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ABSTRACT 

it is shown that the invertibility of a Toeplitz matrix can be determined through 

the solvability of two standard equations. The inverse matrix is represented by two of 

its columns (which are the solutions of the two standard equations) and the entries of 
the original Toeplitz matrix. 

1. INTRODUCTION 

Let A be an n-by-n Toeplitz matrix: 

a-1 aP2 *‘a a-(,- 1) 

a0 a_l *** a-(“-?_) 

A= a1 a, ... a-(“-,) 

f ! .‘. ! 
npl an-2 an-3 ... a0 
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A-&-L x2 Xl 
. . . 0 0 Yn ... Yz 

Xl 

xtl x n-l Xl 

0 . . . 0 

Yl 
. . . 0 

- 

. 

.Yn-1 Yl 

Another case in which two columns of the inverse of a regular Toeplitz 
matrix are sometimes sufficient to represent the entire inverse matrix appears 
in [2]. 

144 GEORGE LABAHN AND TAMIR SHALOM 

where a._(._,), . . . , a,_ 1 are complex numbers. We use the shorthand A = 
(a, _ >;, 4 = 1 for a Toeplitz matrix. 

TK e results of Gohberg and Semencul [3] show that the inverse of a 
regular Toeplitz matrix can be sometimes represented via its first and last 
columns. Their theorem is as follows: 

THEOREM 1.1 (Gohberg and Semencul). Let A = Cap_,>,” 4= 1 be a 
Toeplitz matrix. If each of the systems of equations 

(p=L% . . . . ft) 

is solvable and xl # 0, then A is invertible and 

THEOREM 1.2 (Gohberg and Krupnik). Let A = (a,_ y>p”, y = I be a 
Toeplitz matrix. lf each of the systems of equations 

(p = l,%...,n), 
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is solvable and x, z 0, then A is invertible and 

. . . 

X1X" X1X,-l 

x2 *n XZXn-1 

+ . [l ( xrl XII X,X,-l 

0 0 2” 
0 : : II , 0 0 

*1 0 0 

.., 
x1x1 

. . . 
x2*1 

“. : I; 

. . . 
X,X1 

. . . 
22 

:j 

2, 

0 
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However, this is not always the case. It is shown in [2] that the inverse of 
the Toeplitz matrix 

cannot be determined by any pair of its columns. 
Ben-Artzi and Shalom have shown in [l] that three columns of the inverse 

of a regular Toeplitz matrix are always enough to reconstruct it. 

THEOREM 1.3 (Ben-Artzi and Shalom). Let A = (a,_ 4);. 4= 1 be a 
Toeplitz matrix. lf each of the systems of equations 

(p = l,%...,n), 
q=l 

q=l 

q=l 
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is solvable for any integer number 1 (1 < 1 < n) for which x1 # 0, then A is 

invertible with inverse given by 

+ 

21 . . . 0 0 

:I[ 

0 x, ... x2 

Z2-yi e.0 0 0 : : . . : 

t (j 0 ..: x.” 

Zll-YYn-1 *** zz-Yl Zl 0 0 *** 0 11 . (1.2) 

The results of [8] show that the inverse of a Toeplitz matrix A can always 
be determined by only two systems of equations having A as coefficient 
matrix. Subsequent results of [4], [7], and [6] show that one of the two 
equations can be chosen to be of the form 

AX = E, (1.3) 

where E is a column vector in the standard basis in C”. In all four cases, 
however, the second equation has a right-hand side that depends on the 
entries of the matrix A. 

The main result of this paper shows that it is enough to solve only two 
systems of linear equations of the form (1.3) where E is a column vector in 
the standard basis in @” in order to determine the invertibility of A. In this 
case, we obtain a formula for A - ’ in terms of two of its columns and the 
entries of A. 

THEOREM 1.4. The Toeplitz matrix A = (a, _ ,I,“, y = 1 is invertible if and 
only if the following conditions hold: 

(a> There exists a solution for the following system of equations: 

k aP-4xy = $,, (p = 1,2 ,..., n). 
q=l 

(b) Let 1 be such that x, z 0 and xy = 0 for all q > 1. Then there exists a 
solution for the following system of equations: 

2 ap-vzy = $?.“f2H (p = 1,2 ,..., n). 
9=1 



given by (1.2) for 

Yl Xl 
YZ II : [:i = s - “.” [U-I a_2 0.. a-(,-l) 0 

I 

Y” x,, 
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In case 1 = n then A-’ is given by (l.l), while in case 1 < n then A-’ is 

n-l 

I 

Here S denotes the n-by-n lower shifi matrix 

In the next section we prove Theorem 1.4 and obtain some corollaries. In 
Section 3 we state the analogous results for Hankel matrices, and in Section 4 
we consider the issue of minimal&y. Namely, when can the solution of a 
unique system of linear equations AX = E determine the invertibility of the 
Toeplitz (or Hankel) matrix A? 

2. PROOF OF THE MAIN RESULT 

First let us present some useful notation. We denote the row with entries 

b,, b,, . . , b,Y either by row(b,, b,, . . , b,%) or by row(b,Y,,. The column 
with entries b,, b,, . . , b,T is denoted either by col(b,, t)s,. . , b,) or by 
col(b,)f= 1. Let E(l), EC’), . . , E’“’ and F(l), F(s), . . , F(“) be the n unit 
columns and unit rows, i.e., 

and 

Ecy) = c01($,<,);=~ (4 = 1,2,...,n) 

Fey) = row(S,,y)C=, (4 = 1,2 ,..., n). 

We extend the definition in the sense that E(O), for example, is the zero 
column. 

For any matrix A we denote its transposed matrix by AT. 
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LEMMA 2.1. Let A = (u~_~);,~=~ be a Toeplitz matrix and X = 
col( xp>p”= 1 be a column vector for which 

Define the column vectors 

M zr EC’), (2.1) 

Xci) = (S - XF(‘)AS)iX (i > 0). (2.2) 

Note that in particular X (‘) = X. Let 1 be such that x, # 0 and xq = 0 for all 

q > 1, and denote Xti) = col(x~))~=,. Then 

and 

AX(i) = j$i+ 1) (i =O,l,...,n -1) 

x(i) = 0 
P (i=O,l,..., n-l, p>l+i). 

Proof. We prove the assertions by induction on i. The case of i = 0 
follows from the assumption on X. Next, assume that the lemma is valid for 
i < n - 1, and prove it for i + 1. Note that (2.2) implies 

x(i+ 1) = (s _ x@l)As) x(i), (2.3) 

and therefore, 

x(i+ 1) 
P 

= p-(p)x(i+l) = x;‘l _ x j7(l)Asx(i), 
P 

But if p > 1 + i + 1, then in particular xp = 0, and also x:1 1 = 0 (as 
p - 1 > 1 + i). Therefore, 

x(i+l) = 
P 0. 

Moreover, it follows from (2.1) and (2.3) that 

fl(i+ 1) = (AS _ E”‘F”‘AS) x(i), 

But 

SA _ AS = SAE’“‘F’“’ - E”‘F’l’AS 
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for any n-by-n Toeplitz matrix A, so 

MC’+‘) = (SA - SAE’q7’“‘) x(i). 

Note that F(“)X(i) = x’,” = 0, as we assume that i < n - 1. Furthermore, 
SAX(i) = s@i) = E(i+ 1) n 

Proof of Theorem 1.4. It is clear that if the Toeplitz matrix A is 
invertible, then both systems of equations are solvable. Conversely, assume 
that both conditions are fulfilled. In particular, (2.1) holds for the column 
vector X = col( xr>,“= i. Thus, it follows from Lemma 2.1 that 

Ay = E’“+ 1-l) 

for the column vector 

Y = (S - XF(')AS)"-iX. (2.4) 

Furthermore, condition (b) implies the existence of a column vector Z [which 
is precisely col( z,>,“= rl for which 

It follows from Theorem 1.3 that the matrix A is indeed invertible. The 
formula for A-’ is a simple consequence of the identity between (2.4) and 
(1.4). W 

In Theorem 1.4 there are two extreme cases. The first one is when 1 = n. 
This is precisely the case that appeared in [2] and is stated as Theorem 1.2. 
The second case is when 1 = 1, which happens when the matrix is an upper 
triangular Toeplitz matrix. This result can be easily proved independently of 
our main result. However, we state it for illustrative purposes. 

COROLLARY 2.2. Let A = (a,_ 9 )F, 9 = 1 be a Toeplitz matrix. There exists 
a complex number x such that 

A . [ @)] = E(l) 

if and only if A is an upper triangular matrix (i.e., ai = 0 for i > 0) and 
a, # 0. In this case, x = l/a,, the matrix A is invertible, and its inverse 
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matrix A-’ is the upper triangular Toeplitz matrix 

Yn-1 **. Yl 

in which 

COY Y&1 = ; 

-a’, -a’, **’ -a’(._,) 0 

1 0 . . . 0 0 
0 1 ‘. : : 

0 0 

0 0 ..: 1 0 

n- 1 

E(l) 

where a’+ = a-,/a,, for i = 1,2,. . . , n - 1. 

Clearly, an analogous result holds for lower triangular Toeplitz matrices as 
well. In general, for regular Toeplitz matrices the last column of the inverse 
can replace the first one. Also in this case, we might need an additional 
column. 

THEOREM 2.3. The Toeplitz matrix A = ( ap _ y>;, y = 1 is invertible if and 
only if the following conditions hold: 

(a) There exists a solution for AX = EC”). 
(b) Denote X = col( xP>p”= 1, and let m (1 < m < n) be such that x,,, z 0 

and xq = 0 for all q < m. Then there exists a solution for AZ = EC”-“‘). 

In this case, denote Z = col(z,),“= 1; then the inverse is given by 

1 
- 

x7n 

x, X,-l *-* x1 . . . 

0 x, *** x2 y2y’ z1 . . . I: 
0 

: .. :I[ : . . : 
0 

0 0 : (j (j ..: x; y" _‘Z”_l a**. Y2 1 Zl i, 1 
Z” 

0 

+ I. 
Z,-l-Y, ... Zl--y2 0 . . . 0 o\ 

2, . . . 52. - Y3 x1 *** 0 0 : .. : ’ . . . 

0 (j ..: s, II:. x”; 1 ..: ;, I. (j 
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where the column Y = col( y,>,“= 1 is defined by 

Y = (ST - XZ7(“)AST)‘11- lx, 

Proof. The proof follows essentially from Theorem 1.4, noting that for 
any Toeplitz matrix A, its transposed matrix AT (which is clearly a Toeplitz 
matrix as well) satisfies 

for the n-by-n matrix 

A = ]A’] 

0 0 ... 0 1 

0 : .f. 1 0 

J= i 0 *.* 0 t 

0 1 .** ; 0 

1 0 ... 0 0 

(2.5) 

Now, Jcol(~~)“=~ = 
lent to (JAJkJX) 

coKx,+,_ >;+ so the equation AX = E’“’ is equiva- 

AT col(x >” 
= JE(“) 6s J” is the identity matrix), or to 

n+1-D u=l = E(l). Note that x,,, is the last nonzero entry of X if and 
only if x[ is the’ first nonzero entry of IX for I = n + 1 - m. Apply Theorem 
2.3 to the Toeplitz matrix AT, the column JX and I = n + 1 - m. Let 
col( Z ,,+ l_P)~=l be th e solution of the second system of equations [part (b) of 
Theorem 1.41. Namely, ATJZ = E (“t2-1) 
AZ = E”- I), or AZ = E’“-“1’. 

for 2 = col(~~~)~=~. Equivalently, 
W 

COROLLARY 2.4. Let A = (a, _ y >g, ‘I = 1 be a Toeplitz matrix. There exists 
a complex number x such that 

A . [ xE(“)] = E’“’ 

if and only if A is a lower triangular matrix (i.e., a, = 0 for i < 0) and 
a, # 0. In this case, x = l/a,, the matrix A is invertible, and its inverse 
matrix A -’ is the lower triangular Toeplitz mutn’x 

y1 0 ... 0 
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where ai = ai/aO for i = 1,2,. . . , n - 1. 

As before, the above result is stated for illustrative purposes only, since 
the formula is easily derived independently of Theorem 2.3. 

3. INVERSE FORMULAE FOR HANKEL MATRICES 

Let A be an n-by-n Hankel matrix 

a1 a2 a3 *** a” 

a2 a3 a4 : a,+, 

A= a3 : *a* .-* ani 

an : 

a, ant1 an+2 -*a fJ2n-1 

with a,, . . . , a2n_1 complex numbers. We use the shorthand A = 

(U p + 4 _ l);, 4 = 1 to denote these matrices. Hankel matrices have many features 
in common with Toeplitz matrices. In this section we state and prove the 
corresponding versions of Theorem 1.4 and 2.3 along with their corollaries as 
they apply to Hankel matrices. 

THEOREM 3.1. 
and 

The Hankel matrix A = (u~+~_ 1>,“, 4= 1 is invertible if 

only if the following conditions hold: 

(a) There exists a solution for the following system of equations: 

2 ap+g-lx”-q+1= p.1 6 (p = 1,2 ,..., n). 
q=1 
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(b) Let 1 be such that x1 z 0 and xy = 0 for all q > 1. Then there exists a 

solution for the following system of equations: 

2 ap+9-l ezn-y+l = 6 p,n+z-1 (p = 1,2 )...) fz). 
9=1 

In addition the inverse is given by 

1 
- 

Xl 

xn X,-l **- Xl 

:I! 
yn y”_l - 2 ..* y1 - z2 

” 

. ** : 0 Yn ... yz - “3 

x2 x1 ..* 

Xl 0 . . . . II (jr ; ‘.,I 

0 0 0 . . . 
Y?l I 

-%I - Yn-1 
. . . 

22 - Yl X” 
. . . 

x2 

22 - Yl 

21 

. . . 

. . . 
0 

0 

0 

0 

. . . 

with 

col(Y”-,+l);=, = ( ST - col(x,-p+l);=l 

n-l 

.[O,a,,...,a,_, 1) 4~“-,+1);=1. 

When 1 = n the resulting inverse formula is easily transformed into the 

inversion formula for Hankel matrices given by Gohberg and Krupnik [2]. For 

the other extreme, namely when 1 = 1, we have: 

COROLLARY 3.2. Let A = (ap+4_ l);, 4= 1 be a Hankel matrix. There 

exists a complex number x such that 

A . [ &“)] = EC’) 

if and only if A is an upper qua&triangular matrix (i.e., ai = 0 for i > n) 

and a,, + 0. In this case, x = l/a,, the matrix A is invertible, and its inverse 

matrix A-’ is the upper qua&triangular Hankel matrix 

0 0 *** y” 

A_’ = ; ; : 1 I I 0 Y” *.* Y2 ’ 

Y” Yn-1 ... Yl 
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1 0 . . . 0 0 
-a’ , 

n-l -an-2 *a* -a; 0 

-n 1-I 

E’“’ 

where a,! = a,/a,, for i = 1,2, . . . , n - 1. 

For the corresponding results where the last, rather than the first, column 
of the inverse is known we have: 

THEOREM 3.3. 

and 

The Hankel matrix A = (up+ y _ 1);, q= 1 is invertible if 

only if the following conditions hold: 

(a) There exists a solution for the following system of equations: 

I? ap+q-1x,-q+l = 6 p,n (p = 1,2 ,...) n). 
q=l 

(b) Let m be such that x, # 0 and xy = 0 for all 

exists a solution for the following system of equations: 

5 ap+q-l+y+l = 6 p,n-m (p = 1,2, 
q=l 

In this case the inverse is given by 0 0 *** X” Yl 
: : : : Yz - z1 

(j x, . . . Xi * II _ ; 

X” X,-l *** x1 Y” - %I-1 

0 . . . 
Z” 

0 . .** ze-y3 %l 
2” Z”-l-Yn *** Zl--y2 

q < m. Then there 

. . ) n). 

. . . 0 0 

. . . 0 0 

. . . : :I YZG il 

0 .,. 0 0 
Xl *** 0 0 

. . . . 

. . 
X,-l a-0 x1 0 
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where 
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111 1 

= { S - col(x,_,+,);=, * [a,,,, . . > n,,-,,Ol) "01(~,,-,,1)]:=1. 

COHOLLARY 3.4. Let A = (a,,,, _ ,>;. ‘,= 1 be a Hankel matrix. There 

exists a complex number x such that 

A . [ &‘)I = E’“’ 

if and only if A is a lower quasitriangular matrix (i.e., ai = 0 for i < n) and 

a,, # 0. In this case, x = l/a,, the matrix A is invertible and its inverse . 
matrix A-’ is the lower quasitriangular Hankel matrix 

A-1 = : : ” 
yz y1 *-- 

Yl 0 . . . 

in which 

0 --a;,_, ... -a’ n+2 -a’ II+1 

0 0 . . . 0 1 

1 0 

0 0 *-- ; ; 

0 1 . . . 0 0 

1- 1 

E(l) 

where aI = a,/a,, for i = n + 1, n + 2,. . . ,2n - 1. 

Proof. Theorems 3.1 and 3.3 along with their corollaries are all proved 
in a similar fashion. 

For each i, j = 1, . . . , n, define hi = a,_,. if / is the n-by-n matrix 
defined by (2.51, then 

AJ = (n^,-,);,q_l = i 
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a Toeplitz matrix. Parts (a) and (b) of Th eorem 3.1 then correspond to parts A 
(a> and (b) of Theorem 1.4 applied to the matrix A. Since J is its own 
inverse, Theorem 3.1 follows directly from Theorem 1.4 along the observa- 
tion that 

A-’ = (&-I +-I, 

Similarly, parts (a) and (b) of Th eorem 3.3 correspond to parts (a) and (b) of 
Theorem 2.3 applied to A. 4 

4. MINIMAL NUMBER OF STANDARD EQUATIONS THAT 
DETERMINE INVERTIBILITY 

In this section, we show that the results stated above are minimal. 
Namely, one cannot determine the invertibility of a Toeplitz or a Hankel 
matrix through the solvability of precisely on= system of equations of the form 

AX = E, 

where E is a unit column vector, unless A is triangular (Toeplitz) or 
quasitriangular (Hankel). 

It has been shown in [5] that one cannot determine the invertibility of an 
n-by-n Toeplitz matrix A from the existence of solutions to AX = U, for any 
n - 1 fixed vectors Vi, U,, , U,, _ I E C”. Here we consider a slightly 
different problem. We are given two unit columns (e.g. E(l) and E’” + 2-1) as 
in Theorem 1.4), and we have shown that the invertibility of A can be 
deduced, using the structure of the solution columns (in fact, we merely used 
the fact that xI was the last nonzero entry of the column X which solves 
AX = E”‘). 

THEOREM 4.1. Let X = col(x >“= 1 be a nonzero column. Let 1 and m 

be two integers (1 < 1, m Q n> sue fz ihat x, # 0, x,,, # 0, and x = 0 when- 

everq <lorq >m. LetE ci) be a unit column (1 < i < n). The: there exists 
a singular n-by-n Toeplitz matrix A = (a _ >p”, v= 1 such that AX = EC’) 

unlessi=l=m=I ori=l=m=n,w zc occursifandonlyifAisa K. K. 

regular traigular Toeplitz matrix (upper in the first case and lower in the 

second case). 

Proof. First let us consider the case in which 1 < i. Consider the 
Toeplitz matrix A = cap _ 4 I;, 4 = I in which aj = 0 whenever j < i - 1, a, _, 



INVERSION OF TOEPLITZ MATRICES 157 

= l/x,, and all the other entries are defined recursively by 

aj = 
-cpr: a_kS,+k 

s, 
(j > i - 1). 

This Toeplitz matrix is clearly singular (having zero row as its upper row), and 

it satisfies AX = E”‘. 

The second case is of i < m. Now we consider the Toeplitz matrix 

A = (+,);:,<,=, in which (I, = O whenever j > i - m, ni ,I, = l/s ,,,, and 

all the other entries are defined recursively by 

n, = 
-C:‘i:a.,+g,,,-k 

s 
(j < i - tn). 

!I, 

This Toeplitz matrix is again a singular matrix (having zero row as its lower 

row) which satisfies AX = E”‘. 
The last possible case is the one in which 111 < i < 1. Hut it is de;]; ;il;‘t 

1 < m, so in this case X = .rE (i) for some nonzero complex number .s-. 1 I 
1 < i < n, then one can take the Toeplitz matrix A = (a,’ ,, 1;:. ,, = , in which 

= a,, = n 
;i: ’ . . 

_(,, ,) = l/x and (I, = 0 whenever j # n - 1, 0, - ( )I - 1). 

1s mgular (the first and last rows are identicalj Toeplitz matrix clearly 

satisfies A . [SE(‘)] = EC’). 

Note that if i = 1 or i = n, then the matrix A must be an invertible 

triangular Toeplitz as discussed in Corollary 2.2 and in Theorem 2.3. n 

For Hankel matrices we have an analogous result, which we state without 

proof. 

THEOREM 4.2. Let X = col(r,,_,,+ ,I;:=, he 0 nonzero colun~n. Let 1 ad 

nl he two integer (1 < 1, 1)~ < 11) mch that x, # 0, x,,, f 0, and s,, = 0 
wheneoer y < 1 or q > tn. Let E (I) he n unit column (1 < i < n>. Then there 

e1i.st.s n singular n-by-n Hankel nutria A = ((I,,, , _ ,>;:, ,, = , mch tht AX = 

EC” unless i = 1 = tn = 1 or i = 1 = tn = n, which OCCI~TS if and ml!/ if A is 

a regular cpnsitriangrtlar Hnnkel wltn’s (upper in the fir.rt cnse nnrl lower in 
the .second case>. 
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