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For a vector of k + 1 matrix power series, a superfast algorithm is given for the 
computation of multi-dimensional Pad6 systems. The algorithm provides a method for 
obtaining matrix Pad6, matrix Hermite Pad6 and matrix simultaneous Pad6 approximants. 
When the matrix power series is normal or perfect, the algorithm is shown to calculate 
multi-dimensional matrix Pad6 systems of type (n o . . . . .  n k) in O(ll n II" log 2 [I n II) block-ma- 
trix operations, where II n II = no + ' " " + nk. When k = 1 and the power series is scalar, this 
is the same complexity as that of other superfast algorithms for computing Pad6 systems. 
When k > 1, the fastest methods presently compute these matrix Pad6 approximants with a 
complexity of O(ll n II 2). The algorithm succeeds also in the non-normal and non-perfect 
case, but with a possibility of an increase in the cost complexity. 

Keywords: Matrix Pad6 approximants, simultaneous Pad6 approximants, 
Hermite Pad6 approximants, rational approximation. 

1. Introduction 

G i v e n  a v e c t o r  o f  k + 1 p o w e r  se r i e s  

o o  

Z i ( z  ) = ~ ai , j z  j, i = O, 1 , . . . ,  k ,  
j=o 

w i t h  c o e f f i c i e n t s  f r o m  a f ie ld  ~ ,  a H e r m i t e  

(1 .1)  

P a d ~  a p p r o x i m a n t  o f  t y p e  n = 
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(n o . . . .  , n k) is a set of k + 1 polynomials Pi(z) having degrees bounded by the 
n i - 1 and satisfying 

A 0 ( z ) ' P 0 ( z )  + "-" + A k ( z ) " e k ( z ) =  (1.2) 

where II n II = no + " ' "  + n k .  m simultaneous Pad6 approximant of type n is a 
set of k + 1 polynomials Pi(z) having degrees bounded by the II n I I -n ;  and 
satisfying 

Po(Z)'Ai(z)--Pi(z)'AO(Z)=O(ZIInlI+I), i= 1 . . . .  , k .  (1.3) 

(In the latter it is usually assumed that Ao(Z) -- 1.) These approximants are also 
known as type I and type II polynomial approximations, respectively. When the 
coefficients of the Ai ( z )  and Pi(z) come from the ring of p •  matrices over 
c~'-, rather than ~ itself, then we obtain matrix Hermite Pad6 and matrix 
simultaneous Pad~ approximants, respectively, of type n. When k = 1, these 
coincide with right and left matrix Pad~ approximants of a matrix of power 
series (cf., Labahn and Cabay [19]). 

In the scalar case, both types of approximants originated with Hermite [15,16] 
and Pad~ [26]. Simultaneous Pad~ approximants were used extensively by 
Hermite when he proved the transcendence of e. Both types of approximants 
have been widely studied and include many classical approximation problems 
(e.g., Pad6 approximants [13], integral approximants [18], directed vector approx- 
imants [14] and G3j approximants [1]). The general definition of both types of 
approximants, along with an extensive study of their properties is originally due 
to Mahler [23], who also noted strong relationships between the two types of 
approximants [24]. Additional properties and relationships can also be found in 
[7,10,11,17,20]. 

There exist a number of fast algorithms for computing these approximants. In 
the scalar case Della Dora and Dicrescenzo [12] and Paszkowski [29] present 
algorithms that compute a Hermite Pad6 approximant of type n in O( II n II 2) 
operations. However, they require the input vector of power series to have the 
property of being perfect (also called normal), a strong restriction. The algo- 
rithm of Cabay et al. [10] also computes a Hermite Pad~ approximant of type n 
in O( II n II 2) operations. Their method has the advantage that it also succeeds in 
the non-perfect case, but with a potential increase in complexity. There are no 
such problems with the algorithms of Beckermann [3] and Van Barel and 
Bultheel [2], which are of complexity of O( II n II 2) even in the non-perfect case. 
In terms of cost complexity, their algorithms are at present best, since they have 
the additional advantage that there is no increase in complexity in the non-per- 
fect case. In the case of simultaneous Pad~ approximants, a fast O( II n II 2) 
algorithm that requires no restrictions on the input vector of power series has 
been given by De Bruin [6] and Beckermann [3]. 

In this paper, we present superfast algorithms for computing both approxi- 
mants of a given type n. These algorithms can be applied to any vector of power 
series; the requirement of being perfect is not needed. In addition, the algo- 
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rithms also can be applied when the coefficients of the power series are square 
matrices rather than just scalars. When fast polynomial arithmetic is possible, 
either approximant can be computed with O( It n tl �9 log 2 II n II ) block-matrix oper- 
ations in the case of perfect power series. The algorithms can also compute 
these matrix Pad6 approximants in the non-perfect case, with only a slight 
increase in complexity. We note that there are pathological cases for which the 
algorithm requires up to O( ]l n l[ 3) block-matrix operations to compute the 
approximants. This is not the case with the scalar algorithms of Beckermann and 
Van Barel and Bultheel. However, when k --- 1 and p = 1, (i.e. the scalar case of 
Pad6 approximation) the complexity is always O( [1 n[l" log 2 I[ n II) operations. 
This is the same complexity as that of other superfast scalar Pad6 algorithms 
such as those given by Brent et al. [5], Cabay and Choi [9] and Sugiyama [30]. 

Our methods actually provide superfast methods for computing matrix Her- 
mite Pad6 and matrix simultaneous Pad6 systems, rather than just approximants. 
These Pad6 systems, introduced in [10] and [21], consist of the desired Pad6 
approximants along with additional weaker type of Pad6 approximants. Many 
applications require the entire Pad6 system rather than simply the Pad6 approxi- 
mant. Thus, for example, our results combined with [20] and [21] provide 
superfast algorithms for computing inverses of block Toeplitz and block 
Toeplitz-like matrices along with their block Hankel counterparts�9 

2. Matrix Hermite Pad~ systems 

In this section we discuss the notion of a matrix Hermite Pad~ system for a 
vector of matrix power series. This is a natural generalization of the correspond- 
ing scalar definitions given in Cabay et al�9 [10]. 

Let 
A ( z ) =  [ A o ( z ) l A l ( Z ) , . . . , A k ( z ) ]  = [B( z ) lC( z ) ]  (2.1) 

be a 1 • (k + 1) vector of p x p  matrix power series with det(Ao(0)) ~ 0. Let 
n = (no , . . . ,  n k) be a vector of nonnegative integers and 

So,o(Z) So,,(z) - .-  S0,k(Z ) 

S1,0(Z ) S l , l (Z)  ' ' '  Sl ,k(Z ) = [ z 2 P ( z )  l U ( z ) ]  
S ( z ) =  (2.2) 

' V (z )  '] 

S ,o(Z) . . .  

a p(k + 1) x )(k + 1) polynomial matrix with each Sij(z) a p x p  matrix polyno- 
mial. In (2.2) the constant and linear terms in Si,o(Z), i = 0, . . . ,  k, are zero and 
component-wise 

degree(S(z))  

n o + 1 

n l + l  

n k + l  

no 

nl 

n k 

� 9 1 7 6  

~ D 6 

no] 
n!  

n k 

(2.3) 
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DEFINITION 2.1 
Let n = (no, . . . ,  n k) be a vector of nonnegative integers with n i > 0 for at 

least one n;. The polynomial matrix S(z) is called a Matrix Hermite Pad~ System 
(MHPS) of type n for A(z)  if 
(I) S(z) satisfies the degree bounds (2.3); 
(II) A ( z ) . S ( z ) = z  Ilnll+l..4(z), where A(z)  is a 1 •  1) vector of p •  

matrix power series; 
(III) V(0) and /3(0) are nonsingular matrices, where /~(z) is the p •  matrix 

determined by partitioning A(z)  as 

,~(z) = [/~(z) I d(z) ] .  (2.4) 

A MHPS S(z) is said to be normalized if in condition (III) we have V(0) = Ipk 
and /~(0)= Ip. [] 

In the scalar (i.e. p = 1) case we refer to the above as simply a Hermite Pad~ 
System (HPS). For the sake of simplicity and without loss of generality, it is 
assumed in the remainder of this presentation that B (0 )= Ip  and that the 
components of n are ordered so that n~>~ . . .  >~na>na+ ~ . . . . .  n k = 0 ,  
where 0 ~< a ~< k. 

Remark 1 
If B(z )=Ip  and C(z)= [ A l ( z ) , . . . ,  Ak(z)], then 

C(z). V(z) + u(z)=z  

and 

(2.5) 

C(z) "Q(z) + P ( z ) = z  II"lt-' �9 (2.6) 

When k = 1, the pair (U(z), V(z)) generates a right matrix Pad6 fraction for 
C(z) of type (no, n a) while the pair (P(z), Q(z)) generates a right matrix Pad6 
form of type (n o - 1, n 1 - 1) for C(z) (cf., Labahn and Cabay [19]). [] 

Remark 2 
The definition of a MHPS is the natural extension of the concept of a 

Hermite Pad6 system, introduced in Cabay et al. [10]. In general, the first block 
column of a MHPS defines a matrix Hermine Pad6 form for A(z)  of type n, 
while block columns 2 to k + 1 define a "weak" matrix Hermite Pad6 fraction 
for A(z)  of type n (cf., Labahn [21]). [] 

Let 

D(z)  = B - l ( z ) ' C ( z )  (2.8) 
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be a 1 • k vector of p • p matrix power series and define 

= 

"dno_nl  + l, 1 �9 . . dno,1 

d n o - n l  + 2,1 d n 0 + l , 1  

dl ln l l_n l ,1  �9 . . d l l n l l _ l ,  1 

d n o - n  k + 1,k 

d no--nk + 2,k 

. . o  

d II n II --nk,k 

� 9  dno,k 

dno + 1,k 

�9 . . d l l n l l _ l ,  k 

(2.9 

where di, ~ is the coefficient of z; in the j th  component D~(z). Then a MHPS of 
type n can be obtained by solving a set of linear equations with H,  as the 
coefficient matrix. 

The component Q(z) of S(z) in (2.2) satisfying/~(0) =I o corresponds to the 
block solution X of 

H,,'X=E,,,  (2.10) 

where E ,  is the unit column vector of length II n II - n o  with a single Ip in the 
last block row. That is, if X is partitioned as 

g = [ x n l _ l , 1 , . . . , X o ,  1 l "  "" [ X n k - l , k , . . . , X o , k ] ' ,  (2.11) 

where each component x/a is a p •  matrix, then the j th  component Qj(z) of 
Q(z) is given by 

n j -  1 

a i ( z )  = Y'. Xi,j'Z i. (2.12) 
i = 0  

The remaining components of the first column of S(z) are then given by 

P ( z ) =  - D ( z ) . Q ( z )  mod z n'll-1 (2.13) 

Similarly, the components U(z) and F(z)  (with V(0) = Ipk) of S(z) in (2.2) can 
be obtained from the block solution Y of 

- d n o + l , 1  d n 0 + l , 2  �9 . . 

d n 0 + 2 , 1  d n 0 + 2 , 2  . . . 
H n ' Y =  - 

dl ln l l ,1  d l ln l l ,2  

dno+ 1,k - 

d no + 2,k 

d ll n ll ,k 

(2.14) 

U(z) = - D ( z ) ' V ( z )  mod z llnll+l (2.15) 

Note that (2.14) is valid even in those cases where ni = 0. (In the special case 
when ni = 0 for 1 ~ j  ~< k, the matrix H n is null and we simply set V(z) = Ipk.) 
The component U(z) of S(z) is then given by 
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Clearly, when H~ is nonsingular, solutions of (2.10) and (2.14) are possible. It 
is then easy to show that (2.10), (2.11), (2.14) and (2.15) provide for the existence 
of a normalized MHPS of type n. Theorem 2.2 states that this is both a 
necessary and sufficient condition for existence. 

THEOREM 2.2 
A MHPS of type n exists if and only if de t (H.)  4: 0. 

Proo f  
A proof  of this result is a straightforward generalization of that given for the 

scalar case in Cabay et al. [10]. The result also follows in a natural way from the 
work of Lerer  and Tismenetsky [22]. [] 

Note that theorem 2.2 includes the case of n i = 0 ,  1 ~<i~<k, by setting 
det(Hn) = 1 when H~ is the null matrix. From (2.10) and (2.15), the normalized 
MHPS of type (no, 0 , . . . ,  0) is de termined here to be 

s z, [zno:l,  I (2.16) 

where U ( z ) = - D ( z )  mod z n~ In section 5, for 
adopt  (2.16) even in the case when n o --- 0, despite the fact that it does not meet  
all the requirements  set forth in (2.2). 

algorithmic purposes, we 

EXAMPLE 2.3 
Let 

A ( z )  = [1, - 1  --[--z 2-[-Z 5 - Z  6 Jrz 7 n t-Z 8"[-Z 9"[- �9 �9 �9 , 

- z - z  2 + 2 z  6 - z  7 + z  8 + 2 z  9+  " " ] ,  

with n = (2, 3, 1). Then  

D ( z ) =  [ - l -[- z2 --[- z5 - z6 --}- z7 nt- z8 --[- z9 -] - "'', 

- - z - - z  2 + 2 z  6 - z  7 + z  8 + 2 z  9+  " ' ' ] ,  

and the corresponding matrix H,, is nonsingular. By theorem 2.2, a HPS of type 
n exists. Using eqs. (2.10)-(2.13), the normalized HPS of type n is given by 

[z2  + z 3 l + z + z  2 - z  - z 2] 

S(Z)=[ Z 2 I +Z--Z 3 --2Z l, 

t z 2 2z 1 - 2z J 

with the first few terms of the residual being 

, 4 ( z ) = [ 1 + z + . . . , 4 - z + 5 z 2 + . . . , - 3 + z - 2 z 2 + . . . ] .  [] 
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3. Matrix simultaneous Pad6 systems 

In this section we give the dual concept of simultaneous Pad~ systems. These 
correspond to Hermite Pad6 systems except with alternate degrees restrictions 
and with matrix multiplication on the left rather than the right. We show that 
results parallel to those of the previous section can also be given for these 
systems. 

Let 

-Ao,,(z) " Ao,k(~) -B(z) 

A I , I ( z  ) ' ' '  Al , k (Z  ) 
A(~)  = 

C(z )  
(3.1) 

&,o(~) Sk,l(Z ) "'" Sk,k(Z ) 

s ( z )  = 
Sx,o(Z) 

S0,1(Z) "'" SO,k( Z ) 

Sl , l (Z  ) " ' "  Sl ,k(Z)  

(3.2) 
a p ( k  + 1) •  + 1) polynomial matrix with e a c h  Si,j(Z) a p X p  polynomial 
matrix. In (3.2) the constant and linear terms in Sid(z), i = 1 , . . . ,  k,  j = 0 . . . .  , k 
are zero, and component-wise 

l n l  
n o - 1 

degree(S(z)) ~< II n II - 

n o 1 
DEFINITION 3.1 

n 1 

n l - 1  

n l - 1  

. ~  

@ o e 

nk] 
n k - 1 

n k - - X  

(3.3) 

Let n = (n 0, . . . .  n k) be a vector of nonnegative integers. The polynomial 
matrix S is called a Matrix Simultaneous Padd System (MSPS) of type n for A ( z )  
if 
(I) S ( z )  satisfies the degree bounds (3.3); 
(II) S ( z ) . A ( z ) = z l l n l l + l ' A ( z ) ,  where A ( z )  is a ( k +  1 ) •  matrix of p •  

matrix power series; and 
(III) det(S0,0(0)) ~ 0 and det(C(0)) ~ 0, where C(z) is the k • k matrix deter- 

mined by partitioning A ( z )  as 

[C(z)j 

So,o( Z ) 

Ak, , ( z )  ' Ak,~(z) 
be a (k + 1) • k matrix of p •  matrix power series with det(C(O)) ~: O. Let 
n = ( n o , . . . ,  n k) be a vector of nonnegative integers and define 
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A MSPS S(z) is said to be normalized if in condi t ion ( l i d  we have S0,0(0) = Ip 
and C ( 0 ) =  Ipk. [] 

As in the previous section, a SPS is the  nota t ion  used to deno te  the scalar 
( p  = 1) case. For  the sake of  simplicity and wi thout  loss of  generali ty,  it is 
a ssumed in the  r ema inde r  of  this p resen ta t ion  that  C(0)----Iok and that  the 
c o m p o n e n t s  of  n are o rde red  so that  nl>~ . . .  > ~ n , > n , + l  . . . . .  nk=O 
where  0 ~< a ~< k. 

Remark 1 
W h e n  C(z) = I~, we obta in  the equat ions  

V(z).B(z) + V(z)=z 

and 

(3.5) 

Q(z) "B(z) + P ( z ) = z  I1"11-' �9 C ( z ) .  (3.6) 

W h e n  k = 1, the pair  (U(z), V(z)) genera tes  a left matrix Pad6 fraction for B(z) 
of type (n 0, n 1) while the  pair  (P(z), Q(z)) genera tes  a left matr ix Pad6 form of 
type (n o - 1, n 1 - 1) for B(z) (cf., Labahn  and Cabay [19]). 121 

Remark 2 
The  defini t ion of a MSPS is the natura l  dual  to M H P S  of section 2. In this 

case we have that  the  first row of a MSPS def ines  a matrix s imul taneous  Pad6 
fraction of type n for B(z).  C(z) -1, whereas  block rows 2 to k + 1 def ine a 
" w e a k "  matrix s imul taneous  Pad6 form [21] for B(z).  C(z)  -1 of type n. [] 

Let  

D(z) = B ( z ) . C - l ( z )  (3.7) 

and  def ine  H,, via (2.9). T h e n  a MSPS of type n can be obta ined  by solving a set 
of  l inear equat ions  with H,, as the  coefficient  matrix. 

The  c o m p o n e n t  V(z) (with V ( 0 ) = I p )  of S(z) in (3.2) cor responds  to the  
solut ion X of 

X ' H , =  -[dll,tl_,,,+l,1,...,dll,ll,11 " '"  Idll,ll_,k+l,k,...,dll,,ll,~ ]. (3.8) 

(In the  special case when  nj. = 0 for 1 ~<j ~< k, the matr ix H n is null  and we 
simply set V(z) = 1 9 The  c o m p o n e n t  U(z) of S(z) is t hen  given by 

U ( z ) = - V ( z ) . O ( z )  m o d  Z Ilnll+l (3.9) 

The  c o m p o n e n t s  P(z) and Q(z) of S(z) in (3.2) can be ob ta ined  as follows. 
For  n i > O, 1 ~ i <~ a, the solut ion Y of 

Y 'H ,  = E , l +  ... +,, ,  (3.10) 
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where E,,+ ... +nl is the unit block row vector of length 11 n II - n o  with its single 
Ip in column n 1 + . . . + n i ,  yields the component  Q i ( z ) = z - 2 .  Si,o(Z). The 
remaining components  of the ith row of S(z )  in (3.2) is then given by 

Si,y(z ) = - S i , o ( Z ) ' D j ( z  ) mod Z Ilnll-n'+2 for j =  1 , . . . , k .  (3.11) 

For n i = 0, a < i ~< k, define 

Iz llnll+lIp, j = i ,  (3.12) 
Si ' j (Z)= ~ 0, y=~ i. 

Clearly, when H n is nonsingular, solutions of (3.8) and (3.10) are possible. It 
is then easy to show that (3.8)-(3.12) provide for the existence of a normalized 
MSPS of type n. Theorem 3.2 states that this is both a necessary and sufficient 
condition for existence. 

THEOREM 3.2 
A MSPS of type n exists if and only if de t (H,)  4: 0. 

Proof 
We again refer the reader to the dual argument  presented in the scalar case 

for Hermite  Pad6 systems in Cabay et al. [10]. [] 

Note that theorem 3.2 includes the case of n / =  0, 1 ~<i ~<k, by setting 
det(Hn) -- 1 when H,  is the null matrix. From (3.9) and (3.12), the normalized 
MSPS of type (n o, 0 , . . .  ,0) is determined here to be 

S ( z ) =  Z~~ j, (3.13) 

where U(z)  = - D ( z )  mod z ~0+1. As for the MHPS case, we use (3.13) even in 
the case that n o = 0 despite the fact that it does not strictly satisfy the 
requirements  of (3.2). 

EXAMPLE 3.3 

Let 

- - l + z 2 +  z5-- z6+z7-t- Z8+ Z9+ . . . .  Z--Z2-k-2Z6--zTq-z8+2Z9+ ... ] 
A(z) = 1 0 . 

0 1 

Then  with D ( z )  as in (3.7) and n = (2, 3, 1), the matrix H n is nonsingular, so a 
SPS of type n exists. Using eqs. (3.9)-(3.13), the normalized SPS of type n is 
given by 

1 - z + 2 z 2 - z 3 + 2 z  4 1 - z + z  2 Z-{ -Z3+Za+Z 5 ] 
S(Z)  ~- Z 2 Z2--Z4 Z3"I-Z4 I' 

Z 2 - Z  3 - Z  5 Z 2 - Z  3 _ Z  4 Z 3 - Z  5 - Z  6 J 
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with the first few te rms  of the  residual  being 

^ [ 4 - 3 z + 5 z  2 +  . . . .  3 + 6 z - 3 z  2 +  . . .  ] 
A ( z ) = |  1 - z + z 2 + .  2 z - z 2 +  . . . .  ] 

[ - 2 z  + 2z  2 + 1 + 2z  - 3z 2 + �9 �9 �9 

[ ]  

4. A recurrence relation for multi-dimensional Pad~ systems 

Given a vector  of  matrix power  series (2.1) and a vector  of  integers n, a 
cor responding  M H P S  can be d e t e r m i n e d  via a m e t h o d  such as Gaussian 
e l iminat ion at a cost of 

o( II n 113 + k .  [I n II 2) (4.1) 

block operat ions.  Similarly, given a matrix of matrix power  series (3.1), a 
cor responding  MSPS can be c o m p u t e d  at a cost of  

o( II n 113 + k 2" II n II 2) (4.2) 

block operat ions .  In bo th  cases there  is the  advantage  that  there  need  be no 
restr ict ions on the  inpu t  matr ix of  power  series. However ,  in both  cases such 
calculat ions do not  take into account  the  special s t ructure  of the  coefficient  
matr ix of  these  systems. The  goal of  this sect ion is to describe a recur rence  
relat ion that  will lead to an efficient a lgor i thm for the  de t e rmina t ion  of a M H P S  
or MSPS of  any type. The  resul t ing a lgor i thm takes advantage  of  the  special 
s t ructure  of the  coeff icient  matr ix (2.9), wi thou t  placing any addi t ional  restric- 
t ions on the input.  

Cons ider  first the case of  comput ing  a MPHS.  Following [10] we let 

N =  1 + min{n 0, nl} (4.3) 

and  def ine in teger  vectors n (i) = (n~) , . . . ,  n(~ )) for 1 ~< i ~ N by 

n~.i)=max{O, n j - N  + i} f o r j = 0 , . . . , k .  (4.4) 

T h e n  the s e q u e n c e  {n(i)}i= 1 ..... N lies on  a piecewise l inear pa th  with ..jn (.i+ 1) ~ ..in (.i) 
for each i, j with 

n(1) = (0, n I - -  n o ,  . . . ) ,  nl >~ no '  (4.5) 

(n 0 - n l , 0 , . . . , 0 ) ,  n l < n 0 ,  

and n (N) = n. Also def ine  n (~ = - e  0 = - ( 1 ,  0 , . . . ,  0). 
Le t  o- 0 = 0 and def ine  

o - i = m i n { ~ > o - i _ l :  det(Hn,~,) ~ 0 } ,  for i > / 1 .  (4.6) 

T h e n  the  sequence  {n (i)} de te rmines  a subsequence  {m (0} of  nonsingular points 
m(i )  _- n(,,,). 
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For i=O, let S~~ and for i>~1 let S(i)(z) be the uniquely 
de te rmined  normalized MHPS of type m (i) for A(z) with A<i)(z) the corre- 
sponding residual. This gives 

A (  Z )" s(i)(  z ) = z Ilmt~ + 1. z(i)( z ), 

with 

B~i)(O) = Ip and v<i)(O) = Ipk, 

(4.7) 

(4.8) 
where  A<~ is part i t ioned into n(i)(z) and C<i)(z) as in (2.4). Note that (4.6) 
and (4.7) also hold when  i = 0. 

The algorithm described in the next section for constructing a MHPS of  type 
n requires the successive computat ion of S<i+l)(z) given S<~ T heo rem  4.1 
gives a mechanism for doing this efficiently. 

THEOREM 4.1 

For  i >1 0, or > tri, let v <*) = n <~) - m ~ - e 0. Then  n <') is a nonsingular point 
for A(z) if and only if v <') is a nonsingular point for A~i)(z). Fur thermore ,  we 
have the recur rence  relation 

s ( i + l ) ( z ) : s ( i ) ( z ) ' a ( z )  and A(i+l ) ( z )=t~(z ) ,  (4.9) 

where  S(z)  is the MHPS of type rn <i+l) -m~i)-eo for A(i)(z), and A ( z )  is its 
residual. 

Proof 
The proof  of theo rem 4.1 follows naturally from the scalar version given in 

[10] and so will not  be given here. [] 

The  construction f rom eqs. (4.3)-(4.8) can also be accomplished for the 
computa t ion  of MSPS. The  only difference is the matrix multiplication must  
appear  on the left, ra ther  than the right side. 

THEOREM 4.2 
For  i >~ 0, o- > tr i, let v ('~) = n t~) - m (/) - e 0. Then  n (~) is a nonsingular point 

for A(z) if and only if v ( ') is a nonsingular  point for A(i)(z). Fur thermore ,  we 
have the recur rence  relation 

s(i+l)(z)=g(z)'S(i)(z) and A(i+l)(z)=~zl(z) ,  (4.11) 

where  S(z)  is the MSPS of type m(i+l)--m(i)--eo for  A(i)(z), and A~(z) is its 

residual. 

Proof 
The proof  of t heo rem 4.2 also follows closely f rom the arguments  used in the 

scalar Hermi te  Pads  case. Because of  the differences in degree  definitions and 
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because a proof has not been given elsewhere, we give a more complete proof 
for the MSPS case. 

Let a be such that 
m~ i)>/ " '"  > ~ m ~  ")> '"( i ) ' ' ' a+l  . . . . .  m~ ")=0. (4.12) 

Then, element by element, the degrees of S(i)(z)  are bounded by 

re'd) 
m(~ ) - 1 

II m (i) II - m(~) - 1 
GO 

m(i) a 

m(O _ 1 a 

m~ ) - 1 

O0 

O0 

"'" 0 

- 1  . . . .  1 

- 1  . . . .  1 

- 1  oo 

O0 ' ' '  O0 

O0 

O0 

- 1  

, ( 4 . 1 3 )  

II n t ~  II - II m CO II - 1 - 

sills s - 2  s - 1  s - 1  -(~)  - 1  ~ a + l  

s - 2  s - 1  s - 1  -(~)  - 1  ' ~ a + l  

O0 

where oo appears only in rows b + 1 , . . . ,  k. 
Now, set 

S * ( z )  = S(z )"  S")(z) .  

n ~  ) 

n~, ~ ) -  1 

n~ '~) - 1 

oo 

0 ' ' '  0 

- 1  . . . .  1 

- 1  . . . .  1 

- 1  co ' co 

co - - 1  

- 1  co 

co - - 1  

(4.16) 

(4.17) 

where the degrees of the zero polynomials in rows a + 1 , . . . ,  k are denoted by 
oo. In addition, in rows a + 1 , . . . ,  k of S(i)(z) ,  the only nonzero entries occur in 
position (j, j), where according to (3.12), S j j ( z )  = z IIm(i)ll +lip for a ~<j ~ k. 

(or) (~r) ( 0  O) Now let v = n  - m  - e  0 b e a n o n s i n g u l a r p o i n t f o r A ' ( z )  a n d l e t  S(z) 
be the MSPS of type v (~') or A( i ) ( z )  with residual A ( z ) .  Since cr > o'i, then from 
(4.4) there is an integer b >t a such that 

f . / ]o ' )~ . . ,  ~F/(b ~176 . . . . .  F / ( ~  (4.14) 
Consequently, 

v ( ~ =  ( s -  1, s , . . . , s ,  v(j+)l,...,V(b ~ ,  0 , . . . , 0 ) ,  (4.15) 
where s = n~ ~ ~  m~ 0 for 0 ~</" ~< a, and 1 ~< v) ~ ' =  n~ '~ ~< s for a < j  ~< b. Thus, the 
degrees of the elements of S ( z )  are bounded by 
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Then from (4.13), (4.15) and (4.16), the degrees  of  the elements  of S*(z)  are 

. . .  

n~0 ") -- 1 . . -  n<b ~) -- 1 

n~0 ~') - 1 . . -  n<b ~) -- 1 

�9 ' '  O0 

00 " ' "  00 

bounded  by 

II n c~) II - 

. . .  

- 1  " "  

- 1  " "  

- 1  oo 

oo - - 1  

O0 ~  

- 1  

0 

- 1  

- 1  

cx) 

- 1  
(4.18) 

and 
k 

S~,0(0 ) = So,o(0) �9 So'i)0(0) + Y'~ Soj(0)  �9 S~io)(0) = So,0(0) �9 S(o'i)o(0) = 1. (4.20) 
j = l  

Hence ,  S*(z)  is a MSPS of type n c~) for A(z).  W e  have also shown that if v c~') 
is a nonsingular  point  for ACi)(z), then n (~) is a nonsingular point  for A(z).  

The proof  of  the converse,  that  v ( ')  is a nonsingular point  for ACi)(z) if n (~) is 
a nonsingular  point  for A(z),  follows a similar argument  (cf. [10] for a parallel 
a rgument  in the case of  P a d 6 - H e r m i t e  systems). 

Thus, the smallest o- for which v (~) = n ( ')  - m  (;) - e  0 is a nonsingular point  
for A(i)(z) is o" = ori+ 1. This yields the MSPS S*(z)  of  type  m ( i + 1 )  = n (~'§ for 
A(z).  Thus S(i+l)(z) = S*(z)  and by eq. (4.19) h(i+l)(z)  =A(z). [] 

Remark 1 
Theorems  4.1 and 4.2 reduce  the p rob lem of  determining a M H P S  and MSPS 

of type m ( i + 1 )  to tWO "smal ler"  problems:  de termine  a M H P S  or MSPS of type 
m ci) and then de termine  a M H P S  or MSPS of  type m (i+ 1 ) _  re(i)_ eo" [] 

Remark 2 
A MSPS is of ten computed  for the purpose  of  determining a s imultaneous 

Pad6 form of  type n for A(z).  Let  SCi)(z) be  an MSPS of  type m ci) for A(z)  with 

where  ~ appears  only in rows b + 1 . . . . .  k. Thus, S*(z)  satisfies condition (I) for 
an MSPS of type n (~). 

In addition, 

S * ( z ) " A (  z ) -~- S (  z ) " S( i ) (  z ) " a (  z ) = z IImr + l " ~ (  z ) " A ( i ) (  z ) 

= z  IInr162 + 1 �9 ~z l (  z ) ( 4 . 1 9 )  
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residual A ( ~  Then, from the proof of theorem 4.2, it is clear that [l~(z), U(z)] 
is a simultaneous Pad6 form of type v ('~) for A( i ) ( z )  if and only if 

[V(z) ,  U(z)] = [l)'(z), U ( z ) ] .  S ( ~  (4.21) 

is a simultaneous Pad6 form of type n ~') for A ( z ) ,  where o->~ tr i. Thus, we can 
compute a simultaneous Pad6 form of type n for A ( z )  by computing all the 
SPSs at the nonsingular points and then computing a simultaneous Pad6 form of 
a much smaller type for the final residual. In addition, the problem of character- 
izing the family of simultaneous Pad6 forms of type n for A ( z )  is reduced to the 
simpler problem of characterizing the family of simultaneous Pad6 forms for the 
final residuals. For further work in this area see Van Barel and Bultheel [8] and 
Beckermann [4]. 

Similarly, a MHPS is often computed for the purpose of determining a 
Hermite Pad6 form of type n for A ( z ) .  Let s(i)(z) be a MHPS ̂ of type m (i) for 
A ( z )  with residual A(i)(z). Then, it is easy to show that [l)(z), U(z)] "r is a matrix 
Hermite Pad6 form of type v (~') for A( i ) ( z )  if and only if 

[ U ( z ) ,  V ( z ) ] T = s ( i ) ( z )  �9 [ 0 ( z ) ,  I~(Z)] T (4.22) 

is a matrix Hermite Pad6 form of type n (~) for A ( z ) ,  where o- >/o- v Thus, we can 
compute a matrix Hermite Pad6 form of type n for A ( z )  by computing all the 
MHPSs at the nonsingular points and then computing a matrix Hermite Pad6 
form of a much smaller type for the final residual. [] 

EXAMPLE 4.3 
L e t  A ( z )  be the matrix power series from example 3.3. Then (2, 3, 1) is a 

nonsingular point. In addition the residual matrix power series is nonsingular at 
(0, 1, 1). Computing the SPS of type (0, 1, 1) for this matrix power series gives 

,, I 1 - 6 z - 1 0 z Z  - 4 + 2 9 z  3 - 2 2 z ]  
S ( z )  = 3z 2 + 4 z  3 - 1 2 z  2 9 z  2 . 

4 z Z + 5 z  3 - 1 6 z  2 12z 2 

Therefore (3, 4, 2) is also a nonsingular point and theorem 3.1 gives the 
corresponding normalized SPS as 

1 - 7 z  - 3 z  2 + z 3 + 1 0 z  4 - 5 z  5 + 2 z  6 1 - 7 z  - 4 z  2 + 8 z  3 + 1 3 z  4 - 7 z  5 z - 6 z  2 - X 0 z  3 - 2 z  4 + 1 1 z  5 + 3 z  6 + 1 2 2 ]  

3 z  2 + z 3 - -  z 4 - -  4 z  5 + 2 z  6 - -  z 7 3 z  2 + z 3 - -  4 z  4 - -  5 z  5 + 3 z  6 3 z  3 + 4 z  4 - -  5 z  6 - -  2 x  7 - -  5 z  8 ] ' 

4 z  2 + z 3 - -  z 4 _ 6z 5 + 3 z  6 - -  2 z  7 4 z  2 + z 3 _ 5 z  4 - -  7 z  5 + 4 z  6 4 z  3 + 5 z  4 - -  7 z  6 - -  3 z  7 - -  7 z  s 

with the first few terms of the residual given by 

- 2 4 + 1 5 z + 4 z  2 + . - .  2 - 2 5 z + 2 1 z  2+ . . .  
1 + 9 z  - 7z  2 + �9 �9 �9 9z 2 + �9 �9 �9 [] 

13z - 11z 2 + �9 �9 �9 1 - 2z + 13z  2 + �9 �9 �9 
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5. A superfast multi-dimensional Pad~ algorithm 

Using the results of the previous section and following the approach of Cabay 
et al. [10], we can construct an algorithm that efficiently computes a MHPS and 
a MSPS of a given type n. The complexity of such an algorithm is generically 
O( II n II 2) block operations, although there are cases where the complexity can 
be higher. The desired systems are computed by determining the systems from 
one nonsingular point to the next. Theorems 4.1 and 4.2 shows that such a 
process can be accomplished simply by providing an efficient method  for 
computing an initial system along a given path and working with residuals. 

In this section we present  an algorithm that, when fast polynomial arithmetic 
is available, will lower the complexities in both cases from II n II 2 to II n I1" 
log2( II n II). Instead of computing from nonsingular point to nonsingular point, 
we proceed iteratively doubling the step-size at each step. When we are at a 
nonsingular point we can use theorems 4.1 or 4.2 and work with the residual 
series. When  we are not at a nonsingular point  we cannot use the recurrence 
from these theorems. Instead we must continue until we get to the next 
nonsingular location and use the recurrence relation at this point. We will give 
the details of algorithm for the computat ion of a MHPS only - the case of a 
MSPS is similar. 

Given a vector of nonnegative integers n =(no,. . . ,nk),  the algorithm 
F A S T _ M H P S  below makes use of theorem 4.1 to compute  a subsequence of the 
MHPS {s(i)(z)} for a given block vector of matrix power series A(z). The output  
gives results associated with the final point  rn (t). If this final point  is a nonsingu- 
lar point, then the output  S(t)(z) is a MHPS of type n. If n is a singular point, 
then the output  is the MHPS at the last nonsingular point in the path generated 
by the sequence {n(i)}. 

As in [10] we present  the algorithm in two parts. The first, INITIAL_MHPS,  
takes as its input a vector of matrix power series, A(z), with det(A0(0)) 4~ 0, an 
integer vector n with n 1 >~ . . .  >/n k, and a MHPS S(z) for A(z) of type m, 
where m is one of the nonsingular points defined in (4.6). The procedure 
returns the MHPS for the residual A~(z)=A(z) .S(z ) / z l  Imn+l at the first 
nonsingular point, if such a point exists, along the piecewise path determined by 
n - m  - e  0. The main algorithm, F A S T _ M H P S  calls I N I T I A L _ M H P S  to itera- 
tively construct MHPSs for the residuals, A(~ The M H P S s  s(i)(z) for A(z) 
are computed  using the results of theorem 4.1. In the case where 
I N I T I A L _ M H P S  does not return a MHPS, then FAST_ MHPS returns the last 
computed MHPS. 

INITIAL_ MHPS( A( z ), n, S(z), m) 
I - 1 )  v * - - n - m - e o ;  M ~ m i n { v  o ,v  1 } + l ; s ~ 0 ; d ~ 0  
I - 2 )  W h i l e s < M a n d d = 0 d o  
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1 - 3 )  s ~ s +  l 
I - 4 )  v m ~ m a x { 0 , v j - M + s } ,  j = 0 , . . . , k  
I - 5) A ( z )  ~ (A(z). S(z)//z Ilmll+l) mod  Z IIVmll+l 

I - 6) C o m p u t e  d ~ det(H~,~), using Gaussian e l iminat ion 
End  While  

I - 7 )  I f d ~ : 0 t h e n  
solve eqs. (2.10) and (2.14) for S(z) ,  the M H P S  
of type v (s) for .'{(z) 

else 
 q(z) Ip k+,; s ,-- 0 

I -  8) Re tu rn (S (z ) ,  s) [] 

The  main  algori thm, F A S T _  M H P S  takes as its input  a vector  of matrix power  
series and a vector  of integers,  each having k + 1 componen ts .  T h e  vector  of 
integers  mus t  have non-negat ive  entr ies  (otherwise one  calls F A S T _  M H P S  with 
a smaller  value of k).  

F A S T _ M H P S ( A ( z ) ,  n) 
F- l )  N ~ min{n 0, hi} + 1; i ~ 0; o ~ 0; a 0 

F-2) 

F-3) 
F-4) 

F-5) 

F-6) 
F-7) 
F-8) 
F-9) 

F-10) 
F-11) 
F-12) 
F-13) 
F-14) 
F-15) 

~ 0  
m ~ - e 0 ;  s ~ 1; S(z )  *-- Ip(k+l) 
While (or < N and s > 0) do 

# At  this stage S(z )  is a M H P S  of  type m = n (~'). We then  compu te  
# S(z )  at the first nons ingular  point  n (~+s) - n ('~ - e 0 for the 
# residual  A( z ).  S( z ) / z  II m II + 1 
(S"(z), s ) ~  I N I T I A L _ M H P S ( A ( z ) ,  n, S(z) ,  m) 
0"4--0"+S 

# Nons ingular  po in t  is of type ( r a p , . . . ,  ink), where  
mj  ~ max{0, nj - N + o-}, j = 0 , . . . ,  k 
# S(z )  is the  cor responding  M H P S  of type m 

^ 

S(z) ,-- S(z)" S(z) 
If  s > 0 then  

O~/+ 1 <'-- 1 + flog(or)/ 
t ~ min{N, 2 ~'§ - 1}; i <--- i + 1 
# Next  steps obta in  solut ion at largest nons ingular  point  before  
# n (t) 

Mj ~ max{0, nj. - N + t}, j = 0, . . . .  k 
v ~ M - m - e  o 
A-(z) ~ ( A ( z ) .  S ( z ) / z  Ilmtl+l) m o d  z IIVIl+l 
(S(z) ,  ~ ) ~  F A S T _ M H P S ( A - ( z ) ,  v) 

mj. *-- max{0, nj - N + ~r}, j = 0 , . . . ,  k 
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F-16) S(z)  ~ S ( z ) .  S(z)  
End  If 

End  While  
F-17) Re tu rn (S(z ) ,  o-). [] 

E X A M P L E  5.1 

Let  A(z )  = [1, Al(z) ,  Az(z) ,  A3(z)  ] be a 4-tuple of power  series with 

Al(  z ) = 1 + z + Z 3 - -  Z 5 "F Z 6 + Z 7 - -  Z 8 -[-Z 11 + Z  12 --  2 Z  13 - [ -Z 24 - - Z  25 -~.-Z 37 

- - Z  48 q- 0 ( Z 6 3 ) ,  

A 2 ( z  ) = 1 q - z  3 "{-z 4 -1-z 10 - z  12 - z  13 -1-z 14 - 2 z  25 + Z 26 "4- 2 Z  39 

- - Z  40 ..[- O ( Z 6 3 ) ,  

A 3 ( z  ) - - z  "[-z 2 - l - z  3 - 22; 4 - z  5 --[-z 7 -+-z 8 --F-z 9 --F-z 14 -{-z 21 --[- 2 z  22 -q-z 33 

--[- O ( z 6 3 ) ,  

and suppose  n = (15, 16, 16, 15). We assume that  the  coefficients of the power  
series come  f rom Q, the  field of rat ional  numbers .  In this case, the pa th  
d e t e r m i n e d  by n has one  singular point ,  namely  n (6) = (5 ,  6, 6,  ,5) .  The  algo- 
r i thm then  proceeds  as follows: 

N o d e  at start  of while loop Node  at start of if loop 

n (~ = ( -  1, O, O, O) 
n (a) = (0, 1, 1, O) 
n (3) = (2, 3, 3, 2) 
n (7) = (6, 7, 7, 6) 
n (15) = (14, 15, 15, 14) 

n (1) = (0, 1, 1, O) 
n (2) = (1, 2, 2, 1) 
n (4) = (3, 4, 4, 3) 
n (8) = (7, 8, 8, 7) 
n (16) = (15, 16, 16, 15) 

Thus  we would  call F A S T _ M H P S  recursively to compu te  in s tep sizes of 1, 2, 4, 
and  8 respectively. 

Suppose  now that  we consider  the power  series in A(z )  as having coefficients 
f rom the finite field 7/3. In this case the pa th  d e t e r m i n e d  by n has singular 
nodes  at locations n (2), n (3), n (6), n (8), n (9), n (13) and n (16) = n .  There fo re  the 
a lgor i thm proceeds  by 

Node  at start  of while loop 

n (~ = ( -  1, 0, 0, 0) 
n (1) = (0 ,  1, 1, 0) 
n (7) = (6 ,  7,  7, 6)  

n O5) = (14, 15, 15, 14) 

N o d e  at start  of  if loop 

n ~ = (0, 1, 1, 0) 
n (4) = (3, 4, 4, 3) 
n (1~ = (9, 10, 10, 9) 
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In this case, the a lgor i thm re turns  the Hermi te  Pad6 system of  type 
(14, 15, 15, 14) since this is the last nonsingular  point  along the pa th  de t e rmined  
by n. [] 

THEOREM 5.2 
(Correctness) 

For  A(z)  such that  d e t ( A 0 ( 0 ) ) ~  0 and n 1 >/ " "  >/n k, F A S T _ M H P S  com- 
putes  the normal ized  M H P S  of  type n c'), where  

o-= max{t:  t ~< N,  det(Hn,,, ) 4: 0}. (5.1) 

Proof 
Assume  inductively that  pr ior  to pass i + 1, i = 0, 1 , . . . ,  of  the W H I L E  loop 

F-2 the  following holds: 
(I) O/i >/i, 
(II) cr = max{t: t ~< {N, 2 ~' - 1}, det(Hn,,,) #: 0}, 
(III) m = n ~'~), 

(IV) S(z) is the normal ized  M H P S  of  type m for which 

Z ( Z )  " a ( z )  =z]lm[[+l~zl(Z). (5.2) 

Initially, for i = 0 ,  ai=O and therefore  o-= 0 (because det(Hnc0,)= 1 with 
n C~ = - e0 ) .  Also, for i =  0, S(z)=Ipc,+l). 

In step F-3, if de t (Hn~.+, )= 0 for all t such that  1 ~< t ~ < N - o - ,  t hen  INI- 
T I A L _ M H P S  re turns  (S(z), s) ~ (Ipck+l), 0). Here  m = n ( ') is a l ready the  last 
nons ingular  point  along the pa th  f rom n (~ to n and the a lgor i thm te rmina tes  at 
the earliest  oppor tuni ty .  Otherwise,  let 

s = min{t-  t <~N-tr ,  det(H,,,.+,,) 4:0}, (5.3) 

wh ich  de f i ne s  the  nex t  n o n s i n g u l a r  p o i n t  n c'+~). T h e  s u b r o u t i n e  
I N I T I A L _ M H P S  computes  S~(z) of type v ~ for the residual  A~(z) such that  

A(z )  . S(z)  =z II~'s~ll+l .A(z) ,  (5.4) 

where  v ~ = n c'~§ - n  c~) - e  0. Using (5.2) and (5.3), it is easy to show that  the  
^ 

compu ta t i on  in step F-6 yields S(z) .  S(z) satisfying 

Z ( z ) .  S ( z )  . S ( z )  ~-z Ilnw+s'll+l "~z~(z), (5.5) 

and all the o ther  condi t ions  of  the normal ized  M H P S  of type n c'§ for A(z). 
Just  pr ior  to s tep F-7, the  values o-, rn and S(z) have been  redef ined  so that  
S(z) is now the M H P S  of  type m = n c~'), where  (for the case s > 1 in (5.3)) 

o" = min{t :  2 ~' ~< t ~< N,  det(Hn,,,) #: 0}. (5.6) 
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With o" given by (5.6), in step F-8, ai+ 1 is determined so that 

2 ai+l-I ~ O" ~ 2 '*'+* - 1. 

219 

(5.7) 

Clearly i + 1 ~< a i + 1 ~< ai+ 1 and so the inductive hypothesis (I) holds. In steps 
F-9 through F-16, the algorithm computes the MHPS of type n ~+~) for the 
largest ~ in the range 

o- ~ tr + ~ ~< min{U, 2 ",+1 - 1} ( 5 . 8 )  

for which H ,~ .~  ~ 0. This is accomplished by recursively invoking F A S T  MHPS 
for the residual A-(z). Computed is the normalized MHPS S(z) of type v for 
,zRz) such that 

A(z )"  S(z)  = O(z  IIvll +1), (5.9) 

where v = n ~+~) - n  ~) - e  0. It then follows that S(z) .  S(z) satisfies 

A ( z ) .  S(z)"  S(z)  = O(z  I1"(~+"11 + ' ) ,  (5.10) 

and all the other conditions of the normalized MHPS of type n (~+~) for A(z).  
By accordingly redefining o-, m and S(z) in F-14, F-15 and F-16, the inductive 
hypotheses II, III and IV are shown to hold for the next pass through the 
WHILE loop F-2. [] 

Remark 1 
The changes to our algorithm for the computation of a MSPS are straightfor- 

ward. In this case the input to the main algorithm would be a (k + 1) • k block 
matrix of p x p  power series, A(z).  The only other changes would be the 
multiplication in steps I-5, F-6, F-12 and F-16, which would now be on the left 
instead of the right. [] 

Remark 2 
The algorithms given in this section compute either a MHPS or a MSPS of 

type n. They can also be used to compute matrix Hermite Pad6 and matrix 
simultaneous Pad6 approximants of type n as long as n is a nonsingular point. 
At present, the algorithm used to compute the first nonsingular point and its 
corresponding Pad6 system returns the identity if no nonsingular point can be 
found. If this is changed to return all possible Pad6 approximants and weak 
Pad6 approximants (determined by solving the linear system of equations) then, 
because of remark 2 from the previous section, the main algorithm will return 
all possible Pad6 forms of type n. Hence our approach can be used to find all 
possible Pad6 forms (either Hermite Pad6 or simultaneous Pad6) of type n, 
regardless of whether n is a singular or nonsingular point. [] 
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6. Complexity of the multi-dimensional Pad6 algorithm 

THEOREM 6.1 
For  A ( z )  such that  det(A0(0)) 4:0  and n such that  n 1 >f �9 �9 �9 >~ nk,  the cost of 

F A S T _  M H P S  is 

O ( ( k  + 1) 2. Ilnll" log2( II n [I) + (k + 1)2"s 2" II n II) (6.1) 

p •  matrix operat ions,  where  s = max{s~ls  i = m(d +1) - m(d )} is the max imum 
step-size used.  

P r o o f  
We first es t imate  the cost of F A S T _ M H P S  for those n = ( n o , . . . ,  n k) which 

are restr icted by 

n o = n 1 - 1. (6.2) 

This  restr ict ion holds for all recursive calls of F A S T _ M H P S  in step F-13. For  n 
so restr icted and for all A ( z )  let T ( f l )  be an es t imate  of  the cost of  using 
F A S T  M H P S  to compu te  the normal ized  M H P S  of type n (~'), where  

o ' =  max{t [ t ~<fl, det(Hn~o ) 4:0}. (6.3) 

With N = min{n0, n 1} + 1, then  T ( N )  gives an es t imate  for the cost of comput -  
ing the M H P S  of  type n (since n (N~ = n). 

To obtain T ( N ) ,  we examine the cost of  the i th pass th rough  the  W H I L E  
loop F-2. Just  pr ior  to the i th pass, S ( z )  is the normal ized  M H P S  of type n (',~, 
where  

t r i = m a x { t l t  ~<2 ' ~ -  1, det(Hn, ,0 4:0  }. (6.4) 

Let  s i be the step-size c o m p u t e d  in F-3. T h e n  (except when  s = 0 and the  
a lgor i thm is about  to te rmina te)  

S i = min{t [ o-i + t >/2 ~', det(H,,~,§ 4: 0}. (6.5) 

Also let 

v(i) = n(~+si) _ n(~i) _ e o. (6.6) 

Table 1 
Cost estimates for one iteration. 

Step 

F-3 
F-6 
F-12 
F-13 
F-16 

Estimate of number of p • p matrix operations 

O((k + 1). II v")I1" II n(2ai)[[ d- 1[ V (i) II 3) 
O((k + 1)" II v~;~ H" II n (2~176 II) 
O((k + 1) 2. ]l n (2.~§ [I "log( l[ n (2~§ II)) 
T(2,~§ -l) 
O((k + 1)" II n (2~'§ II" log(ll n (24'§ II)) 
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Then estimates of the number of p • p matrix operations performed in the main 
steps of F A S T  MHPS are given in table 1. 

In table 1, for the step F-3 the term (k + 1). II v(;)I1" II n t2~ II relates to the 
^ 

cost of computing the residual A(z)  in step 1-5 of INITIAL_MHPS,  whereas 
II vco II 3 relates to the cost of using the Gaussian elimination method to solve 

systems (2.10) and (2.14) in steps 1-6 and 1-7 in INITIAL_MHPS.  In steps F-12 
and F-16 it is assumed the last polynomial multiplication methods (based on fast 
Fourier transforms) are used. Note that the degrees of the polynomials com- 
puted in step F-12 are O(k + 1) larger than those in step F-16, which accounts 
for the difference in the complexity of the two steps. 

The result (6.1) follows from table 1 by summing the costs of iteration i for 
i =  1, . . . , [ log(N)] .  The term (k + 1) 2-s 2. II n II in (6.1) accounts for the cost 
II v (i) II 3 of solving systems (2.10) and (2.14) in step F-3 whereas the term 

(k  + 1). II n II" log2( II n II) in (6.1) accounts for all the other costs identified in 
table 1. The cost (k + 1) 2. s 2. II n II is precisely that of solving systems (2.10) and 
(2.14) of type v(J)=m(J+a)-m(J+l)-e o for all nonsingular points m (~), j =  
1 , . . . ,  l, where 

l= max{t I t ~< N, det(Hn,, ) 4: 0}. (6.7) 

Namely, 
1 

II v (j) II 3 ~< (k + 1) 2. s 2" II n II. (6.8) 
j = l  

These systems (2.10) and (2.14) (for different residual power series) arise as a 
consequence of the accumulation of the recursive call of FAST_MHPS in step 
F-13. 

To remove the restriction (6.2) we note that S(z) at m (~ is obtained in step 
F-3 by solving (2.10) and (2.14) at the first nonsingular point v (~ = m (1) - m (~ - 
e ~ = m (1). We then add to this the cost of (6.8) to obtain 

l 

II v<J)II 3 < ( k  + 1) 2. s 2" II n II. [] (6.9) 
j=O 

As a follow-up to remark 1 of the previous section, we have a similar result for 
computing a MSPS. 

COROLLARY 6.2 
An algorithm FAST MSPS for computing a MSPS of type (no , . . . ,  nk) can be 

given which requires 

O((k + 1) 3. [[n[[.log2([ln[[) + ( k +  1)3.s 3) (6.10) 

p •  matrix operations, where s = max{si[s i = m(d +1) - m~d )} is the maximum 
step-size used. [] 
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EXAMPLE 6.3 

In the perfect case, s i = 1 for all i. In this case the second term in (6.1) 
becomes O((k + 1) 3. II n II) and so the complexity of the algorithm becomes 
O(lln I1" log2( IIn II)). At the other extreme, when all points with the possible 
exception of the last along the computational path are singular, that is, s = s o = 
max(n j+  1) and ( k + l ) - s ~ >  Ilnll, then the second term in (6.1) becomes 
O( II n II 3) which corresponds to the cost of Gaussian elimination of the full 
Hankel-like system (2.9). Indeed the solution is exactly that obtained by a single 
invocation of INITIAL_MHPS.  [] 

EXAMPLE 6.4 

When k = 1 and p = 1 the FAST_MHPS algorithm coincides with that given 
for Pad~ approximants by Cabay and Choi [9]. In the scalar case a call to 
INITIAL_MHPS always results in solving a triangular system of linear equa- 
tions. Thus the cubic terms in (6.1) resulting from Gaussian elimination are in 
fact not present in the scalar case. As such the algorithm computes a Pad6 
approximant of type (m, n) with the superfast complexity O((m + n)" log2(m + 
n)). This is the case regardless of any assumptions on the size of the steps from 
one nonsingular node to the next. Gaussian elimination would require O((m + 
n) 3) operations in this case. [] 

7. Conclusions 

We have given a new reliable algorithm for the computation of matrix 
Hermite Pad6 and matrix simultaneous Pad6 systems. This in turn provides a 
reliable algorithm for the computation of the corresponding matrix Pad6 approx- 
imants. The algorithm is superfast, that is, when fast polynomial multiplication is 
possible the algorithm in most cases computes a system of type n in O( II n I1 
log 2 II n II) block matrix operations. 

There are a number of possible research directions that follow from our work. 
Our algorithm depends on the distribution of the nonsingular points along a 
diagonal path in k-dimensional space. When most of the points are nonsingular 
the algorithm is superfast, and hence faster than existing algorithms such as 
proposed by Beckermann [11] or Van Barel and Bultheel [2]. However, when 
there are very few nonsingular points and the distance between such nonsingu- 
lar points is large then the algorithm has a potential complexity of O( II n II 3). 
The algorithms of both Beckermann and Van Barel and Bultheel, on the other 
hand, do not depend on the singular structure of their computational path. It is 
of interest to generalize their algorithms (in both the scalar and matrix cases), 
using similar divide-and-conquer methods such as found in section 5. The hope 
would be for algorithms that compute in superfast complexity, regardless of any 
singularities in the path of computation. At present our algorithm has this 
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important property, but only in the special case of scalar Pad6 approximants (i.e. 
k = l ,  p = l ) .  

Our approach has similarities with look-ahead [28] and block-pivoting [27] 
methods for solving associated block Hankel-like systems. Thus, as in the scalar 
algorithm [25] the algorithm promises to be a numerically stable one. This can 
be done by recursing at a stable point rather than a nonsingular point. Stable 
points are those having an "acceptable" condition number for the corresponding 
matrix of the system of equations. Further work is under way in this direction. 
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