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ABSTRACT

it is shown that the invertibility of a Toeplitz matrix can be determined through
the solvability of two standard equations. The inverse matrix is represented by two of
its columns (which are the solutions of the two standard equations) and the entries of
the original Toeplitz matrix.

1. INTRODUCTION

Let A be an n-by-n Toeplitz matrix:

ag a_, a7 A_(y-y

a, ag a_, Tt A (y-gy

A=] @ a, agy T A (n-3)
@1 Gp_g G,_3 a4y
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where a_(,_,....,a,_, are complex numbers. We use the shorthand A =
(a,_,)p .-, for a Toeplitz matrix.

Tlile results of Gohberg and Semencul [3] show that the inverse of a
regular Toeplitz matrix can be sometimes represented via its first and last
columns. Their theorem is as follows:

THEOREM 1.1 (Gohberg and Semencul). Let A = (a,_); ,—1 be a
Toeplitz matrix. If each of the systems of equations
n
Zaln_qxq=6p‘1 (p=12,...,n),
g=1
Zap—qu_—ap,n (p=1’2’ ’n)
g=1
is solvable and x|, # 0, then A is invertible and
xy, 0 o 0][Y Yur Y]
< 1| . . . : : .
Xy Xpn-1 Xy 0 0 yn_J
0 0 o]{0 «, Xy |
Y 0 0 :
- - {0 o X,
Ya-1 Y1 OJlo o 0 |

Another case in which two columns of the inverse of a regular Toeplitz
matrix are sometimes sufficient to represent the entire inverse matrix appears

in [2].

THEOREM 1.2 (Gohberg and Krupnik). Let A =(a,_); _, be a
Toeplitz matrix. If each of the systems of equations

Zap—qxq=8p,l (p=12,...,n),
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is solvable and x, + 0, then A is invertible and

z 0 0[O0 «x, Xy
PN | R T | EA
x, |l 0 0 x,
2y Zp-1 21110 O 0
X, 0 010 =z, 2y
Xy, X 0 :
: : .10 o Zn
_xn xn—l xl 0 0 0
[ xx, xX%,_; oA
XogXp XgXp_y T XX
+| . . (1.1)
anxn xnxn—l xnxl

However, this is not always the case. It is shown in [2] that the inverse of
the Toeplitz matrix

—_—_- O
-0 o O
co o~
O DO

cannot be determined by any pair of its columns.
Ben-Artzi and Shalom have shown in [1] that three columns of the inverse
of a regular Toeplitz matrix are always enough to reconstruct it.

THEOREM 1.3 (Ben-Artzi and Shalom). Let A = (
Toeplitz matrix. If each of the systems of equations

)

o p.q=1 be a
n

Zap_qxq=8pyl (p=12,...,n),
qu—quzsp,n+l—l (P=1’2’~--’")’

n
) a4, g2, =8, o (p=12,...,n),
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is solvable for any integer number 1 (1 <1 < n) for which x; # 0, then A is
invertible with inverse given by

0 o 0¥ Yu-r— R YL TR
1|z, = e 0 0 Y, Yy — Zg
X, Xp-1 Xy 0 0 Yn
z, 0 010 =, X, |
| 2T T 0 o | (1.2)
: " : S | LU U
Bn TYn-1 T Z2T Y A O 0 - 0]

The results of [8] show that the inverse of a Toeplitz matrix A can always
be determined by only two systems of equations having A as coefficient
matrix. Subsequent results of [4], [7], and [6] show that one of the two
equations can be chosen to be of the form

AX=E, (1.3)

where E is a column vector in the standard basis in C". In all four cases,
however, the second equation has a right-hand side that depends on the
entries of the matrix A.

The main result of this paper shows that it is enough to solve only two
systems of linear equations of the form (1.3) where E is a column vector in
the standard basis in C" in order to determine the invertibility of A. In this

case, we obtain a formula for A™! in terms of two of its columns and the
entries of A.

THEOREM 1.4. The Toeplitz matrix A = (a )

—qp.q=1 08 invertible if and
only if the following conditions hold:

(a) There exists a solution for the following system of equations:
Zlapvqxqzép,l (p=12,...,n).
4=

(b) Let l be such that x; # 0 and x, = 0 for all ¢ > 1. Then there exists a
solution for the following system of equatzons

Zapngq=5p'n+2,, (p=12,....n).
=1
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In case | = n then A™' is given by (1.1), while in case | < n then Al is
given by (1.2) for

n—1
Y, X, X
y2 x2 x2
S l=18-1": [04 g 7" G- 0] S (14)
y.n x'n x'"

Here S denotes the n-by-n lower shift matrix

0 0 0 0
10 0 0
s=10 1 Lo
0 0

00 -« 1 0

In the next section we prove Theorem 1.4 and obtain some corollaries. In
Section 3 we state the analogous results for Hankel matrices, and in Section 4
we consider the issue of minimality. Namely, when can the solution of a
unique system of linear equations AX = E determine the invertibility of the
Toeplitz (or Hankel) matrix A?

2. PROOF OF THE MAIN RESULT

First let us present some useful notation. We denote the row with entries
by, by, ..., b, either by rowm(b,, b,,...,b) or by row(h,);_;. The column
with entries by, by, ..., b, is denoted either by col(b,, éz, ..., b)) or by

col(b)i_,. Let EV E® .. E™ and F,F®, . F™ be the n unit
columns and unit rows, i.e.,

E(")=col(5ﬂyq):=1 (g=1,2,....n)
and
F“’)=row(6p‘q)::l (g =1,2,...,n).
We extend the definition in the sense that E®, for example, is the zero

column.
For any matrix A we denote its transposed matrix by A”.
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LeEmMMa 2.1, Let A=(a,_,); ,_,
col(x,);_, be a column vector for whic

be a Toeplitz matrix and X =

AX = EO. (2.1)
Define the column vectors
XD = (S — XFVAS)' X (i >0). (2.2)

Note that in particular X” = X. Let | be such that x; # 0 and x, = 0 for all
q > 1, and denote X = col(x;f));=1. Then

AXD = ECHD (4=0,1,...,n—1)
and
x;')=0 (i=0,1,....,n—=1, p>1+i).

Proof. We prove the assertions by induction on i. The case of i =0
follows from the assumption on X. Next, assume that the lemma is valid for
i <n — I, and prove it for i + 1. Note that (2.2) implies

XG*D = (§ — XFWAS)X©, (2.3)
and therefore,

(+1) — p(pyG+l) — G) _ ) (i)
x, F'PX x,0 — x, FFUASXTY.

But if p>1+i+ 1, then in particular x, =0, and also xg,i)_l =0 (as
p — 1 > 1+ i). Therefore,

x(*h =0
Moreover, it follows from (2.1) and (2.3) that
AXG+D = (AS — EVFWAS) X O,
But

SA — AS = SAE™F™ — EOFMAS
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for any n-by-n Toeplitz matrix A, so
AXU*D = (SA — SAEMWF®) X,

Note that F™WX® = x =0, as we assume that i < n — [. Furthermore,
SAX® = SE0) = EG*D), .

Proof of Theorem 1.4. It is clear that if the Toeplitz matrix A is
invertible, then both systems of equations are solvable. Conversely, assume
that both conditions are fulfilled. In particular, (2.1) holds for the column
vector X = col(xp);: 1- Thus, it follows from Lemma 2.1 that

AY = E(n+l—l)

for the column vector
Y = (S — XFVAS)" X, (2.4)

Furthermore, condition (b) implies the existence of a column vector Z [which
is precisely col(z,);_ ] for which

AZ = E¢*27D,

It follows from Theorem 1.3 that the matrix A is indeed invertible. The

formula for A7 ! is a simple consequence of the identity between (2.4) and
(1.4). [

In Theorem 1.4 there are two extreme cases. The first one is when [ = n,
This is precisely the case that appeared in [2] and is stated as Theorem 1.2.
The second case is when [ = 1, which happens when the matrix is an upper
triangular Toeplitz matrix. This result can be easily proved independently of
our main result. However, we state it for illustrative purposes.

COROLLARY 2.2. Let A =(a,__)
a complex number x such that

be a Toeplitz matrix. There exists

n
p—q’p.g=1

A- [xE(l)] — E(l)

if and only if A is an upper triangular matrix (i.e., a, = 0 for i > 0) and
ay # 0. In this case, x = 1/a,, the matrix A is invertible, and its inverse
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matrix A™" is the upper triangular Toeplitz matrix

yn yn—l yl
A-lo 0 Y Tt Y,
0 0 Yy,
in which
! ’ ’ n—1
—a_, —a’, a_ -y O
1 1 0 0 0
col(g, )y = —| © 1 g ; | EY,
0 . . . 0
0 0 1 0

where a’_; =a_,/a, fori=1,2,...,n — 1.

Clearly, an analogous result holds for lower triangular Toeplitz matrices as
well. In general, for regular Toeplitz matrices the last column of the inverse
can replace the first one. Also in this case, we might need an additional
column.

THEOREM 2.3. The Toeplitz matrix A = (

)y 41 is invertible if and
only if the following conditions hold:

Gp—q
(a) There exists a solution for AX = E™.
(b) Denote X = col(x,);_,, and let m (1 < m < n) be such that x,, # 0

m

and x, = 0 for all ¢ < m. Then there exists a solution for AZ = E" ™™,

In this case, denote Z = Col(zp)" then the inverse is given by

p=1
xn xn—l xl yl 0 O
1 {]0 =z, Ll gy, — 2 0 0
x, || : :
0 0 Yo fl Yn — %01 Yo — 2y Y,
Zn Zp-1— Yn Z1 y2 0 0 0
0 z, 29 — Y5 X, 0 0
+ : N . 4
0 0 z, X,_1 x; O
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where the column Y = col(y,); _, is defined by
Y = (ST — XFWAST)" "' x.
Proof. The proof follows essentially from Theorem 1.4, noting that for

any Toeplitz matrix A, its transposed matrix A" (which is clearly a Toeplitz
matrix as well) satisfies

A = JATJ
for the n-by-n matrix
[0 0 0 1]
0 1 0
J=|: 0 -0 (2.5)
0 IR
(1 0 - 0 |

Now, Jcol(x,);_, = col(x, - ), _ 1, so the equation AX = E™ is equiva-
lent to (JAJ g(]X = JE™ ()as J? is the identity matrix), or to
AT col(x,, 1-pp—1 = EY. Note that x,, is the last nonzero entry of X if and
only if x, is the first nonzero entry of JX for { = n + 1 — m. Apply Theorem
2.3 to the Toeplitz matrix A, the column JX and I =n + 1 — m. Let
col(z,, - ,);_, be the solution of the second system of equations [part (b) of
Theorem 1.4]. Namely, A"JZ = E"*27D for Z = col(z,); _ . Equivalently,
AZ = E""D or AZ = E"™™, m

COROLLARY 2.4.  Let A = (a,_,);  _, be a Toeplitz matrix. There exists
a complex number x such that

A- [xE(")] = E®
if and only if A is a lower triangular matrix (i.e., a, = 0 for i <0) and
ay # 0. In this case, x = 1/a,, the matrix A is invertible, and its inverse

matrix A~} is the lower triangular Toeplitz matrix

Y, 0 “en 0

Yn yn-A 1 = !jl
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in which
0 1 0 O
0 0 . .
n 1 . . . ’ i 6 ( )
col(yp)p=l=;; : : . E™,
0 0 0 1
0 =—a,_, —a; —a
where a] = a;/a, fori=1,2,...,n — 1.

As before, the above result is stated for illustrative purposes only, since
the formula is easily derived independently of Theorem 2.3.

3. INVERSE FORMULAE FOR HANKEL MATRICES

Let A be an n-by-n Hankel matrix

[ a, a, a, a, ]
;44 a0 a4,
A= a; _ . ‘ . . Arve |
aﬂ
_an qpvi Gnyg a2n—1_
with a),...,a,, |, complex numbers. We use the shorthand A =

(a,,,-1); -1 to denote these matrices. Hankel matrices have many features
in common with Toeplitz matrices. In this section we state and prove the
corresponding versions of Theorem 1.4 and 2.3 along with their corollaries as
they apply to Hankel matrices.

THEOREM 3.1. The Hankel matrix A =(a,,,_ ), ,_, is invertible if
and only if the following conditions hold:

(a) There exists a solution for the following system of equations:

n

Zap+q~lxn—q+l=8p,l (P':l’z’---’")'
g=1
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(b) Let I be such that x; # 0 and x, = 0 for all ¢ > l. Then there exists a
solution for the following system of equations:

n

Zap+q_l~zn_q+l=6p,"+2_, (p=12,...,n).
g=1

In addition the inverse is given by

X, X, x, Y, Yoo1 — %y Yy, — %,
1 0 Yn Y2 ~ 23
xl xz xl b 0 . .. . .

x, 0 - o]0 0 -y,
Zp T Y 23 — Y 2 0 X, x2w

+ . . . . . . . .
-y o 0 0]lo 0 g,
k9 0 0 0 0 0 ]

with
col(Y—par)yoy = {ST = col(x, 1)),

n—1 n
-[O,al,...,an_l]} col(x, -, 41),-1-

When ! = n the resulting inverse formula is easily transformed into the
inversion formula for Hankel matrices given by Gohberg and Krupnik [2]. For
the other extreme, namely when I = 1, we have:

COROLLARY 3.2. Let A=(a,, ), ., be a Hankel matrix. There
exists a complex number x such that

A- [xE(")] = E®

if and only if A is an upper quasitriangular matrix (i.e., a; =0 for i > n)

and a, # 0. In this case, x = 1/a,, the matrix A is invertible, and its inverse
1

matrix A™" is the upper quasitriangular Hankel matrix
0 0 ‘e yn
A _ 1 _ . :. * .
0 Y
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in which
[ 0 0 1 ol
yn : 0
ol .
gl "o | O 1 : ,
Y, 1 0 0 0
—a, , —a,., —a; 0

where a] = a;/a, fori=1,2,....,n — 1.,

For the corresponding results where the last, rather than the first, column
of the inverse is known we have:

THEOREM 3.3. The Hankel matrix A =(a,, ), ,_, is invertible if
and only if the following conditions hold:

(a) There exists a solution for the following system of equations:

n

anq_lxn_qﬂ=6p,,l (p=12,...,n).
g=1

(b) Let m be such that x,, # 0 and x, = 0 for all ¢ < m. Then there
exists a solution for the following system of equations:

n

zap+q,1zn_q+l=5p,n_m (p=12,...,n).
g=1

In this case the inverse is given by

0 0 X, Y, 0 0
1 : : Yy — %, 0 0
Xn 1] 0 x, Xy : . : .
X, Xp- i Xy Yo — Zpn o Yo — 24 Yy
0 0 Z, 0 0 O
x, 0 0
+ . . )
0 Zn Zg — Y3
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where

COI( yn—p+l);=]

m—1

= {S - COl(xn——p+l):=1 ) [an+l""’aZn—l’O]} COl(xn’p+l);:1'

CoRrOLLARY 3.4. Let A=(a,, ), ., be a Hankel matrix. There
exists a complex number x such that

A- [xE(l)] = E®
if and only if A is a lower quasitriangular matrix (i.e., a; = 0 for i <n) and

a, # 0. In this case, x = 1/a,, the matrix A is invertible and its inverse
matrix A~" is the lower quasitriangular Hankel matrix

yn yn—l o yl
A—l= : ) :
Ys Yy 0
Y1 0 0
in which
[ ’ ’ ’ n—1
0 —ay,, - LY _an+lw
Yn 0 0 0 1
S ' ’ 1 0 ED,
Ys a, .
Y1 0 0 :
0 0 0 |

where a] = a,/a, fori=n+1,n+2,...,2n— 1.

Proof. Theorems 3.1 and 3.3 along with their corollaries are all proved
in a similar fasnion.
For each i,j=1,...,n, define a,=aq,_,. if J is the n-by-n matrix

defined by (2.5), then

Al = (ﬁp—q):,q=1 = A
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a Toeplitz matrix. Parts (a) and (b) of Theorem 3.1 then correspond to parts
(a) and (b) of Theorem 1.4 applied to the matrix A. Since J is its own
inverse, Theorem 3.1 follows dlrectly from Theorem 1.4 along the observa-
tion that

SEETIRE e

Similarly, parts (a) and (bA) of Theorem 3.3 correspond to parts (a) and (b) of
Theorem 2.3 applied to A. n

4. MINIMAL NUMBER OF STANDARD EQUATIONS THAT
DETERMINE INVERTIBILITY

In this section, we show that the results stated above are minimal.
Namely, one cannot determine the invertibility of a Toeplitz or a Hankel
matrix through the solvability of precisely one system of equations of the form

where E is a unit column vector, unless A is triangular (Toeplitz) or
quasitriangular (Hankel).

It has been shown in [5] that one cannot determine the invertibility of an
n-by-n Toeplitz matrix A from the existence of solutions to AX = U, for any
n — 1 fixed vectors U, U,,...,U,_, € C". Here we consider a slightly
different problem. We are given two unit columns (e.g. E®¥ and EC+27D g5
in Theorem 1.4), and we have shown that the invertibility of A can be
deduced, using the structure of the solution columns (in fact, we merely used
the fact that x; was the last nonzero entry of the column X which solves

AX = EW),

THEOREM 4.1. Let X = col(x,);_, be a nonzero column. Let | and m
be two integers (1 < < n) suc that x; # 0, xm #= 0, and x, = 0 when-
everq <lorq > m. Let E(') be a unit column (1 < n). Then there exists
a singular n-by-n Toeplitz matrix A = g1 such that AX = E®
unlessi=1l=m=1ori=10=m=n, wﬁzcitoccurs if and only if A is a
regular traigular Toeplitz matrix (upper in the first case and lower in the
second case).

Proof. First let us consider the case in which ! <i. Consider the
Toeplitz matrix A = (a,_,), ,_, in which a; = 0 whenever j <i -1, a,_,
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= 1/x;, and all the other entries are defined recursively by

—Xela, g x
= Jj= I+k . .
a; = (j>i-D.

X

This Toeplitz matrix is clearly singular (having zero row as its upper row), and
it satisfies AX = E,

The second case is of i <m. Now we consider the Toeplitz matrix
A =(a,_,)) - in which ¢, =0 whenever j >i—m, a, ,, = 1/x,, and
all the other entries are defined recursively by

i—m

-1
—Z;\l"l(l/ﬁ-l\\mfk N ,
a, = (j<i—m).
x

m

This Toeplitz matrix is again a singular matrix (having zero row as its lower
row) which satisfies AX = E©,
The last possible case is the one in which m < i <. But it is clear thot

I <'m, so in this case X =xE" for some nonzero complex number . i
1 <i < n, then one can take the Toeplitz matrix A = ((1 p—q );'u/=l in which
a, 1 =ay,=a__,=1/x and a; = 0 whenever j #n ~ 1,0, =(n — 1).

This singular (the first and last rows are identical) Toeplitz matrix clearly
satisfies A [xEW] = EW,

Note that if i = 1 or i = n, then the matrix A must be an invertible
triangular Toeplitz as discussed in Corollary 2.2 and in Theorem 2.3. [ |

For Hankel matrices we have an analogous result, which we state without

proof.

THEOREM 4.2.  Let X = col(x,_,,),_, be a nonzero column. Let l and
m be two integers (1 <I,m < n) such that x, # 0, x,, # 0, and x, =0
whenever ¢ <lor g > m. Let E) be a unit column (1 < i < n). Then there
exists a singular n-by-n Hankel matriv A = (a,,,_ ),  _, such that AX =
Eunlessi =1=m=1o0ri=1=m=n, which occurs if and only if A is
a regular quasitriangular Hankel matrix (upper in the first case and lower in
the second case).
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