms of a denominator matrix polynomial Q. First,
the case occurs when Q(z) is singular for all z 3 and hence no matrix rational form exists.
This type of degeneracy is not found in the scalar case. Secondly, it is possible that Q(0)
is non-singular. Here we can form Q(z)−1 · P (z) and its matrix power series agrees with
A(z) to the full order condition. Finally, if Q(z) is non-singular for some z but Q(0) is
singular, we can cancel P and Q by a common matrix polynomial factor on the right.
Here, similar to the degenerate case found in scalar Padé approximation, the resulting
matrix rational form Q(z)−1 · P (z) does not agree any more with A(z) to the full order
condition.

4 The PHPA Table

We have several degrees of freedom in defining a table of PHPA approximants. For
example, we can consider the m-dimensional table of approximants of type (n, s, ‖n‖+ t)
with fixedm, s, t and parameter n. This approach is of course influenced by the well-known
results for Hermite Padé approximation [2, 11]. Rather than proceeding as mentioned
above, we instead define a two-dimensional table of approximants by introducing the
multi-indices

for M,N ∈ IN0 ∪ {−1}: n(M,N) =

M, . . . ,M︸ ︷︷ ︸
s

,
[
sN+m−s−1

m−s

]
, . . . ,

[
sN
m−s

]
︸ ︷︷ ︸

m-s

 (13)

where [·] denotes the Gauß function. Then as an (M,N) entry of our PHPA table we
take all PHPA’s of type (n(M,N), s, s · (M + N) + m − t) where t := min{s,m − s}.
Since ‖n(M,N)‖ = s · (M +N) +m, we always have at least t PHPA’s that are linearly
independent over IK .

Before discussing features of our PHPA table, let us have a closer look at special
cases. Obviously, for m = 2s = 2, we obtain the classical (linearized) Padé table. For
s = 1, m > 2, the PHPA table is a two-dimensional cut of the Hermite Padé table (see,
e.g., [2]), more precisely, on position (M,N) we find (scalar) Hermite Padé approximants
of type (M, [N+m−2

m−1
], . . . , [N+1

m−1
], [ N

m−1
]). For s = m− 1, m > 2, and F chosen as in (4),(5),

the PHPA table contains simultaneous Padé approximants of type (ρ1, . . . , ρm−1, ρm) =
(N, . . . , N,M + (2 −m) · N). Finally, for 2s = m > 2 and hence t = s > 1, an (M,N)
entry of the PHPA table can be used as a row of a left-hand square Matrix Padé form
(P,Q) of dimension s with numerator degree M and denominator degree N . It is the
latter example that motivates the approach that we have taken in defining the PHPA
table.

3More precisely, its rows are linearly dependent over IK [z].
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Although having a different interpretation for different m, s, we are interested in
singular blocks in the PHPA table. Here we distinguish between so-called elementary
and combined singular blocks, the first being a set of coordinates (µ, ν) with a common
PHPA entry P whereas for the second set we only demand that at position (µ, ν) we find
a polynomial multiple of P. 4 For Padé approximation (m = 2, s = 1) it is well-known
that (i) elementary singular blocks are triangles and that (ii) maximal combined singular
blocks are induced by irreducible approximants, (iii) look like squares, and (iv) never
intersect (e.g., [1, Part I, pp.19-31]). In the next Theorem we show that (i) and (ii) also
hold for PHPA tables for arbitrary 1 ≤ s < m, (iii) still holds for arbitrary 2s = m ≥ 2
and in general (iv) is not valid for m > 2. For a PHPA P, the following auxiliary integers
are used: M = M(P), N = N(P) and d = d(P), are uniquely defined by the relations
deg P ≤ n(M,N) (componentwise) but deg P 6≤ n(M − 1, N), deg P 6≤ n(M,N − 1), and
d · s+m− t ≤ ordsP < (d+ 1) · s+m− t.

Theorem 4.1. (Singular blocks in the PHPA table) Elementary singular
blocks always have the form of a triangle. More precisely, a PHPA P is a (µ, ν) entry of
the PHPA table if and only if

M(P) ≤ µ , N(P) ≤ ν , and µ+ ν ≤ d(P) . (14)

The combined singular block induced by P contains exactly those coordinates (µ, ν) with

M(P) ≤ µ , N(P) ≤ ν ≤ d(P)−M(P) , and
(m− s) · µ+ (m− 2s) · ν ≤ (m− s) · d(P)− s ·N(P) + κ(P)

(15)

with a κ(P) ∈ {0, 1, . . . , s−1}. In addition, maximal combined singular blocks are induced
by irreducible PHPA’s.

Proof: The geometrical form (14) of an elementary singular block follows immedi-
ately from the definition of the PHPA table and of M(P), N(P), d(P). For the second
assertion it is sufficient to show that (15) describes the union of the elementary singular
blocks induced by zj · P, j = 0, 1, 2, . . .. This is a direct consequence of the identities
M(zj · P) = M(P) + j, d(zj · P) = d(P) + j and N(zj · P) = N(P) + 1 + [ (m−s)·j−κ−1

s
]

with a suitable κ = κ(P) ∈ {0, . . . , s− 1} as above.
Finally, suppose that P is reducible, i.e. there exist c ∈ IK and Q ∈ IK 1×m[z] with
P = (z − c) ·Q. Then for each j ∈ IN0 the elementary singular block induced by zj ·P is
a subset of that induced by zj+1 ·Q. Hence the combined singular block induced by P is
a subset of that induced by Q but not vice versa. 2

Figures 1-3 show possible maximal combined singular blocks for different special PHPA
tables. The corresponding approximants are given in Tables 1-3. Notice that in each
example there are intersecting combined singular blocks. 5

4For the sake of simplicity, we will not discuss singular blocks at the ‘border’ of the PHPA table.
5The data required for the solution tables are obtained by the algorithm described in [4].
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f1(z) = 2z6 + 1+z

1−z
f2(z) = 1
f3(z) = 2z6 + 1+z

1−2z

Fig. 1: PHPA table for Hermite Padé approximation, m = 3, s = 1

Approximant M(P) N(P) d(P) combined block
P1 = (−1 + z, 1 + z, 0) 1 1 4 P1, zP1

P2 = (0, 1 + z,−1 + 2z) −1 2 4 P2, zP2, z2P2, z3P2

P3 = (1− z, 0,−1 + 2z) 1 2 5 P3, zP3

P4 = (1− 2z + z2, z + z2,−1 + 2z) 2 3 6 P4

P5 = (1− z, z + z2,−1 + z + 2z2) 1 4 6 P5

P6 = (1− 3z + 2z2, z + z2,−1 + 3z − 2z2) 2 4 ∞ P6

Table 1: Corresponding Hermite Padé approximants, M ≤ 4, N ≤ 8
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f1(z) = 2z6 + 1+z
1−z

f2(z) = 2z6 + 1+z
1−2z

f3(z) = 1

Fig. 2: PHPA table for simultaneous Padé approximation, m = 3, s = 2

Approximant M(P) N(P) d(P) combined block
P1 = (0, 0, 1) −1 0 −1 zjP1, j ∈ IN0

(0, 0, z2j) −1 j 2j − 1
(0, 0, z2j+1) −1 j + 1 2j
P2 = (1− 2z, 1− z,

1− 4z + 6z2 − 6z3 + 6z4)
1 2 4 zjP2, j = 0, 1, 2

P3 = (1− 2z, 1− z,
1− 4z + 6z2 − 6z3 + 6z4 − 6z5 + 4z6)

1 3 6 zjP3, j = 0, 1, 2, 3, 4

P4 = (1− z − 2z2, 1− z2,
1− 3z + 2z2)

2 1 5 zjP4, j = 0, 1, 2, 3, 4

P5 = (3− 4z − 4z2, 3− z − 2z2,
3− 10z + 10z2 − 6z3 + 6z4 − 6z5)

2 3 6 zjP5, j = 0, 1, 2, 3

P6 = (1 + 2z + 2z2 + 2z3 + 2z4 − 61z5 − 60z6,
1 + 3z + 6z2 + 12z3 + 24z4 − 15z5 − 29z6,
1− 63z5 + 62z6)

6 3 10 zjP6, j = 0, 1, 2

Table 2: Corresponding simultaneous Padé approximants, M ≤ 6, N ≤ 6

7



-

?

N

M

-1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

6

f f f f f f f ff f f f f f f ff f f f f ff f f f f ff f ff f f f ff f f f f f f ff f f f f f f f

A(z) =

[
1 + z2 + 2z4 − z5 + z6 −z5

z7 1 + z2 + z4 + z7

]

Fig. 3: PHPA table for left-hand Matrix Padé approximation, m = 4, s = 2

Approximant M(P) N(P) d(P) combined block
P1 = (1, 0, 1, 0) 0 0 1 zjP1, j = 0, 1
P2 = (0, 1, 0, 1) 0 0 1 zjP2, j = 0, 1
P3 = (1, 0, 1− z2, 0) 0 2 3 zjP3, j = 0, 1
P4 = (0, 1, 0, 1− z2) 0 2 5 zjP4, j = 0, 1, 2, 3
P5 = (1 + z2, 0, 1, 0) 2 0 3 zjP5, j = 0, 1
P6 = (0, 1 + z2, 0, 1) 2 0 3 zjP6, j = 0, 1
P7 = (1,−2, 1− z2 − z4

+z5 + 2z6,−2 + 2z2 + z5 − 2z6)
0 6 7 zjP7, j = 0, 1

P8 = (0, 1 + z2 + z4, 0, 1) 4 0 6 zjP8, j = 0, 1, 2
P9 = (1 + z + z2 + 2z4, 1− z + 2z2 − z3

+2z4 − 3z5, 1 + z − z3, 1− z + z2 − z5)
5 5 11 zjP9, j = 0, 1

P10 = (1 + z2 + 2z4 − z5 + z6,−z5, 1, 0) 6 0 ∞ P10

Table 3: Corresponding left-hand Matrix Padé approximants, M ≤ 6, N ≤ 6
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[11] S. Paszkowski, Hermite Padé approximation, basic notions and theorems, J. Comput.
Appl. Math. 32 (1 & 2)(1990) 229-236.

[12] M. Van Barel & A. Bultheel, The computation of non-perfect Padé-Hermite approximants,
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