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Abstract. For k + 1 power series a0(z), . . . , ak(z), we present a new iterative, look-ahead
algorithm for numerically computing Padé-Hermite systems and simultaneous Padé systems along
a diagonal of the associated Padé tables. The algorithm computes the systems at all those points
along the diagonal at which the associated striped Sylvester and mosaic Sylvester matrices are well-
conditioned. The operation and the stability of the algorithm is controlled by a single parameter
τ which serves as a threshold in deciding if the Sylvester matrices at a point are sufficiently well-
conditioned. We show that the algorithm is weakly stable, and provide bounds for the error in the
computed solutions as a function of τ . Experimental results are given which show that the bounds
reflect the actual behavior of the error.

The algorithm requires O(‖n‖2+s3‖n‖) operations, to compute Padé-Hermite and simultaneous
Padé systems of type n = [n0, . . . , nk], where ‖n‖ = n0 + · · ·+nk and s is the largest step-size taken
along the diagonal. An additional application of the algorithm is the stable inversion of striped and
mosaic Sylvester matrices.
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1. Introduction. Let At(z) = [a0(z), . . . , ak(z)], k ≥ 1, be a vector of formal
power series over the real numbers1 with a0(0) 6= 0 and let n = [n0, . . . , nk] be
a vector of integers with nβ ≥ −1, 0 ≤ β ≤ k, and with at least one nβ ≥ 0. A
Padé-Hermite approximant of type n for A(z) is a nontrivial vector [q0(z), . . . , qk(z)]
of polynomials qβ(z) over the real numbers having degrees2 at most nβ , 0 ≤ β ≤ k,
such that

a0(z)q0(z) + · · ·+ ak(z)qk(z) = c‖n‖+kz
‖n‖+k + c‖n‖+k+1z

‖n‖+k+1 + · · · ,(1)

with ‖n‖ = n0 + . . .+ nk.
The Padé-Hermite approximation problem was introduced in 1873 by Hermite

and has been widely studied by several authors (for a bibliography, see, for example
[27, 2, 4, 5, 23]). Note that for At(z) = [−1, a(z)], (1) becomes

a(z)q1(z)− q0(z) = O(zn0+n1+1).

Thus, as a special case we have the classical Padé approximation problem for the
power series a(z). The Padé-Hermite approximation problem also includes other
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classical approximation problems such as the algebraic approximants where At(z) =
[1, a(z), a(z)2, . . . , a(z)k] (see [25] for the special case k = 2) and G3J approximants
where At(z) = [1, a(z), a′(z)]. Additional examples can be found in [1].

Closely related to Padé-Hermite approximants are simultaneous Padé approxi-
mants. A simultaneous Padé approximant of type n for A(z) is a nontrivial vector
[q∗0(z), . . . , q

∗
k(z)] of polynomials q∗β(z) over the real numbers having degrees of at most

‖n‖ − nβ , 0 ≤ β ≤ k, such that

q∗0(z) · aβ(z) + q∗β(z) · a0(z) = c
(β)
‖n‖+1z

‖n‖+1 + c
(β)
‖n‖+2z

‖n‖+2 + · · · ,(2)

for β = 1, · · · , k. Simultaneous Padé approximants were also defined by Hermite and
were used in his famous proof of the transcendence of e. Again, for At(z) = [−1, a(z)],
the simultaneous Padé approximation problem becomes the classical Padé approxi-
mation problem for a(z).

By equating coefficients in (1), the Padé-Hermite approximation problem can be
viewed as solving a system of linear equations of size ‖n‖ × ‖n‖. Thus, one can use
Gaussian elimination to solve this problem with a complexity of O(‖n‖3) operations.
However, the coefficient matrix of the corresponding linear system has a structured
form so it is not surprising that there are a number of fast [27, 14] O(‖n‖2) and super-
fast [5, 12] O(‖n‖ log2 ‖n‖) algorithms for determining Padé-Hermite approximants.
All these algorithms have the property that they work for any input vector of power
series. In addition, these algorithms all make important use of exact arithmetic; in
particular, they all depend on knowing that certain quantities are known to be 0
or not. A similar statement also applies for the fast and superfast computation of
simultaneous Padé approximants.

In the special case of Padé approximants it has long been known that most fast
and superfast algorithms for their computation have problems with numerical stabil-
ity. The first known numerically stable algorithm for fast Padé approximation was
presented by Cabay and Meleshko [15]. Alternate algorithms for fast Padé computa-
tion that also consider the issue of numerical stability include [6], [13] and [18], and for
superfast computation [19]. Algorithms dealing with the closely associated problem
of stably computing fast rational interpolation include [8].

In this paper, we present a new algorithm for the computation of Padé-Hermite
and simultaneous Padé systems. These systems are matrix polynomials which contain
the desired multi-dimensional Padé approximant along with quantities that can be
used to recursively or iteratively compute the next approximant along a diagonal path
in the associated Padé tables. The algorithm works for all vectors of power series and
is fast in the sense that it computes a system in O(‖n‖2) operations in the generic
case. In addition, we show that this algorithm is weakly stable in the sense that it
provides good answers to well-conditioned problems. The algorithm is a look-ahead
procedure that computes the systems of type n by computing all the Padé systems at
the well-conditioned locations along the diagonal path passing through the point n.
In the case of Padé approximation (k = 1), the algorithm reduces to the Cabay and
Meleshko algorithm.

It is known (cf. [12] or [23]) that in exact arithmetic a Padé-Hermite system exists
uniquely if and only if the striped Sylvester coefficient matrix of the corresponding as-
sociated linear system is nonsingular. This is also true for simultaneous Padé systems
where the coefficient matrix of the associated linear system is now a mosaic Sylvester
rather than a striped Sylvester matrix. However, in the case of floating-point arith-
metic determining that such coefficient matrices are nonsingular is not good enough.
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Instead one must know, at least in a reasonably computable way that the linear sys-
tems are also well-conditioned. Central to the stable operation of our algorithm is
the ability to estimate the condition numbers of the associated striped Sylvester and
mosaic Sylvester matrices. The estimates follow from some “near” inverse formulae
for these matrices that are derived in the companion paper [11] and which are ex-
pressed in terms of both Padé-Hermite and simultaneous Padé systems. This is the
reason why our algorithm computes Padé-Hermite and simultaneous Padé systems
in tandem; the inverse formulae, and consequently the estimates for the condition
numbers, require that both the Padé-Hermite and the simultaneous Padé systems
be available. The striped Sylvester and mosaic Sylvester matrices are deemed to be
well-conditioned if the computed estimates of the condition numbers are bounded by
some specified “stability” tolerance τ .

As a corollary to the results [11], there is a formula which gives the inverse of a
striped Sylvester matrix expressed in terms of the associated Padé-Hermite system
only. One attempt to use this formula to develop a stable algorithm for computing
Padé-Hermite systems (independent of simultaneous Padé systems) was only partly
successful [22]; bounds for the inverse of the associated striped Sylvester matrix (and
consequently bounds for its condition number) using the formula were often too pes-
simistic and impractical.

This paper is organized as follows. Preliminary definitions and basic facts about
Padé-Hermite and simultaneous Padé systems are given in the next two sections, and
the algorithm for computing these systems is given §4. The remainder of the paper is
devoted to showing that the algorithm is weakly stable for the computation of either
system. To this end, §5 discusses the errors that result from the iterative steps of the
algorithm, while §6 gives the proof of stability. §7 provides results of some numerical
experiments that reflect the theoretic results of the previous sections. The final section
gives some conclusions and a discussion of further areas of research.

We conclude this section by defining some norms which are used in the analysis
of the errors made by the algorithm. Let

a(z) =

∞∑

`=0

a(`) z` ∈ R [[z]] ,

where R[[z]] is the domain of power series with coefficients from R, and define the
bounded power series

RB [[z]] =

{
a(z)

∣∣∣∣∣ a(z) ∈ R [[z]] ,

∞∑

`=0

|a(`)| <∞

}
.

A norm for a(z) ∈ RB [[z]] is

‖a(z)‖ =
∞∑

`=0

|a(`)|.

RB [[z]] includes the domain of polynomials R[z]. So, for

s(z) =
∂∑

`=0

s(`) z` ∈ R [z] ,
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we use the norm

‖s(z)‖ =
∂∑

`=0

| s(`) | .

For vectors and matrices over RB [[z]], we use the 1-norm unless otherwise speci-
fied. So, for example, the norm for At(z) is

‖At(z)‖ = max
0≤β≤k

{‖aβ(z)‖}

and the norm for S(z) ∈ R(k+1)×(k+1)[z] is

‖S(z)‖ = max
0≤β≤k

{
k∑

α=0

‖Sα,β(z)‖

}
.

It is easy to verify that various compatibility conditions are satisfied. For example,

‖At(z) · S(z)‖ ≤ ‖At(z)‖ · ‖S(z)‖

and

‖a(z) · b(z)‖ ≤ ‖a(z)‖ · ‖b(z)‖,

where b(z) is also a bounded power series. In addition, for S∗(z) ∈ R(k+1)×(k+1)[z]
and A∗(z) ∈ RB

(k+1)×k[[z]],

‖S∗(z) ·A∗(z)‖ ≤ ‖S∗(z)‖ · ‖A∗(z)‖,

‖S(z) · S∗(z)‖ ≤ ‖S(z)‖ · ‖S∗(z)‖.

In the subsequent development, we also make use of the inequality

‖a(z) (mod z‖n‖+1)‖ ≤ ‖a(z)‖,

where

a(z) (mod z‖n‖+1) =

‖n‖∑

`=0

a(`) z` +

∞∑

`=‖n‖+1

0 · z` ∈ RB [[z]]

2. Padé-Hermite Systems. In this section, we give the definition of a Padé-
Hermite system for a vector of formal power series. Let n = [n0, . . . , nk] and define
‖n‖ = n0 + · · ·+ nk. Let

At(z) = [a0(z), . . . , ak(z)] ,(3)

where

aβ(z) =

∞∑

`=0

a
(`)
β z`, β = 0, . . . , k,
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with a
(`)
β ∈ R, the field of real numbers. Assume that a

(0)
0 6= 0, which means that

a−1
0 (z) exists. Assume also that At(z) is scaled so that ‖aβ(z) (mod z‖n‖+1)‖ = 1,

0 ≤ β ≤ k.
The (k + 1)× (k + 1) matrix of polynomials

S(z) =

[
z2p(z) U t(z)
z2Q(z) V (z)

]
=




z2p(z) u1(z) · · · uk(z)
z2q1(z) v1,1(z) · · · v1,k(z)

...
...

...
z2qk(z) vk,1(z) · · · vk,k(z)


(4)

is a Padé-Hermite system (PHS) [14] of type n for A(z) if the following conditions are
satisfied.
I. (Degree conditions): For 1 ≤ α, β ≤ k,

p(z) =

n0−1∑

`=0

p(`)z`, uβ(z) =

n0∑

`=0

u
(`)
β z`,(5)

qα(z) =

nα−1∑

`=0

q(`)
α z`, vα,β(z) =

nα∑

`=0

v
(`)
α,βz

`.

II. (Order condition):

At(z)S(z) = z‖n‖+1T t(z),(6)

where T t(z) = [r(z),W t(z)] with W t(z) = [w1(z), . . . , wk(z)] is the residual.
III. (Nonsingularity condition): The constant term of V (z) is a diagonal matrix,

V (0) = diag [γ1, . . . , γk] ,(7)

and

γ ≡ (a
(0)
0 )−1

k∏

α=0

γα 6= 0,(8)

where γ0 = r(0).

Remark 1: Only the first column of S(z) is a Padé-Hermite approximant as de-
fined in §1; this being of type [n0 − 1, . . . , nk − 1]. The remaining columns S(z) do
not quite satisfy the order condition (1) and are therefore not Padé-Hermite approxi-
mants; these columns serve primarily to facilitate the computation of the first column
using the algorithm given later in §4. But there are other uses for these columns
of S(z), such as that of expressing the inverse of a striped Sylvester matrix [9, 11].

Remark 2: The nonsingularity condition III is equivalent to the condition that
r(0) 6= 0 and that V (0) be a nonsingular diagonal matrix.

Remark 3: The PHS is said to be normalized [14] if the nonsingularity condi-
tion III is replaced by r(0) = 1 and V (0) = Ik. This can be achieved by multiplying
S(z) on the right by Γ−1, where

Γ = diag [γ0, . . . , γk] .(9)

5



The PHS is said to be scaled [22] if each column of S(z) has norm equal to 1 for
some norm and if, in addition, γβ > 0, 0 ≤ β ≤ k. Here, also, scaling a PHS is
accomplished by multiplying it on the right by an appropriate diagonal matrix.

Remark 4: The nonsingularity condition III, namely γ 6= 0, refers to the non-
singularity of S(z); that is, S(z) is nonsingular iff γ 6= 0 (in [9], it is shown that
detS(z) = γ ·z‖n‖+1). Equivalently, the nonsingularity condition refers to the nonsin-
gularity of the associated striped Sylvester matrixMn defined in (11) below; in [14]
it is shown that a PHS (with γ 6= 0) exists iffMn is nonsingular.

If the order condition (6) is not satisfied exactly, but rather

At(z)S(z) = z‖n‖+1T t(z) + δT t(z),(10)

where δT t(z) =
[
z2 δr(z), δW t(z)

]
with δW t(z) = [δw1(z), . . . , δwk(z)] is a relatively

“small” residual error, then S(z) is called a numerical Padé-Hermite system (NPHS).
In (10), for 1 ≤ β ≤ k,

δr(z) =

‖n‖−2∑

`=0

δr(`) z`,

δwβ(z) =

‖n‖∑

`=0

δw
(`)
β z`.

If δT t(z) = 0, then S(z) is an exact (rather than a numerical) Padé-Hermite system.
To distinguish it from a NPHS S(z), an exact system is denoted by SE(z).

Associated with A(z), letMn be the striped Sylvester matrix of order ‖n‖,

Mn =




a
(0)
0 a

(0)
k

. . .
. . .

... a
(0)
0 · · ·

... a
(0)
k

...
...

a
(‖n‖−1)
0 · · · a

(‖n‖−n0)
0 a

(‖n‖−1)
k · · · a

(‖n‖−nk)
k




.(11)

Then S(z) can be obtained by solving two sets of linear equations with Mn as the
coefficient matrix [14]. ¿From (10),

a0(z) p(z) +

k∑

α=1

aα(z) qα(z) = z‖n‖−1r(z) + δr(z),(12)

which gives rise to

Mn · X = [0, . . . , 0, γ0]
t,(13)

where

X =
[
p(0), . . . , p(n0−1)|q

(0)
1 , . . . , q

(n1−1)
1 | · · · |q

(0)
k , . . . , q

(nk−1)
k

]t
.
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The solution X yields the first column S0,0(z), S1,0(z), . . . , Sk,0(z) of S(z). In (13),
we require that γ0 = r(0) 6= 0; γ0 = 1 for a normalized NPHS. The existence of a
solution to (13) is assured if Mn is nonsingular. The term δr(z) in (12) represents
the residual error made in solving (13)

Next, to compute U t(z) and V (z) (i.e., the remaining columns of S(z)), again we
use (6), namely,

a0(z) uβ(z) +
k∑

α=1

aα(z) vα,β(z) = z‖n‖+1wβ(z) + δwβ(z), 1 ≤ β ≤ k.(14)

For α, β = 1, . . . , k, set

u
(0)
β = −

a
(0)
β

a
(0)
0

γβ ,(15)

v
(0)
α,β =

{
γβ , α = β,
0, α 6= β.

This yields the constant terms U t(0) and V (0) of U t(z) and V (z), respectively. The
remaining components

Y =




u
(1)
1 · · · u

(n0)
1 v

(1)
1,1 · · · v

(n1)
1,1 v

(1)
k,1 · · · v

(nk)
k,1

...
...

...
... · · ·

...
...

u
(1)
k · · · u

(n0)
k v

(1)
1,k · · · v

(n1)
1,k v

(1)
k,k · · · v

(nk)
k,k




t

(16)

can be obtained by solving

Mn · Y = −




a
(1)
0 · · · a

(1)
k

...
...

a
(‖n‖)
0 · · · a

(‖n‖)
k



[

U t(0)
V (0)

]
.(17)

In (17), we require that γβ 6= 0, 1 ≤ β ≤ k; γβ = 1 for a normalized NPHS.
Again, the existence of a solution to (17) is assured ifMn is nonsingular. The terms
δwβ(z), 1 ≤ β ≤ k, in (14) represent the residual errors made when solving (15) and
(17).

For the special case when n = [n0, 0, . . . , 0] the NPHS becomes

S(z) =

[
[a

(0)
0 ]−1zn0+1 U t(z)

0 Ik

]
· diag[γ0, · · · , γk],(18)

where U t(z) = −[a0(z)]
−1 · [a1(z), · · · , ak(z)] (mod zn0+1). For initialization purposes

in the algorithm given later in §4, we adopt (18) even in the cases n0 = 0 and n0 = −1,
despite the fact that it no longer strictly meets all the requirements of an NPHS.

3. Simultaneous Padé Systems. A Padé-Hermite system gives an approxi-
mation to a vector of formal power series using matrix multiplication on the right. In
this section we give the definition of a simultaneous Padé system which corresponds
to a similar approximation but with matrix multiplication on the left and with de-
gree constraints that can be thought of as being “dual” to the degree constraints of a
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Padé-Hermite system. As in the previous section, a simultaneous Padé system exists
if and only if a particular matrix of Sylvester type is nonsingular, in this case it is a
mosaic Sylvester matrix.

Let

A∗(z) =




a∗0,1(z) · · · a∗0,k(z)

a∗1,1(z) · · · a∗1,k(z)
...

...
a∗k,1(z) · · · a∗k,k(z)


 =

[
B∗t(z)
C∗(z)

]
(19)

be a (k + 1) × k matrix of power series with det(C∗(0)) 6= 0. The (k + 1) × (k + 1)
matrix of polynomials

S∗(z) =

[
v∗(z) U∗t(z)

z2Q∗(z) z2P ∗(z)

]
=




v∗(z) u∗1(z) · · · u∗k(z)
z2q∗1(z) z2p∗1,1(z) · · · z2p∗1,k(z)

...
...

...
z2q∗k(z) z2p∗k,1(z) · · · z2p∗k,k(z)


(20)

is a simultaneous Padé system (SPS) [12, 14] of type n for A∗(z) if the following
conditions are satisfied.
I. (Degree conditions): For 1 ≤ α, β ≤ k,

v∗(z) =

‖n‖−n0∑

`=0

v∗(`)z`, u∗β(z) =

‖n‖−nβ∑

`=0

u
∗(`)
β z`,(21)

q∗α(z) =

‖n‖−n0−1∑

`=0

q∗(`)α z`, p∗α,β(z) =

‖n‖−nβ−1∑

`=0

p
∗(`)
α,β z`.

II. (Order condition):

S∗(z)A∗(z) = z‖n‖+1T ∗(z),(22)

where T ∗t(z) = [W ∗(z)|R∗t(z)] with R∗(z) a k × k matrix.
III. (Nonsingularity condition): The constant term of R∗(z) is a diagonal matrix

R∗(0) = diag [γ∗1 , . . . , γ
∗
k ] ,(23)

and

γ∗ ≡ (a
(0)
0 )−1

k∏

α=0

γ∗α 6= 0,(24)

where γ∗0 = v∗(0).

Remark 5: The SPS is said to be normalized [12] if the nonsingularity condition
III is replaced by v∗(0) = 1 and R∗(0) = Ik. This can be achieved by multiplying
S∗(z) on the left by Γ∗−1, where

Γ∗ = diag [γ∗0 , . . . , γ
∗
k ] .(25)
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The SPS is said to be scaled when each row of S∗(z) has norm equal to 1 for some
norm and if, in addition, γ∗α > 0, 0 ≤ α ≤ k. Here, also, scaling a SPS is accomplished
by multiplying it on the left by an appropriate diagonal matrix.

Remark 6: The nonsingularity condition III, namely γ∗ 6= 0, refers to the non-
singularity of S∗(z); that is, S∗(z) is nonsingular iff γ∗ 6= 0 (this follows from Theorem
1 given below and from an observation about det(S(z)) made in Remark 4). Equiv-
alently, the nonsingularity condition refers to the nonsingularity of the associated
mosaic Sylvester matrixM∗

n defined in (27); in [12] it is shown that a SPS exists iff
M∗

n is nonsingular.

As for the Padé-Hermite system, if the order condition (22) is not satisfied exactly,
but rather

S∗(z)A∗(z) = z‖n‖+1T ∗(z) + δT ∗(z),(26)

where δT ∗t(z) =
[
δW ∗(z)|z2 δR∗t(z)

]
(with δR∗(z) a k × k matrix) is a relatively

“small” residual error, then S∗(z) is called a numerical simultaneous Padé system
(NSPS). In (26), for 1 ≤ α, β ≤ k,

δw∗β(z) =

‖n‖∑

`=0

δw
∗(`)
β z`,

δr∗α,β(z) =

‖n‖−2∑

`=0

δr
∗(`)
α,β z`.

As with the NPHS S(z), a NSPS for which δT ∗(z) = 0 is denoted by S∗E(z).

Associated with A∗(z), letM∗
n be the mosaic Sylvester matrix of order k‖n‖,

M∗
n =



S∗0,1 · · · S∗0,k
...

...
S∗k,1 · · · S∗k,k


 ,(27)

where, for 0 ≤ α ≤ k and 1 ≤ β ≤ k,

S∗α,β =




a
∗(0)
α,β · · · a

∗(‖n‖−1)
α,β

. . .
...

a
∗(0)
α,β · · · a

∗(nα)
α,β


 .

Also define the order k(‖n‖+ 1) matrix

N ∗n =




a
∗(1)
1,1 · · · a

∗(‖n‖)
1,1 a

∗(1)
1,k · · · a

∗(‖n‖)
1,k

C∗(0)
...

... · · ·
...

...

a
∗(1)
k,1 · · · a

∗(‖n‖)
k,1 a

∗(1)
k,k · · · a

∗(‖n‖)
k,k

0 M∗
n




.(28)
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Then, as for the NPHS, S∗(z) can be obtained by solving two sets of linear equations
withM∗

n and N ∗n as the coefficient matrices (also see [12]).
To obtain S∗0,1(z), . . . , S

∗
0,k(z) of S

∗(z), we use

v∗(z) a∗0,β(z) +

k∑

α=1

u∗α(z)a
∗
α,β(z) = z‖n‖+1w∗β(z) + δw∗β(z), 1 ≤ β ≤ k,(29)

which is the first row of (26). Matching coefficients of 1, z, . . . , z‖n‖ in (29) gives

X ∗t · N ∗n =(30)

−v∗(0)
[

B∗t(0) a
∗(1)
0,1 , . . . , a

∗(‖n‖)
0,1 · · · a

∗(1)
0,k , . . . , a

∗(‖n‖)
0,k

]
,

where

X ∗t = [u
∗(0)
1 , . . . , u

∗(0)
k |v∗(1), . . . , v∗(‖n‖−n0)|u

∗(1)
1 , . . . , u

∗(‖n‖−n1)
1 | · · ·

· · · |u
∗(1)
k , . . . , u

∗(‖n‖−nk)
k ].

With v∗(0) = γ∗0 6= 0 specified (γ∗0 = 1 for a normalized NSPS), a unique solution
to (30) is assured if M∗

n is nonsingular, since by assumption det [C∗(0)] 6= 0. The
terms δw∗β(z) in (29) represent the residual errors made in solving (30).

Next, to compute P ∗(z) and Q∗(z) (i.e., the remaining rows of S∗(z)), again we
use (26), namely,

q
∗
α(z) a

∗
0,β(z) +

k∑

ρ=1

p
∗
α,ρ(z) a

∗
ρ,β(z) = z

‖n‖−1
r
∗
α,β(z) + δr

∗
α,β(z), 1 ≤ α, β ≤ k.(31)

Let

Y∗tα =
[
q∗(0)α , . . . , q∗(‖n‖−n0−1)

α |p
∗(0)
α,1 , . . . , p

∗(‖n‖−n1−1)
α,1 | · · · |p

∗(0)
α,k , . . . , p

∗(‖n‖−nk−1)
α,k

]
.

Then, (31) and the requirement that R∗(0) = diag[γ∗1 , . . . , γ
∗
k ] yields

Y∗tα · M
∗
n = γ∗αE

t
α‖n‖, 1 ≤ α ≤ k,(32)

where Et
α‖n‖ is the unit row vector of length k‖n‖ with a single 1 in position α‖n‖.

With diag[γ∗1 , . . . , γ
∗
k ] specified (γ∗α = 1 for a normalized NSPS), a solution of (32)

exists uniquely ifM∗
n is nonsingular. The solution Y∗α provides the αth row of S∗(z);

namely, S∗α,0(z) = z2 · q∗α(z) and S∗α,β(z) = z2 · p∗α,β(z), 1 ≤ β ≤ k. The terms
δr∗α,β(z) in (31) represent the residual errors made in solving (32).

In the remainder of the paper, without loss of generality, we make the simplifying
assumption that

A∗(z) =




−a1(z) · · · −ak(z)
a0(z) 0

. . .

0 a0(z)


 .(33)

With A∗(z) defined by (33), for the special case when n = [n0, 0, . . . , 0], the NSPS
becomes

S∗(z) = diag[γ∗0 , · · · , γ
∗
k ]

[
1 U∗t(z)

0 [a
(0)
0 ]−1zn0+1Ik

]
,(34)
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where U∗t(z) = [a0(z)]
−1 · [a1(z), · · · , ak(z)] (mod zn0+1). For initialization purposes

in the algorithm given in §4, we adopt (34) even in the case when n0 = 0 and n0 = −1,
despite the fact that it no longer strictly meet all the requirements of a NSPS.

In addition, with A∗(z) defined by (33), there is an important commutativity
relationship between Padé-Hermite systems and simultaneous Padé systems, given in
Theorem 1 below. This relationship is used later in §5. But, in our presentation, the
residual T ∗(z) continues to take the more general form (19) rather than (33); because,
for the computation of the NSPS for T ∗(z), which is required by the algorithm given
in §4, the conversion of T ∗(z) from the form (19) to the form (33) by means of
multiplication on the right by R∗−1(z) introduces undesirable instabilities.

Theorem 1. If S(z) is a NPHS of type n for A(z) and S∗(z) is a NSPS of type
n for A∗(z), then

S∗(z) · S(z) = z‖n‖+1(a
(0)
0 )−1Γ∗Γ + θI(z),(35)

where

θI(z) = a−1
0 (z)

{[
v∗(z)

z2Q∗(z)

]
δT t(z) + δT ∗(z)

[
z2Q(z) V (z)

]}
(mod zD+1)

with

D =




‖n‖+ 1 ‖n‖ · · · ‖n‖
‖n‖+ 2 ‖n‖+ 1 · · · ‖n‖+ 1
...

...
...

‖n‖+ 2 ‖n‖+ 1 · · · ‖n‖+ 1




and with the modulo operation applied component-wise.
Proof. See [9].

Thus, given a NPHS, a NSPS can be computed using (35). However, the stability
of such a computation is not known, and we choose instead to compute NPHS and
NSPS systems in tandem by the algorithm described in the next section.

4. The Algorithm. To compute a NPHS of type n for A(z) and a NSPS of type
n for A∗(z), the systems (13), (17), (30) and (32) can be solved using a method such
as Gaussian elimination. This method, while not restricting the input power series,
does not take advantage of the inherent structure of the coefficient matricesMn and
M∗

n. Alternatively, a variety of recurrence relations which do take advantage of this
structure have been described in the literature ([27],[4],[12],[14]). These recurrence
relations usually lead to much more efficient algorithms for algebraically computing
Padé-Hermite systems and simultaneous Padé systems. The recurrence relations given
in [12] and [14] appear to be the most easily adaptable to numerical computation and
it is the detailed study of the numerical behavior of these recurrences to which we
devote the remainder of this paper. We begin by briefly describing these recurrences
in the algebraic case.

Let e0 = [1, 0, . . . , 0] be a 1× k + 1 vector, set

M = min

{
n0, max

1≤β≤k
{nβ}

}
+ 1,
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and define integer vectors n(i) = (n
(i)
0 , . . . , n

(i)
k ) for 0 ≤ i ≤ M by n(0) = −e0 and,

for i > 0,

n
(i)
β = max{0, nβ − M + i}, β = 0, . . . , k.

Then the sequence {n(i)}i=0,1,... lies on a piecewise linear path with n
(i+1)
β ≥ n

(i)
β for

each i, β and3 n(M) = n. The sequence {n(i)} contains a subsequence {m(σ)} called
the sequence of nonsingular points for A(z) and A∗(z). This sequence is defined
by m(σ) = n(iσ), where

iσ =

{
0, σ = 0,
min{i > iσ−1 : det(Mn(i)) 6= 0}, σ ≥ 1,

where det(Mn(i)) is the determinant4 of Mn(i) . Corresponding to the sequence of

nonsingular points {m(σ)} is the sequence
{
S

(σ)
E (z)

}
of Padé-Hermite systems with

residuals
{
T

(σ)
E

t
(z)
}
and the sequence

{
S
∗(σ)
E (z)

}
of simultaneous Padé systems with

residuals
{
T
∗(σ)
E (z)

}
. For σ = 0, set

{
S

(0)
E (z)

}
=
{
S
∗(0)
E (z)

}
= Ik+1. We have that

At(z) · S
(σ)
E (z) = z‖m

(σ)‖+1 T
(σ)t
E (z)

and

S
∗(σ)
E (z) ·A∗(z) = z‖m

(σ)‖+1 T
∗(σ)
E (z).

The following theorem provides a relation of the (σ + 1)th exact systems in terms of
the σth exact systems.

Theorem 2. For σ ≥ 0 and i > iσ, let ν = n(i) − m(σ) − e0. Then, the
following statements are equivalent.

1. n(i) is a nonsingular point for A(z) and A∗(z).

2. ν is a nonsingular point for T
(σ)
E (z).

3. ν is a nonsingular point for T
∗(σ)
E (z).

Furthermore, we have the recurrence relations

S
(σ+1)
E (z) = S

(σ)
E (z) · ŜE(z), T

(σ+1)
E (z) = T̂E(z),(36)

and

S
∗(σ+1)
E (z) = Ŝ∗E(z) · S

∗(σ)
E (z), T

∗(σ+1)
E (z) = T̂ ∗E(z),(37)

where ŜE(z) is the Padé-Hermite system of type (m(σ+1) −m(σ) − e0) for T
(σ)
E (z) with

residual T̂E(z) and Ŝ∗E(z) is the simultaneous Padé system of type (m(σ+1) − m(σ) − e0)

for T
∗(σ)
E (z) with residual T̂ ∗E(z).

Proof. The proof for the NPHS is given in [14] and for the NSPS in [12].

3 We assume here with loss of generality that nβ ≥ 0, 0 ≤ β ≤ k, because if nβ = −1 for some β,
we can simply remove nβ from n and aβ(z) from At(z) and decrease k by 1.

4 By convention, the determinant of a null matrix is defined to be equal to 1.
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Theorem 2 reduces the problem of determining a Padé-Hermite system and a
simultaneous Padé system of types m(σ+1) to two smaller problems: determine sys-
tems of type m(σ) for the original power series and then determine systems of type
ν = m(σ+1) −m(σ) − e0 for the residual power series. For the residual power series,
the system ŜE(z) is obtained by solving the linear equations (13) and (17), where in

the following the associated matrix is now denoted by M̂ν rather than byMν ; and,
the system Ŝ∗E(z) is obtained by solving the linear equations (30) and (32), where

in the following the associated matrix is now denoted by M̂∗
ν rather than by M∗

ν .
The overhead cost of each step of this iterative scheme is the cost of determining the
residual power series and the cost of combining the solutions, i.e., the cost of comput-

ing S
(σ+1)
E (z) and S

∗(σ+1)
E (z) in (36) and (37). This overhead cost summed over all

the steps, in general, is an order of magnitude less than the cost of solving the linear
systems (13), (17), (30) and (32) directly.

Numerically, the recurrences (36) and (37) perform badly if Mm(σ) and M∗
m(σ)

are ill-conditioned at any point m(σ). Rather than moving from nonsingular point
to nonsingular point along the diagonal, what we would like to do is move from a
well-conditioned point to the next well-conditioned point. This is the motivation for
the algorithm PHS SPS given below, where the points m(σ), σ = 0, 1, . . . , correspond
to stable points rather than to nonsingular points and we step over unstable blocks.

A quantitative measure of the stability of a point m(σ) is provided by the stability
parameter

κ(σ) =

k∑

β=0

(γ
(σ)
β γ

∗(σ)
β )−1.(38)

It is shown in [9, 11] that 2κ(σ)|a
(0)
0 | · ‖a

−1
0 (z) (mod z‖n‖+1)‖ is an upper bound for

the condition numbers ‖Mm(σ)‖ · ‖M−1
m(σ)‖ ofMm(σ) and ‖M∗

m(σ)‖∞ · ‖M
∗−1
m(σ)‖∞ of

M∗
m(σ) . For the parameter (38), as well as considerations of §5 and §6 it is assumed

that S(σ)(z) and S∗(σ)(z) are both scaled and that ‖aβ(z)‖ ≤ 1, 0 ≤ β ≤ k. The
norms used for the various scaling are defined in §1. In (38), it is also assumed that
the residual errors δT (σ)(z) and δT ∗(σ)(z) in the order equations

At(z) · S(σ)(z) = z‖m
(σ)‖+1 T (σ)t(z) + δT (σ)t(z)(39)

and

S∗(σ)(z) ·A∗(z) = z‖m
(σ)‖+1 T ∗(σ)(z) + δT ∗(σ)(z),(40)

at the point m(σ) are relatively insignificant. We say that m(σ) is a stable point
(or, a well-conditioned point) if for some preassigned tolerance τ , κ(σ) ≤ τ . In the
algorithm below, the user supplies the tolerance value τ .

PHS SPS(A(z), n, k, τ)
σ ← 0; m(0) ← −e0; S(0) ← Ik+1; S∗(0) ← Ik+1;
M ← min {n0, max1≤β≤k{nβ}} + 1
i ← 0; stable ← true
While ((i < M) and stable) do

ν ← n − m(σ) − e0

s ← 0; stable ← false

13



While (s < M − i) and (not stable) do
s ← s + 1
ν

(s)
β ← max{0, νβ + i − M + s}, β = 0, . . . , k

Compute the residuals T (σ)(z) and T ∗(σ)(z) in (39) and (40)
Construct the matricesMν(s) for T (σ)(z) andM∗

ν(s) for T ∗(σ)(z)
IfMν(s) is numerically nonsingular then

m(σ+1) ← m(σ) + ν(s) + e0

Obtain Ŝ(z) by solving (13) and (17) by Gaussian elimination

S(σ+1)(z) ← S(σ)(z) Ŝ(z)
Scale S(σ+1)(z) and compute Γ(σ+1)

Obtain Ŝ∗(z) by solving (30) and (32) by Gaussian elimination

S∗(σ+1)(z) ← Ŝ∗(z) S∗(σ)(z)
Scale S∗(σ+1)(z) and compute Γ∗(σ+1)

Using (38), compute κ(σ+1)

stable ← κ(σ+1) ≤ τ
end If

end While
If stable then σ ← σ + 1; i ← i+ s

end While
If stable then return (S(σ)(z), S∗(σ)(z), κ(σ)) else return (S(σ+1)(z), S∗(σ+1)(z), κ(σ+1))

In the algorithm above, by the numerical nonsingularity of a matrix, we mean
that no zero pivot elements are encountered during the triangularization of the matrix
by the Gaussian elimination method with partial pivoting..

5. Bounds on Errors in the Order Conditions. In this section, we give
bounds for the errors in the order conditions for the NPHS and the NSPS computed
by the algorithm PHS SPS. Some of the details of the derivations are omitted and
can be found in [9]; in particular, for the NSPS the final result only (without proof)
is given.

We begin by giving some standard results from the field of floating-point error
analysis. Let µ denote the unit floating-point error and assume that the degrees of all
polynomials and the orders of all matrices are bounded by some N , where Nµ ≤ 0.01
(this restriction comes from Forsythe and Moler [16]). Indeed, as an assumption for
all the lemmas and theorems below, we require that (‖n‖ + k + 1)µ ≤ 0.01. After
Wilkinson [28], we denote a floating-point operation by fl[·]. In the following results,
it is assumed that the operands consist of floating-point numbers.

Lemma 3. If ∂µ ≤ 0.01, then

fl[
∂∑

k=1

ukvk] =
∂∑

k=1

ukvk(1 + δk),

where |δk| ≤ 1.01∂µ.
Lemma 4. If S(z) is a NPHS of type n for A(z), then

fl[At(z) · S(z)] = At(z) · S(z) + Ψt(z),

where

‖Ψt(z)‖ ≤ 1.01µ(‖n‖+ k + 1)‖At(z)‖ · ‖S(z)‖.

14



Proof. Using Lemma 3, for 0 ≤ β ≤ k,

fl[

k∑

α=0

aα(z)Sα,β(z)] =

∞∑

`=0

z`fl[

k∑

α=0

nα∑

j=0

a(`−j)
α S

(j)
α,β ]

=
∞∑

`=0

z`
k∑

α=0

nα∑

j=0

a(`−j)
α S

(j)
α,β(1 + δα,β,j,`),

where |δα,β,j,`| ≤ 1.01(nα + k + 1)µ. So,

Ψβ(z) =

∞∑

`=0

z`
k∑

α=0

nα∑

j=0

a(`−j)
α S

(j)
α,βδα,β,j,`,

and

‖Ψt(z)‖ = max
0≤β≤k

{‖Ψβ(z)‖}

≤ max
0≤β≤k




∞∑

`=0

k∑

α=0

nα∑

j=0

|a(`−j)
α | · |S

(j)
α,β | · |δα,β,j,`|





≤ 1.01µ max
0≤β≤k





k∑

α=0

(nα + k + 1)

nα∑

j=0

|S
(j)
α,β |

∞∑

`=0

|a(`−j)
α |





≤ 1.01µ max
0≤α≤k

{nα + k + 1}‖At(z)‖ max
0≤β≤k

{
k∑

α=0

‖Sα,β(z)‖

}

≤ 1.01µ(‖n‖+ k + 1)‖At(z)‖ · ‖S(z)‖.

We begin the analysis of the error in the order condition in the NSPS by first
examining the floating-point errors introduced by one iteration of the algorithm. At
the σth iteration, the NPHS S(σ)(z) of type m(σ) for At(z) is available and satisfies

At(z) · S(σ)(z) = δT (σ)t(z) +O(z‖m
(σ)‖+1).

The algorithm proceeds to compute S(σ+1)(z) of type m(σ+1).
An iterative step consists of three parts. In the first part, the first ‖ν(σ)‖ + 1

terms of T (σ)(z) are computed; a bound for the floating-point errors introduced in

this part is given in Lemma 5 below. In the second part, the NPHS Ŝ(σ)(z) of
type ν(σ) for T (σ)(z) is computed; an error analysis is given Lemma 6. In the third
part, Lemma 7 provides bounds for the floating-point errors introduced in computing
S(σ+1)(z) = S(σ)(z) · Ŝ(σ)(z). At this point in the algorithm, S(σ+1)(z) is scaled so
that the norm of each column is 1. We assume for the sake of simplicity that this
scaling introduces no additional errors. This is reasonable assumption because errors
due to scaling are comparatively insignificant5.

5 Note also that Ŝ(σ)(z) can be determined a posteriori with appropriate values of γ̂(σ) so that
S(σ+1)(z) is already scaled. None of the subsequent error bounds would change, and so in reality
this assumption is made without loss of generality.
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Lemma 5. The computed residual T (σ)(z) satisfies

z‖m
(σ)‖+1T (σ)t(z) = At(z) · S(σ)(z)− δT (σ)t(z) + z‖m

(σ)‖+1θ
(σ)t

II (z),

where

‖θ
(σ)t

II (z)‖ ≤ 1.01(‖m(σ)‖+ k + 1) · µ.

Proof. The result is an immediate consequence of Lemma 4 since At(z) and
S(σ)(z) are both scaled. For details, see [9].

Lemma 6. If M̂ν(σ) is nonsingular and Ŝ(σ)(z) is obtained by solving (13) and
(17), then

T (σ)t(z) · Ŝ(σ)(z) = θ
(σ)t

III (z) +O(z‖ν
(σ)‖+1),

where

‖θ
(σ)t

III (z)‖ ≤ (8‖ν(σ)‖3 · ρσ · µ+O(µ2)) · ‖Ŝ(σ)(z)‖.

Proof. First we obtain bounds for the first component of θ
(σ)t

III (z). The first column

of Ŝ(σ)(z) corresponds to the solution X̂ of (13) obtained by Gaussian elimination.

The vector X̂ is the exact solution of

(M̂ν(σ) + E) · X̂ =




0
...
0
1


 ,

where6

‖E‖1 ≤ 8‖ν(σ)‖3 · ρσ · ‖M̂ν(σ)‖1 · µ+O(µ2)

and ρσ is the growth factor associated with the LU-decomposition of M̂ν(σ) ([17](page 67)).
But, from Lemma 4,

‖T (σ)t(z)‖ ≤ 1 + 1.01 · (‖m(σ)‖+ k + 1) · µ,

since A(z) and S(σ)(z) are both scaled. So,

‖M̂ν(σ)‖1 ≤ ‖T
(σ)t(z)‖ ≤ 1 +O(µ)

Thus,

M̂ν(σ) · X̂ −




0
...
0
1


 = −E · X̂ ,

6 The results in [17] use the ∞-norm, but it is easy to show that they are also valid using the
1-norm. With partial pivoting, ρσ is of order unity in practice. Examples can be constructed,
however, where the growth factor ρ grows exponentially if partial pivoting is used, but in practice ρσ
is usually comparable to the modest growth that results when complete pivoting is used (which is
approximately 10 in practice) [17, page 69]. Further discussion and new results regarding the growth
factor ρσ can be found in [21] and [26].
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where

‖E · X̂ ‖1 ≤
{
8‖ν(σ)‖3 · ρσ · µ + O(µ2)

}
· ‖X̂ ‖1.

A similar analysis can be done for solving (17) to obtain Ŷ. But X̂ yields the first

column of Ŝ(σ)(z) with residual error E · X̂ and Ŷ yields the remaining columns of

Ŝ(σ)(z) with a corresponding residual error. Thus,

T (σ)t(z) · Ŝ(σ)(z) = θ
(σ)t

III (z) +O(z‖ν
(σ)‖+1),

where

‖θ
(σ)t

III (z)‖ ≤
{
8‖ν(σ)‖3 · ρσ · µ+O(µ2)

}
· ‖Ŝ(σ)(z)‖.

Lemma 7. If S(σ+1)(z) = fl(S(σ)(z) · Ŝ(σ)(z)), then

S(σ+1)(z) = S(σ)(z) · Ŝ(σ)(z) + θ
(σ)
IV (z),

where

‖θ
(σ)
IV (z)‖ ≤ 1.01(‖ν(σ)‖+ k + 1) · ‖S(σ)(z)‖ · ‖Ŝ(σ)(z)‖µ.

Proof. For 1 ≤ α, β ≤ k, the (α, β)-component of S(σ+1)(z) is

fl

[
z2qα(z) · ûβ(z) +

k∑

ρ=1

vα,ρ(z) · v̂ρ,β(z)

]

= fl


z2

m(σ)
α +ν

(σ)
0 −1∑

`=0

z`
ν
(σ)
0∑

j=0

q(`−j)
α û

(j)
β +

k∑

ρ=1

m(σ)
α +ν(σ)

ρ∑

`=0

z`
ν(σ)
ρ∑

j=0

v(`−j)
α,ρ v̂

(j)
ρ,β




=

m(σ)
α +ν

(σ)
0 −1∑

`=0

z`+2

ν
(σ)
0∑

j=0

q(`−j)
α û

(j)
β · (1 + δα,β,j,`,0).

+

m(σ)
α +ν(σ)

ρ∑

`=0

z`
k∑

ρ=1

ν(σ)
ρ∑

j=0

v(`−j)
α,ρ v̂

(j)
ρ,β · (1 + δα,β,j,`,ρ),

where |δα,β,j,`,ρ| ≤ 1.01 · (ν
(σ)
ρ + k + 1) · µ. Here, we have used Lemma 3 with the

assumption that (‖ν(σ)‖+ k + 1)µ ≤ 0.01. So,

(
θ
(σ)
IV (z)

)
α,β

= z2

m(σ)
α +ν

(σ)
0 −1∑

`=0

z`
ν
(σ)
0∑

j=0

q(`−j)
α · û

(j)
β · δα,β,j,`,0

+

k∑

ρ=1

m(σ)
α +ν(σ)

ρ∑

`=0

z`
ν(σ)
ρ∑

j=0

v(`−j)
α,ρ · v̂

(j)
ρ,β · δα,β,j,`,ρ.

Thus,

‖
(
θ
(σ)
IV (z)

)
α,β
‖ ≤ 1.01·(‖ν(σ)‖+k+1)·{‖qα(z)‖·‖ûβ(z)‖ +

k∑

ρ=1

‖vα,ρ(z)‖·‖v̂ρ,β(z)‖}µ.
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An equivalent result holds for α = β = 0. The lemma now follows.
The use of the results of the three lemmas above enables us to express the residual

error δT (σ+1)t(z) in the order condition at the (σ + 1)th iteration in terms of the

residual error δT (σ)t(z) at the σth iteration plus the floating-point errors introduced
“locally” by the σth iteration.

Lemma 8.

δT (σ+1)t(z) = δT (σ)t(z) · Ŝ(σ)(z) + L(σ)t(z),(41)

where

L(σ)t(z) =
{
At(z) · θ

(σ)
IV (z)

+ z‖m
(σ)‖+1

[
θ
(σ)t

III (z) − θ
(σ)t

II (z) · Ŝ(σ)(z)
]}

(mod z‖m
(σ+1)‖+1).

Proof. The result is an immediate consequence of Lemmas 5, 6 and 7.
Thus, the residual error δT (σ+1)t(z) is composed of the local error L(σ)t(z) intro-

duced by the σth iteration plus the residual error δT (σ)t(z) from the previous iteration

propagated by Ŝ(σ)(z). Applying (41) recursively, we obtain the following.
Theorem 9. The residual error satisfies

δT (σ+1)t(z) =

σ∑

j=0

L(j)t(z) · G
(σ)
j (z),(42)

where

G
(σ)
j (z) =

{
Ŝ(j+1)(z) · Ŝ(j+2)(z) · · · Ŝ(σ)(z), 0 ≤ j < σ,
Ik+1, j = σ.

(43)

Proof. The result follows by induction from Lemma 8.
¿From (42), we see that the residual error δT (σ+1)t(z) is composed of the local

errors L(j)t(z) propagated by G
(σ)
j . Lemmas 5, 6 and 7 provide bounds for L(j)t(z). To

obtain a bound for δT (σ+1)t(z), it remains to determine bounds for the propagation

matrices G
(σ)
j . The concern is that the Ŝ(j)(z) making up G

(σ)
j will cause G

(σ)
j to grow

exponentially with σ. The next Lemma and Theorem show that this is not the case; a

bound is obtained for G
(σ)
j which is independent of σ. Hence, the local error L(j)t(z)

introduced at iteration j and propagated to iteration σ+1 by G
(σ)
j does not grow with

σ. Thus, in this sense, the error grows additively; that is, δT (σ+1)t(z) is bounded by
the sum of the bounds of the local errors at each iteration j.

Lemma 10. If µ is so small and δT (σ)t(z) and δT ∗(σ)(z) are not too large so that

κ(σ) · |a
(0)
0 | ·

{
‖a−1

0 (z) (mod z‖n‖+1)‖
[
(k + 1)‖δT (σ)t(z)‖+ ‖δT ∗(σ)(z)‖

]

+ 1.01(k + 1)(‖ν(σ)‖+ k + 1) · µ
}
≤

1

2
,

then

‖Ŝ(σ)(z)‖ ≤ 2κ(σ) · (k + 1) · |a
(0)
0 |.
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Proof. ¿From (38),

‖(Γ∗(σ) · Γ(σ))−1 · S∗(σ)(z) · S(σ+1)(z)‖ ≤ ‖(Γ∗(σ) · Γ(σ))−1‖ · ‖S∗(σ)(z)‖ · ‖S(σ+1)(z)‖

≤ κ(σ) · (k + 1).

But, using Lemma 7 and Theorem 1 (adjusted to apply at the point m(σ) rather than
at n)

‖(Γ∗(σ) · Γ(σ))−1 · S∗(σ)(z) · S(σ+1)(z)‖

= ‖(Γ∗(σ) · Γ(σ))−1 · S∗(σ)(z) ·
{
S(σ)(z) · Ŝ(σ)(z) + θ

(σ)
IV (z)

}
‖

= ‖(Γ∗(σ) · Γ(σ))−1 ·
{
(z‖m

(σ)‖+1 · (a
(0)
0 )−1 · Γ∗(σ) · Γ(σ) + θ

(σ)
I (z)

}
· Ŝ(σ)(z)

+ (Γ∗(σ) · Γ(σ))−1 · S∗(σ)(z) · θ
(σ)
IV (z)‖

≥ |a
(0)
0 |

−1 · ‖Ŝ(σ)(z)‖

− ‖(Γ∗(σ) · Γ(σ))−1‖ · ‖a−1
0 (z) (mod z‖n‖+1)‖ ·

[
(k + 1)‖δT (σ)t(z)‖ + ‖δT ∗(σ)(z)‖

]
· ‖Ŝ(σ)(z)‖

− ‖(Γ∗(σ) · Γ(σ))−1‖ ·
{
1.01 · (‖ν(σ)‖+ k + 1)

}
· ‖S(σ)(z)‖ · ‖Ŝ(σ)(z)‖ · ‖S∗(σ)(z)‖ · µ

≥ ‖Ŝ(σ)(z)‖ ·
{
|a

(0)
0 |

−1 − κ(σ)‖a−1
0 (z) (mod z‖n‖+1)‖

·
[
(k + 1)‖δT (σ)t(z)‖ + ‖δT ∗(σ)(z)‖

]
− 1.01 κ(σ) · (‖ν(σ)‖+ k + 1) · (k + 1) · µ

}

≥ |a
(0)
0 |

−1 · ‖Ŝ(σ)(z)‖/2.

The result now follows.
Theorem 11. If µ is so small and δT (j)t(z) and δT ∗(j)(z) are not too large so

that

κ(σ) · |a
(0)
0 | ·

{
‖a−1

0 (z) (mod z‖n‖+1)‖
[
(k + 1)‖δT (j)t(z)‖+ ‖δT ∗(j)(z)‖

]

+ 1.01(k + 1)(‖ν(σ)‖+ k + 1) · µ
}
≤

1

2
,

then

‖G
(σ)
j−1(z)‖ ≤ 2κ(j) · (k + 1) · |a

(0)
0 |+O(µ), j ≤ σ.

Proof. ¿From (43) and from Lemma 7

S(σ+1)(z) = S(j)(z) · G
(σ)
j−1(z) +

σ∑

`=j

θ
(`)
IV (z) · G

(σ)
` (z).

We proceed by induction. Assume the theorem is true for G
(σ)
σ−1 (z), G

(σ)
σ−2(z), · · ·, G

(σ)
j (z)

(the initial case, j = σ − 1, is proved in Lemma 10 since G
(σ)
σ−1(z) = Ŝ(σ)(z)). From

(38),

‖(Γ∗(j) · Γ(j))−1S∗(j)(z) · S(σ+1)(z)‖ ≤ κ(j)(k + 1).
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But, using Lemma 7, Theorem 1 and the inductive hypothesis,

‖(Γ∗(j) · Γ(j))−1 · S∗(j)(z) · S(σ+1)(z)‖

≥ ‖(Γ∗(j) · Γ(j))−1 · S∗(j)(z) · S(j)(z) · G
(σ)
j−1(z)

+

σ∑

`=j

(Γ∗(j) · Γ(j))−1 · S∗(j)(z) · θ
(`)
IV (z) · G

(σ)
` (z)‖

≥ ‖(Γ∗(j) · Γ(j))−1 ·
{
z‖m

(j)‖+1(a
(0)
0 )−1Γ∗(j) · Γ(j) + θ

(j)
I (z)

}
· G

(σ)
j−1(z)‖

−κ(j)
σ∑

`=j

{k + 1} ·
{
2.02κ(`) · (k + 1) · (‖ν(`)‖+ k + 1) · |a

(0)
0 | · µ

}
·

{
2κ(`+1) · (k + 1) · |a

(0)
0 |+O(µ)

}

≥ ‖G
(σ)
j−1(z)‖

{
|a

(0)
0 |

−1 − κ(j)‖a−1
0 (z) (mod z‖n‖+1)‖

[
(k + 1)‖δT (j)t(z)‖+ ‖δT ∗(j)(z)‖

]}
−O(µ)

≥ |a
(0)
0 |

−1‖G
(σ)
j−1(z)‖/2−O(µ).

In the above theorem, we have taken the liberty of replacing a summation involv-
ing terms linear in µ with an O(µ) expression. We could have left the summation in
explicitly, but, as we shall see, this summation becomes quadratic in µ when it is used
to obtain a bound on δT (σ)t(z).

Finally, we can give the bound on the residual error.
Theorem 12. If µ is so small and δT (j)t(z) and δT ∗(j)(z) are not too large so

that

(‖n‖+ k + 1)µ ≤ 0.01

and

κ(j) · |a
(0)
0 | ·

{
‖a−1

0 (z) (mod z‖n‖+1)‖
[
(k + 1)‖δT (j)t(z)‖+ ‖δT ∗(j)(z)‖

]

+ 1.01(k + 1)(‖ν(j)‖+ k + 1) · µ
}
≤

1

2
, j ≤ σ,

then

‖δT (σ+1)t(z)‖ ≤ Fσ + 2(k + 1) · |a
(0)
0 |

σ−1∑

j=0

κ(j+1)Fj ,(44)

where

Fj = 4κ(j)(k + 1) · |a
(0)
0 | · µ(45)

·
{
(‖m(j)‖+ k + 1) + 4ρj‖ν

(j)‖3 + (‖ν(j)‖+ k + 1)
}

and ρj is the growth factor associated with the LU-decomposition of M̂ν(j) by Gaussian
elimination.
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Proof. To simplify the analysis, we now split the local error L(σ)t(z) into three
parts and analyze the propagation of each part separately. Let

L
(σ)t

1 (z) =

{
0, σ = 0,

−z‖m
(σ)‖+1 θ

(σ)t

II (z) Ŝ(σ)(z) ( mod z‖m
(σ+1)‖+1), σ ≥ 1,

(46)

L
(σ)t

2 (z) = z‖m
(σ)‖+1θ

(σ)t

III (z) ( mod z‖m
(σ+1)‖+1), σ ≥ 0,(47)

L
(σ)t

3 (z) =

{
0, σ = 0,

At(z)θ
(σ)
IV (z) ( mod z‖m

(σ+1)‖+1), σ ≥ 1,
(48)

and define

E
(σ+1)
i (z) =

σ∑

j=0

L
(j)t

i (z) · G
(σ)
j (z), i = 1, 2, 3.(49)

Then, according to Lemma 8 and Theorem 9,

δT (σ+1)t(z) =

3∑

i=1

E
(σ+1)t

i (z) .

We now bound E
(σ+1)t

i (z), 1 ≤ i ≤ 3.
¿From (46) and (49), from Lemmas 5 and 10 and from Theorem 11,

‖E
(σ+1)t

1 (z)‖ = ‖
σ∑

j=0

L
(j)t

1 (z) · G
(σ)
j (z)‖

≤ ‖θ
(σ)t

II (z)‖ · ‖Ŝ(σ)(z)‖+
σ−1∑

j=0

‖θ
(j)t

II (z)‖ · ‖Ŝ(j)(z)‖ · ‖G
(σ)
j (z)‖(50)

≤
{
1.01(‖m(σ)‖+ k + 1) · µ

}{
2κ(σ)(k + 1)|a

(0)
0 |
}

+

σ−1∑

j=0

{
1.01(‖m(j)‖+ k + 1)µ

}
·
{
2κ(j)(k + 1)|a

(0)
0 |
}

·
{
2κ(j+1)(k + 1)|a

(0)
0 |+O(µ)

}

≤ 4κ(σ) · (k + 1) · (‖m(σ)‖+ k + 1) · |a
(0)
0 | · µ

+ 8(k + 1)2 · |a
(0)
0 |

2 · µ
σ−1∑

j=0

κ(j) · κ(j+1) · (‖m(j)‖+ k + 1)

+ O(µ2).

¿From (47) and (49), from Lemmas 6 and 10 and from Theorem 11,

‖E
(σ+1)t

2 (z)‖ = ‖
σ∑

j=0

L
(j)t

2 (z)G
(σ)
j (z)‖

≤ ‖θ
(σ)t

III (z)‖+
σ−1∑

j=0

‖θ
(j)t

III (z)‖ · ‖G
(σ)
j (z)‖(51)
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≤
{
8‖ν(σ)‖3 · ρσ · µ+O(µ2)

}
· ‖Ŝ(σ)(z)‖

+

σ−1∑

j=0

{
8‖ν(j)‖3 · ρj · µ+O(µ2)

}
· ‖Ŝ(j)(z)‖ · ‖G

(σ)
j (z)‖

≤
{
8‖ν(σ)‖3 · ρσ · µ+O(µ2)

}
·
{
2κ(σ)(k + 1)|a

(0)
0 |
}

+
σ−1∑

j=0

{
8‖ν(j)‖3 · ρj · µ+O(µ2)

}
·
{
2κ(j)(k + 1)|a

(0)
0 |
}

·
{
2κ(j+1)(k + 1)|a

(0)
0 |+O(µ)

}
.

≤ 16 · κ(σ) · (k + 1)‖ν(σ)‖3 · ρσ · |a
(0)
0 | · µ

+32(k + 1)2 · |a
(0)
0 |

2
σ−1∑

j=0

κ(j) · κ(j+1) · ρj · ‖ν
(j)‖3 · µ

+O(µ2).

¿From (48) and (49), from Lemmas 7 and 10 and from Theorem 11,

‖E
(σ+1)t

3 (z)‖ = ‖
σ∑

j=0

L
(j)t

3 (z) · G
(σ)
j (z)‖

≤ ‖At(z) · θ
(σ)
IV (z)‖+

σ−1∑

j=0

‖At(z) · θ
(j)
IV (z)‖ · ‖G

(σ)
j (z)‖(52)

≤ 1.01(‖ν(σ)‖+ k + 1) · ‖Ŝ(σ)(z)‖ · µ

+

σ−1∑

j=0

{
1.01(‖ν(j)‖+ k + 1) · µ

}
· ‖Ŝ(j)(z)‖ · ‖G

(σ)
j (z)‖

≤
{
1.01 · (‖ν(σ)‖+ k + 1) · µ

}
·
{
2κ(σ)(k + 1)|a

(0)
0 |
}

+

σ−1∑

j=0

{
1.01(‖ν(j)‖+ k + 1) · µ

}
·
{
2κ(j)(k + 1)|a

(0)
0 |
}

·
{
2κ(j+1)(k + 1)|a

(0)
0 |+O(µ)

}

≤ 4κ(σ) · (k + 1) · (‖ν(σ)‖+ k + 1) · |a
(0)
0 | · µ

+8(k + 1)2 · |a
(0)
0 |

2 · µ
σ−1∑

j=0

κ(j)κ(j+1)(‖ν(j)‖+ k + 1)

+O(µ2).

The result follows by summing (50), (51) and (52).

In Theorem 12 above, the bound for δT (σ+1)t(z) involves the products κ(j)κ(j+1).

These result from inequalities involving the expression ‖Ŝ(j)(z)‖·‖G
(σ)
j (z)‖. However,

it is seen that Ŝ(j)(z) · G
(σ)
j (z) = G

(σ)
j−1(z), so it is felt that the inequalities are crude

and the bounds should just involve a single κ(j). Experimental results [10] support
this conjecture.
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This completes the analysis of the error in the order condition for computing
a NPHS. Proceeding in an analogous manner we can obtain the following theorem
which gives bounds for the error in the order condition for the NSPS computed by
PHS SPS.

Theorem 13. If the conditions of Theorem 12 are satisfied, then

‖δT ∗(σ+1)(z)‖ ≤ F ∗σ + 2(k + 1) · |a
(0)
0 |

σ−1∑

j=0

κ(j+1)F ∗j ,(53)

where

F ∗j = 8κ(j)(k + 1)2 · |a
(0)
0 | · µ(54)

{
(‖m(j)‖+ 1) + 4(k + 1)5ρ∗j‖ν

(j)‖3 + (‖ν(j)‖+ k + 1)
}

and ρ∗j is the growth factor associated with the LU-decomposition of M̂∗
ν(j) by Gaussian

elimination.
Proof. See [9].

Theorems 12 and 13 assure us that if ‖δT (σ)t(z)‖ and δT ∗(σ)(z) are small and

κ(σ) is not too large, then ‖δT (σ+1)t(z)‖ and δT ∗(σ+1)(z) will also be small. Thus,

‖δT (σ)t(z)‖ and δT ∗(σ)(z) will remain small for all σ as long as, at every iteration
j, a step ν(j) is chosen (stepping over unstable blocks) so that κ(j) is not too large.
Consequently, the assumptions of Theorems 12 and 13 are satisfied in practice.

6. Stability. In this section, bounds for the errors δS(z) = S(z)− SE(z) and
δS∗(z) = S∗(z)− S∗E(z) are obtained. Since S(z) and S∗(z) are scaled, these same
bounds serve also as bounds for the relative errors in S(z) and S∗(z). To make the
comparisons meaningful in the above, we insist that SE(z) and S∗E(z) are such that

VE(0) = V (0) = diag[γ1, . . . , γk],

rE(0) = r(0) = γ0,

and

v∗E(0) = v∗(0) = γ∗0 ,

R∗E(0) = R∗(0) = diag[γ∗1 , . . . , γ
∗
k ].

We begin by first finding bounds for δS(z). From (6) and (10)

At(z) · δS(z) = δT t(z) +O(z‖n‖+1).

So, the constant terms7 δu
(0)
β and δv

(0)
α,β for 0 ≤ α, β ≤ k of S(z) are zero. It then

follows that the remaining components of δS(z) satisfy

Mn · δX = [δr(0), . . . , δr(‖n‖−1)]t,(55)

where

δX =
[
δp(0), . . . , δp(n0−1)|δq

(0)
1 , . . . , δq

(n1−1)
1 | · · · |δq

(0)
k , . . . , δq

(nk−1)
k

]t
,

7 In actual fact, the computations in (15) may yield errors resulting in nonzero values of δu
(0)
β

for

1 ≤ β ≤ k. But, these errors, each resulting from two floating-point operations, are comparatively
small and are ignored in order to simplify the analysis.

23



and

Mn · δY =




δw
(1)
1 · · · δw

(1)
k

...
...

δw
(‖n‖)
1 · · · δw

(‖n‖)
k


 ,(56)

where

δY =




δu
(1)
1 · · · δu

(n0)
1 δv

(1)
1,1 · · · δv

(n1)
1,1 δv

(1)
k,1 · · · δv

(nk)
k,1

...
...

...
... · · ·

...
...

δu
(1)
k · · · δu

(n0)
k δv

(1)
1,k · · · δv

(n1)
1,k δv

(1)
k,k · · · δv

(nk)
k,k




t

.

¿From (55) and (56), it follows that

‖δS(z)‖ ≤ max {‖δX‖1, ‖δY‖1}(57)

≤ ‖M−1
n ‖1 ·max

{
‖δr(z)‖, ‖δW t(z)‖

}

≤ ‖M−1
n ‖1 · ‖δT

t(z)‖.

Thus, to obtain a bound for δS(z), we need only to obtain bounds forM−1
n and

δT t(z). This is done formally in Theorem 15 below. But first, in a similar fashion,
we show that bounds for δS∗(z) can be expressed in terms of bounds forM∗−1

n and
δT ∗(z).

¿From (22) and (26)

S∗(z)A∗(z) = δT ∗(z) +O(z‖n‖+1).

As for the NSPS, for the sake of simplicity, here again we ignore that the constant

term errors, δw
∗(0)
β , for 1 ≤ β ≤ k. This is done with no great loss of generality, since

these are the comparatively small errors made in computing δu
∗(0)
β (z) from

u
∗(0)
β a

(0)
0 + v∗(0)a

(0)
β = 0

with v∗(0) = γ∗0 . It then follows, in a fashion similar to solving (30) and (32), that the
remaining components of δS∗(z) satisfy

δX ∗t · M∗
n = [δw

∗(1)
1 , . . . , δw

∗(‖n‖)
1 | · · · |δw

∗(1)
k , . . . , δw

∗(‖n‖)
k ],(58)

where

δX ∗t =
[
δv∗(1), . . . , δv∗(‖n‖−n0)|δu

∗(1)
1 , . . . , δu

∗(‖n‖−n1)
1 | · · · |δu

∗(1)
k , . . . , δu

∗(‖n‖−nk)
k

]
,

and, for 1 ≤ α ≤ k,

δY∗tα · M
∗
n = [δr

∗(0)
α,1 , . . . , δr

∗(‖n‖−1)
α,1 | · · · |δr

∗(0)
α,k , . . . , δr

∗(‖n‖−1)
α,k ],(59)

where

δY∗tα =
[
δq∗(0)α , . . . , δq∗(‖n‖−n0−1)

α |δp
∗(0)
α,1 , . . . , δp

∗(‖n‖−n1−1)
α,1 | · · · |δp

∗(0)
α,k , . . . , δp

∗(‖n‖−nk−1)
α,k

]
.
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¿From (58) and (59), we get

‖δS∗(z)‖ ≤ (k + 1) max
1≤α≤k

{‖δX ∗‖1, ‖δY
∗
α‖1}(60)

≤ (k + 1)2‖M∗−1
n ‖∞ · ‖δT

∗(z)‖.

We are now ready to give the main results of this paper in the two theorems
below; the first theorem shows that the algorithm PHS SPS is weakly stable, whereas
the second provides bounds for the errors δS(z) and δS∗(z). But, first note some
notational details. Let δT t(z) and δT ∗(z) denote the residual errors corresponding,
respectively, to the NPHS and NSPS computed by the algorithm PHS SPS in σ + 1
steps. So, n = m(σ+1) and a bound for ‖δT t(z)‖ is given by Theorem 12 in which

δT (σ+1)t(z) = δT t(z) and a bound for ‖δT ∗(z)‖ is given by Theorem 13 in which
δT ∗(σ+1)(z) = δT ∗(z). At the point m(σ+1), we drop the superscript σ + 1 so that
κ = κ(σ+1), S(z) = S(σ+1)(z), S∗(z) = S∗(σ+1)(z) and so on. The point m(σ) is
the last stable point (i.e., κ(σ) ≤ τ) prior to the point n along the diagonal passing
through n. The point n itself need not be stable.

Theorem 14. The algorithm PHS SPS for computing S(z) and S∗(z) is weakly
stable.

Proof. ¿From (44), (53), (57) and (60), it follows that, if the problem is well-
conditioned (i.e., if the condition number κ associated with the matrices Mn and
M∗

n is not too large), then the computed solution S(z) is close to the exact solution
SE(z) and S∗(z) is close to the exact solution S∗E(z). The algorithm is therefore
weakly stable [7].

Note that the bounds (44) and (53) for the residual errors δT t(z) and δT ∗(z)
(and therefore also the weak stability of PHS SPS) do not depend on a−1

0 (z). So κ(j)

defined by (38) (i.e., excluding the term ‖a−1
0 (z) (mod z‖n‖+1)‖ that appears in the

bounds for M−1
n and M∗−1

n [11]) is an appropriate choice for a stability parameter.
Bounds for the errors δS(z) and δS∗(z) in the solutions, given in Theorem (15) do,
however, depend on a−1

0 (z).
Theorem 15. If κ is not too large and δT t(z) and δT ∗(z) are sufficiently small,8

then

‖δS(z)‖ ≤ 2κ · |a
(0)
0 | · ‖a

−1
0 (z) (mod z‖n‖+1)‖



F̄σ + 2τ(k + 1) · |a

(0)
0 | ·

σ−1∑

j=0

F̄j



 ,

where

F̄j = 4τ(k + 1) · |a
(0)
0 | · µ

{
(‖m(j)‖+ k + 1) + 4ρj‖ν

(j)‖3 + (‖ν(j)‖+ k + 1)
}

and

‖δS∗(z)‖ ≤ 2κ(k + 1)2 · |a
(0)
0 | · ‖a

−1
0 (z) (mod z‖n‖+1)‖



F̄ ∗σ + 2τ(k + 1) · |a

(0)
0 |

σ−1∑

j=0

F̄ ∗j



 ,

8 In addition to satisfying the assumptions of Theorems 12 at all the stable points m(j), 1 ≤ j ≤ σ,
at the final point n = m(σ+1), we require δT t(z) and δT ∗(z) to be sufficiently small so that
[
(κ+ 1)(k + 2)|a

(0)
0 |(‖a−1

0 (z) (mod z‖n‖+1)‖+ 1)

]2 [
(k + 2)‖δT t(z)‖+ ‖δT ∗(z)‖

]
≤ 1/8.

This assumption at the last point n is used in [11] in obtaining bounds for M−1
n and M∗−1

n . All
these assumptions are easily satisfied if all the points, including the last one, are reasonably stable.
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where

F̄ ∗j = 8τ(k + 1)2 · |a
(0)
0 | · µ{

(‖m(j)‖+ 1) + 4(k + 1)5ρ∗j‖ν
(j)‖3 + (‖ν(j)‖+ k + 1)

}
.

Proof. For κ not too large and δT t(z) and δT ∗(z) sufficiently small, bounds for
M−1

n andM∗−1
n are derived in [11] to be

‖M−1
n ‖1, ‖M

∗−1
n ‖∞ ≤ 2κ · |a

(0)
0 | · ‖a

−1
0 (z) (mod z‖n‖+1)‖.

The results of the theorem now follows from (57) and (60) using (44) and (53).

7. Experimental Results. Numerical experiments have been performed to
compare the analysis of the algorithm with its practice. A summary of the conclusions
is presented here; details appear in [10].

The algorithm PHS SPS was implemented using Sun Fortran 1.3.1. All calcu-
lations were performed in double precision. The linear systems (13), (17), (30) and
(32) arising at intermediate steps of the algorithm were solved using the LINPACK
routines SGEFA and SGESL. The results were then compared to the exact answers,
obtained via the Maple computer algebra system.

Tables A1 and A2 give the results of a small but typical experiment for which
n = (18, 19, 19) and At(z) = [a0(z), a1(z), a2(z)] with a0(z) = 1 and with coefficients
of a1(z), a2(z) randomly and uniformly distributed between −1 and 1 and then scaled.
The tables give results at all intermediate points along the diagonal through n. In
these tables, the errors (represented in scientific notation with two digits of accuracy
and the exponent enclosed in parenthesis) in the computed S(j)(z) and S∗(j) and in
the order conditions are given for two values of the stability parameter τ . The value
τ = 104 in Table A1 indicates a willingness to accept only those striped Sylvester ma-
tricesMm(j) and mosaic Sylvester matricesM∗

m(j) with condition numbers less than

104, approximately (i.e., those for which κ(j) ≤ 104). Striped and mosaic Sylvester
matrices not satisfying this criterion are assumed to lie in an unstable block and
are skipped over. An unstable point is identified by the value “-” in the column
labeled “j”. In Table A2, the value τ = 109 permits a much greater tolerance for
ill-conditioning and results in an expected deterioration in the accuracy.

Tables B1 and B2 give the results of a similar experiment but for which a0(z),

a1(z) and a2(z) were all first randomly generated (except that a
(0)
0 is initially set to

1) and then modified so as to introduce some pronounced instabilities. To introduce
an instability at m(j+1), the coefficients of a1(z) and a2(z) were changed to make

almost dependent the columns of coefficient matrix M̂ν corresponding to the residual
T (j)t(z) at the point m(j). The power series were then scaled. For this particular
experiment, ‖a−1

0 (z) (mod z‖n‖+1)‖ = 2.3× 102, approximately.
It was observed that the large powers of k that occur in the bounds derived

above are not manifested in the experiments. Also, ‖δT t(z)‖ and ‖δT ∗(z)‖ appear to
depend on κ(j) and not κ(j)κ(j+1) and the overall error is proportional to the largest
κ(j) encountered. Thus, the bounds are crude, but they do appear to reflect the
behavior of the error. As Wilkinson points out [29, page 567], “The main object of
such an analysis is to expose the potential instabilities, if any, of an algorithm so that
hopefully from the insight thus obtained one might be led to improved algorithms.
Usually the bound itself is weaker than it might have been because of the necessity
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Table A1: a0(z) = 1
Errors at intermediate steps: τ = 104

j κ(j) ‖δT (j)t(z)‖ ‖δS(j)(z)‖

‖S
(j)

E
(z)‖

‖δT ∗(j)(z)‖ ‖δS∗(j)(z)‖

‖S
∗(j)

E
(z)‖

1 1.2(2) 1.7(-18) 1.4(-16) 2.2(-18) 7.0(-17)
2 1.8(2) 1.0(-17) 6.5(-16) 2.0(-17) 6.5(-16)
3 1.6(2) 1.7(-17) 9.8(-16) 3.3(-17) 1.8(-15)
4 9.5(2) 1.6(-17) 8.3(-16) 6.6(-17) 2.0(-15)
5 6.6(2) 2.0(-17) 1.7(-15) 9.0(-17) 2.9(-15)
- 4.1(7) 2.3(-17) 1.2(-15) 8.7(-17) 2.1(-15)
6 1.1(3) 3.3(-17) 2.3(-15) 1.3(-16) 4.8(-15)
7 1.5(3) 3.6(-17) 1.2(-15) 1.2(-16) 6.6(-15)
8 9.1(3) 5.6(-17) 1.8(-15) 1.9(-16) 4.4(-15)
9 3.7(3) 8.2(-17) 4.9(-15) 2.2(-16) 1.3(-14)

10 2.9(3) 1.2(-16) 3.3(-15) 3.9(-16) 1.2(-14)
- 3.2(6) 7.7(-17) 5.6(-15) 5.7(-16) 4.6(-14)

11 2.0(3) 2.8(-16) 8.1(-15) 5.6(-16) 1.4(-14)
- 1.6(4) 2.8(-16) 7.4(-15) 4.5(-16) 1.8(-14)

12 2.9(3) 2.9(-16) 9.5(-15) 6.8(-16) 2.2(-14)
- 4.1(4) 2.5(-16) 1.0(-14) 7.5(-16) 2.3(-14)
- 6.3(4) 2.7(-15) 2.4(-14) 8.2(-16) 2.9(-14)
- 1.1(4) 2.3(-16) 1.7(-14) 8.9(-16) 3.3(-14)
- 1.1(5) 2.5(-16) 1.3(-13) 8.0(-16) 1.4(-13)

Table A2: a0(z) = 1
Errors at intermediate steps: τ = 109

j κ(j) ‖δT (j)t(z)‖ ‖δS(j)(z)‖

‖S
(j)

E
(z)‖

‖δT ∗(j)(z)‖ ‖δS∗(j)(z)‖

‖S
∗(j)

E
(z)‖

1 1.2(2) 1.7(-18) 1.4(-16) 2.2(-18) 7.0(-17)
2 1.8(2) 1.0(-17) 6.5(-16) 2.0(-17) 6.5(-16)
3 1.6(2) 1.7(-17) 9.8(-16) 3.3(-17) 1.8(-15)
4 9.5(2) 1.6(-17) 8.3(-16) 6.6(-17) 2.0(-15)
5 6.6(2) 2.0(-17) 1.7(-15) 9.0(-17) 2.9(-15)
6 4.1(7) 2.3(-17) 1.2(-15) 8.7(-17) 2.1(-15)
7 1.1(3) 6.9(-13) 3.4(-11) 3.2(-12) 1.2(-10)
8 1.5(3) 6.8(-13) 1.9(-11) 3.7(-12) 1.5(-10)
9 9.1(3) 1.1(-12) 3.7(-11) 6.6(-12) 5.6(-10)

10 3.7(3) 1.6(-12) 9.5(-11) 6.4(-12) 3.7(-10)
11 2.9(3) 1.1(-12) 7.3(-11) 9.5(-12) 3.5(-10)
12 3.2(6) 1.2 -12) 1.7(-10) 1.2(-11) 1.9(-9)
13 2.0(3) 5.0(-12) 1.3(-10) 8.6(-12) 2.2(-10)
14 1.6(4) 4.9(-12) 1.4(-10) 8.3(-12) 1.9(-10)
15 2.9(3) 3.3(-12) 1.1(-10) 1.5(-11) 3.5(-10)
16 4.1(4) 3.6(-12) 1.1(-10) 9.8(-12) 3.5(-10)
17 6.3(4) 2.4(-12) 1.5(-10) 1.3(-11) 6.5(-10)
18 1.1(4) 2.8(-12) 1.8(-10) 1.1(-11) 4.4(-10)
19 1.1(5) 3.7(-12) 2.2(-10) 1.3(-11) 8.1(-10)
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Table B1: Random a0(z)
Errors at intermediate steps: τ = 105

j κ(j) ‖δT (j)t(z)‖ ‖δS(j)(z)‖

‖S
(j)

E
(z)‖

‖δT ∗(j)(z)‖ ‖δS∗(j)(z)‖

‖S
∗(j)

E
(z)‖

1 3.2(0) 0.0 9.8(-17) 6.9(-18) 7.6(-17)
2 3.9(3) 1.5(-17) 7.1(-17) 1.7(-17) 4.7(-16)
3 3.7(3) 3.6(-17) 6.6(-16) 2.5(-17) 2.9(-15)
4 7.7(3) 1.0(-16) 5.7(-15) 3.6(-17) 2.7(-15)
- 6.4(14) 1.1(-16) 1.0(-14) 4.5(-17) 3.6(-10)
5 1.1(4) 9.3(-17) 1.5(-14) 5.7(-17) 8.4(-15)
- 3.8(5) 9.2(-17) 1.3(-14) 4.1(-16) 2.0(-14)
6 1.1(4) 1.1(-16) 8.5(-15) 4.2(-16) 2.2(-14)
- 1.3(14) 1.1(-16) 2.1(-14) 2.1(-16) 8.2(-10)
7 3.9(4) 1.2(-16) 7.7(-15) 4.2(-16) 3.5(-14)
- 3.8(8) 9.4(-17) 3.2(-11) 4.3(-16) 5.1(-10)
- 1.9(9) 8.9(-17) 1.7(-10) 4.1(-16) 7.1(-10)
- 1.1(15) 9.0(-17) 2.7(-10) 4.0(-16) 2.8(-9)
- 1.3(9) 9.2(-17) 1.9(-10) 4.5(-16) 1.0(-9)
- 2.1(5) 3.3(-16) 6.2(-14) 4.4(-16) 3.5(-14)
8 3.0(4) 3.2(-16) 6.9(-14) 4.2(-16) 4.9(-14)
- 1.4(13) 3.2(-16) 2.3(-13) 5.1(-16) 6.9(-10)
9 6.4(4) 5.4(-16) 7.6(-13) 6.0(-16) 2.1(-13)
- 2.3(5) 5.5(-16) 5.3(-13) 2.3(-15) 4.6(-13)

Table B2: Random a0(z)
Errors at intermediate steps: τ = 109

j κ(j) ‖δT (j)t(z)‖ ‖δS(j)(z)‖

‖S
(j)

E
(z)‖

‖δT ∗(j)(z)‖ ‖δS∗(j)(z)‖

‖S
∗(j)

E
(z)‖

1 3.2(0) 0.0 9.8(-17) 6.9(-18) 7.6(-17)
2 3.9(3) 1.5(-17) 7.1(-17) 1.7(-17) 4.7(-16)
3 3.7(3) 3.6(-17) 6.6(-15) 2.5(-17) 2.9(-15)
4 7.7(3) 1.0(-16) 5.7(-15) 3.6(-17) 2.7(-15)
- 6.4(14) 1.1(-16) 1.0(-14) 4.5(-17) 3.6(-10)
5 1.1(4) 9.3(-17) 1.5(-14) 5.7(-17) 8.4(-15)
6 3.8(5) 9.2(-17) 1.3(-14) 4.1(-16) 2.0(-14)
7 1.1(4) 2.2(-16) 1.1(-14) 1.6(-15) 1.1(-13)
- 1.3(14) 1.1(-16) 1.1(-14) 6.7(-15) 7.7(-9)
8 3.9(4) 2.5(-16) 1.1(-14) 4.8(-15) 2.3(-13)
9 3.8(8) 1.7(-16) 1.6(-10) 6.0(-15) 4.1(-9)
- 1.9(9) 1.6(-16) 2.9(-10) 8.9(-15) 1.6(-8)
- 1.1(15) 1.1(-16) 1.0(-9) 8.2(-15) 4.1(-8)
- 1.3(9) 1.3(-16) 1.6(-10) 6.9(-15) 1.3(-8)
10 2.1(5) 1.3(-12) 1.9(-10) 2.2(-13) 2.1(-10)
11 3.0(4) 1.9(-11) 2.3(-9) 8.3(-13) 2.8(-10)
- 1.4(13) 7.2(-12) 1.1(-9) 1.6(-12) 1.4(-6)
12 6.4(4) 1.7(-11) 1.3(-9) 3.8(-12) 1.0(-9)
13 2.3(5) 3.4(-11) 1.1(-9) 2.1(-11) 3.7(-9)
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of restricting the mass of detail to a reasonable level and because of the limitations
imposed by expressing the errors in terms of matrix norms.”

¿From these and other experiments [10], operational bounds on the errors in the
order conditions (as for the case k=1 reported in [15]) appear to be

‖δT t(z)‖ ≤ C(k + 1)µ




σ∑

j=0

κ(j)ρj‖m
(j)‖


+O(µ2)

and

‖δT ∗(z)‖ ≤ C(k + 1)2µ




σ∑

j=0

κ(j)ρj‖m
(j)‖2


+O(µ2),

where C is a moderate constant. In addition, for the errors in the solutions, opera-
tional bounds appear to be

‖δS(z)‖ ≤ Cκ(k + 1)µ




σ∑

j=0

κ(j)ρj‖m
(j)‖


+O(µ2)

and

‖δS∗(z)‖ ≤ Cκ(k + 1)3µ




σ∑

j=0

κ(j)ρj‖m
(j)‖2


+O(µ2).

8. Conclusions. In this paper we have presented a new fast, weakly stable
algorithm for the computation of Padé-Hermite and simultaneous Padé systems. The
algorithm requiresO(‖n‖2+s3‖n‖) operations to compute a Padé-Hermite system and
a simultaneous Padé system of type n = [n0, . . . , nk], where ‖n‖ = n0+· · ·+nk and s is
the largest distance from one well-conditioned subproblem to the next. The algorithm
can also be used for fast stable inversion of striped or mosaic Sylvester matrices (see
[20] for the case k = 1 and a0(z) = 1). The algorithm relies on the ability to specify
when a given subproblem is well-conditioned. The stability estimates come as a result
of “near” inversion formulae for striped and mosaic Sylvester matrices given in [11].
In addition to a complete stability analysis, we have also provided some numerical
experiments that verify that the algorithm performs as the theoretic results imply.

There is a number of open research problems that result from this work. The
algorithm that has been presented is fast rather than superfast as is possible in the
case of exact arithmetic [12]. It is possible to modify the algorithm so that it takes
steps in a quadratic fashion as done in [12]. However, while this approach will work in
the generic case, it is possible to find examples where not all the required subproblems
are well-conditioned. In these cases the algorithm might not be numerically stable.
It would be of interest to find a superfast algorithm that works in all cases and in
addition is numerically stable.

In cases where the largest step-size is small the algorithm has complexity O(‖n‖2).
However, there are cases where the algorithm may require a very large step-size and
and then have a higher cost than Gaussian elimination. This will happen if there is
a very large unstable block, or if the stability parameter τ is chosen to be too low. It
would be of interest to find a fast, stable algorithm that has complexity O(‖n‖2) in
all cases.
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Our algorithm proceeds along a diagonal path in the corresponding Padé tables of
our approximants. It would be of interest to find fast, stable algorithms that proceed
along alternate paths in the Padé tables. An example of this in the Padé case is found
in [18] where the computation proceeds along straight-line paths. In the context
of matrix solvers this is the difference between giving a Toeplitz solver instead of a
Hankel solver as is done in [15].

The M-Padé approximation problem is a generalization of the Padé-Hermite ap-
proximation problem which requires that the residual in (1) vanishes at a given set of
knots z0, z1, . . . , zN−1, counting multiplicities [2, 3, 4, 24]. The case where all the zi
are equal to 0 is just the Padé-Hermite problem. In this case the coefficient matrix
for the associated linear system is the matrix of divided differences. It would be of
interest to determine stability parameters for such matrices, with a view to developing
fast, stable algorithms for computing this approximation problem. Along these lines,
some experiments for the case k=1 are reported in [8].
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