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Abstract. We present new formulae for the “near” inverses of striped Sylvester and mosaic
Sylvester matrices. The formulae assume computation over floating-point rather than exact arith-
metic domains. The near inverses are expressed in terms of numerical Padé-Hermite systems and
simultaneous Padé systems. These systems are approximants for the power series determined from
the coefficients of the Sylvester matrices. The inverse formulae provide good estimates for the condi-
tion numbers of these matrices, and serve as primary tools in a companion paper for the development
of a fast, weakly stable algorithm for the computation of Padé-Hermite and simultaneous Padé sys-
tems and, thereby, also for the numerical inversion of striped and mosaic Sylvester matrices.
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1. Introduction. Let n = [n0, . . . , nk] be a vector of integers with nβ ≥ 0,
0 ≤ β ≤ k. A striped Sylvester matrix of order ‖n‖ is given by

Mn =





















a
(0)
0 a

(0)
k

. . .
. . .

... a
(0)
0 · · ·

... a
(0)
k

...
...

a
(‖n‖−1)
0 · · · a

(‖n‖−n0)
0 a

(‖n‖−1)
k · · · a

(‖n‖−nk)
k





















,(1)

where ‖n‖ = n0 + . . . + nk and where the coefficients a
(`)
β ∈ R, the field of real

numbers. Assume that a
(0)
0 6= 0. In this paper, we present a formula for the inverse

of Mn expressed in terms of Padé-Hermite and simultaneous Padé systems.
Padé-Hermite and simultaneous Padé systems [7, 9] are approximants for the

vector At(z) = [a0(z), . . . , ak(z)] of power series associated with the coefficients of
Mn, namely,

aβ(z) =

‖n‖−1
∑

`=0

a
(`)
β z`, with 0 ≤ β ≤ k.

They provide necessary and sufficient conditions for Mn to be nonsingular, and gen-
eralize the notions of Padé-Hermite and simultaneous Padé approximants. Padé-
Hermite and simultaneous Padé approximants were introduced by Hermite in the last
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century and has been widely studied by several authors (for a bibliography, see, for
example [1, 2, 3, 4, 15]).

The inverse formula given here is intended to be applied in a numerical setting; it
accommodates errors that may have been made in the computation of Padé-Hermite
and simultaneous Padé systems. That is, the formula gives the “near” inverse for
Mn since it expresses the inverse in terms of Padé-Hermite and simultaneous Padé
systems which are computed using floating-point arithmetic. There are other closed
formulae (c.f. [12, 16, 18, 19, 20]) forM−1

n . The formula given here is different in that
it expresses the inverse directly in terms of numerical Padé-Hermite and simultaneous
Padé systems.

The near inverse formula depends on the computation of both Padé systems. It
is possible to determine a simultaneous Padé system from its “dual” Padé-Hermite
system via the adjoint operation [6, 15]. In a numerical setting, however, this does
not provide enough control over the resulting floating-point errors [14]. Instead, si-
multaneous Padé systems can be computed independently. Whereas a Padé-Hermite
system can be obtained by solving a system of linear equations with Mn as the
coefficient matrix, a simultaneous Padé system can be similarly and independently
obtained with a coefficient matrix that is a specialized mosaic Sylvester matrix. This
specialized mosaic Sylvester matrix of order k‖n‖ is defined to be

M∗
n =







S∗0,1 · · · S∗0,k
...

...
S∗k,1 · · · S∗k,k






,(2)

where S∗α,β are matrices of size (‖n‖ − nα)× ‖n‖, with

S∗0,β = −









a
(0)
β · · · a

(‖n‖−1)
β

. . .
...

a
(0)
β · · · a

(n0)
β









,

S∗β,β =









a
(0)
0 · · · a

(‖n‖−1)
0

. . .
...

a
(0)
0 · · · a

(nβ)
0









,

for 1 ≤ β ≤ k, and with the remaining S∗α,β = 0. The matrixM∗
n is closely related to

Mn. Indeed, in the special case when k = 1 the matrixMn and the transpose ofM∗
n

coincide, up to a sign and a permutation of the rows and columns. Similarly, when
k ≥ 1 and a0(z) = 1, the matrix Mn and the transpose of M∗

n are both obtained by
a suitable block extension of the same matrix. In this paper, we also provide a “near”
inverse formula for the matrix M∗

n, again in terms of numerical Padé-Hermite and
simultaneous Padé systems.

The inverse formulae provide “good” estimates for the condition numbers ofMn

and M∗
n and these enable the stable numerical computation of Padé-Hermite and

simultaneous Padé systems described in the companion paper [6]. In return, the ac-
curate computation of Padé-Hermite and simultaneous Padé systems by the algorithm
in [6] enables the effective inversion of generalized Sylvester matrices by the formulae
given in this paper, as well as the solution of linear systems of equations with these
as the coefficient matrices.
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This paper is organized as follows. Preliminary definitions and basic facts about
Padé-Hermite and simultaneous Padé systems are given in the next two sections. §3
gives a near commutativity relationship between these two systems in floating-point
arithmetic, while §4 and §5 give the approximate inversion formulae for striped and
mosaic Sylvester matrices. The final section gives a summary and some conclusions.

We conclude this section by defining some norms which are used in §4 and §5.
Let

a(z) =

∞
∑

`=0

a(`) z` ∈ R [[z]] ,

where R[[z]] is the domain of power series with coefficients from R, and define the
bounded power series

RB [[z]] =

{

a(z)

∣

∣

∣

∣

∣

a(z) ∈ R [[z]] ,

∞
∑

`=0

|a(`)| <∞

}

.

A norm for a(z) ∈ RB [[z]] is

‖a(z)‖ =

∞
∑

`=0

|a(`)|.

RB [[z]] includes the domain of polynomials R[z]. So, for

s(z) =
∂
∑

`=0

s(`) z` ∈ R [z] ,

we use the norm

‖s(z)‖ =

∂
∑

`=0

| s(`) | .

For vectors and matrices over RB [[z]], we use the 1-norm unless otherwise speci-
fied. So, for example, the norm for At(z) is

‖At(z)‖ = max
0≤β≤k

{‖aβ(z)‖}

and the norm for S(z) ∈ R(k+1)×(k+1)[z] is

‖S(z)‖ = max
0≤β≤k

{

k
∑

α=0

‖Sα,β(z)‖

}

.

It is easy to verify that various compatibility conditions are satisfied. For example,

‖At(z) · S(z)‖ ≤ ‖At(z)‖ · ‖S(z)‖

and

‖a(z) · b(z)‖ ≤ ‖a(z)‖ · ‖b(z)‖,
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where b(z) is also a bounded power series. In addition, for S∗(z) ∈ R(k+1)×(k+1)[z]
and A∗(z) ∈ RB

(k+1)×k[[z]],

‖S∗(z) ·A∗(z)‖ ≤ ‖S∗(z)‖ · ‖A∗(z)‖,

‖S(z) · S∗(z)‖ ≤ ‖S(z)‖ · ‖S∗(z)‖.

In the subsequent development, we also make use of the inequality

‖a(z) (mod z‖n‖+1)‖ ≤ ‖a(z)‖,

where

a(z) (mod z‖n‖+1) =

‖n‖
∑

`=0

a(`) z` +

∞
∑

`=‖n‖+1

0 · z` ∈ RB [[z]]

2. Multi-dimensional Padé Systems. In this section, we introduce the notion
of Padé-Hermite and simultaneous Padé systems. Let n = [n0, . . . , nk] and define
‖n‖ = n0 + · · ·+ nk. Also let

At(z) = [a0(z), . . . , ak(z)] ,

where

aβ(z) =

∞
∑

`=0

a
(`)
β z`, β = 0, . . . , k,

with a
(`)
β ∈ R, the field of real numbers. Assume that a

(0)
0 6= 0, which means that

a−1
0 (z) exists. Assume also that At(z) is scaled so that ‖aβ(z) (mod z‖n‖+1)‖ = 1,

0 ≤ β ≤ k.
The (k + 1)× (k + 1) matrix of polynomials

S(z) =

[

zp(z) U t(z)
zQ(z) V (z)

]

=











zp(z) u1(z) · · · uk(z)
zq1(z) v1,1(z) · · · v1,k(z)

...
...

...
zqk(z) vk,1(z) · · · vk,k(z)











(3)

is a numerical Padé-Hermite system (NPHS) [9] of type n for A(z) if the following
conditions are satisfied.
I. (Degree conditions): For 1 ≤ α, β ≤ k,

p(z) =

n0−1
∑

`=0

p(`)z`, uβ(z) =

n0
∑

`=0

u
(`)
β z`,(4)

qα(z) =

nα−1
∑

`=0

q(`)
α z`, vα,β(z) =

nα
∑

`=0

v
(`)
α,βz

`.

II. (Order condition):

At(z)S(z) = z‖n‖T t(z) + δT t(z),(5)
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where T t(z) = [r(z), zW t(z)] with W t(z) = [w1(z), . . . , wk(z)] is the residual, and
where δT t(z) = [z δr(z), δW t(z)] is the residual error, with δW t(z) = [δw1(z), . . . , δwk(z)]
and with

δr(z) =

‖n‖−2
∑

`=0

δr(`) z`, δwβ(z) =

‖n‖
∑

`=0

δw
(`)
β z`.

If δT t(z) = 0, then S(z) is an exact, rather than a numerical, Padé-Hermite system.
III. (Nonsingularity condition): The constant term of V (z) is a diagonal

matrix,

V (0) = diag [γ1, . . . , γk] ,(6)

and

γ ≡ (a
(0)
0 )−1

k
∏

α=0

γα 6= 0,(7)

where γ0 = r(0).

Remark 1: The nonsingularity condition III is equivalent to the condition that
r(0) 6= 0 and that V (0) be a nonsingular diagonal matrix.

Remark 2: The NPHS is said to be normalized [9] if the nonsingularity condi-
tion III is replaced by r(0) = 1 and V (0) = Ik. This can be achieved by multiplying
S(z) on the right by Γ−1, where

Γ = diag [γ0, . . . , γk] .(8)

The NPHS is said to be scaled [14] if each column of S(z) has norm equal to 1 and
if, in addition, γβ > 0, 0 ≤ β ≤ k. Here, also, scaling a NPHS is accomplished by
multiplying it on the right by an appropriate diagonal matrix.

Remark 3: The nonsingularity condition III, namely γ 6= 0, refers to the non-
singularity of the associated striped Sylvester matrix Mn defined in (1); in [9] it is
shown that an exact NPHS exists iff Mn is nonsingular.

Remark 4: In [5, 6, 9], rather than S(z), the Padé-Hermite system is defined to
be S(z) · diag[z, 1, . . . , 1]. The notation used here is consistent with that of [16], and
simplifies the presentation of some of the results.

A Padé-Hermite system gives an approximation to a vector of formal power series
using matrix multiplication on the right. A simultaneous Padé system is a similar
approximation using matrix multiplication on the left and with degree constraints
that can be thought of as being “dual” to the degree constraints of a Padé-Hermite
system.
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Let1

A∗(z) =











−a1(z) · · · −ak(z)
a0(z) 0

. . .

0 a0(z)











(9)

be a (k + 1)× k matrix of power series. The (k + 1)× (k + 1) matrix of polynomials

S∗(z) =

[

v∗(z) U∗t(z)
zQ∗(z) zP ∗(z)

]

=











v∗(z) u∗1(z) · · · u∗k(z)
zq∗1(z) zp∗1,1(z) · · · zp∗1,k(z)

...
...

...
zq∗k(z) zp∗k,1(z) · · · zp∗k,k(z)











(10)

is a numerical simultaneous Padé system (NSPS) [7, 9] of type n for A∗(z) if the
following conditions are satisfied.
I. (Degree conditions): For 1 ≤ α, β ≤ k,

v∗(z) =

‖n‖−n0
∑

`=0

v∗(`)z`, u∗β(z) =

‖n‖−nβ
∑

`=0

u
∗(`)
β z`,(11)

q∗α(z) =

‖n‖−n0−1
∑

`=0

q∗(`)α z`, p∗α,β(z) =

‖n‖−nβ−1
∑

`=0

p
∗(`)
α,β z

`.

II. (Order condition):

S∗(z)A∗(z) = z‖n‖T ∗(z) + δT ∗(z),(12)

where T ∗t(z) = [z W ∗(z)|R∗t(z)] with R∗(z) a k × k is the residual, and where
δT ∗t(z) = [δW ∗(z)|z δR∗t(z)] is the residual error, with δR∗(z) a k × k matrix and

δw∗β(z) =

‖n‖
∑

`=0

δw
∗(`)
β z`, δr∗α,β(z) =

‖n‖−2
∑

`=0

δr
∗(`)
α,β z`.

If δT ∗(z) = 0, then S∗(z) is an exact NSPS.
III. (Nonsingularity condition): The constant term of R∗(z) is a diagonal matrix

R∗(0) = diag [γ∗1 , . . . , γ
∗
k ] ,(13)

and

γ∗ ≡ (a
(0)
0 )−1

k
∏

α=0

γ∗α 6= 0,(14)

1 More generally,

A∗(z) =









a∗0,1(z) · · · a∗0,k(z)

a∗1,1(z) · · · a∗1,k(z)

.

.

.
.
.
.

a∗
k,1(z) · · · a∗

k,k
(z)









=

[

B∗t(z)
C∗(z)

]

with C∗(0) nonsingular, but the restriction to (9), which algebraically is made without loss of gener-
ality, permits us to establish in §3 a duality relationship between Padé-Hermite systems and simul-
taneous Padé systems.
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where γ∗0 = v∗(0).

Remark 5: The NSPS is said to be normalized [7] if the nonsingularity condi-
tion III is replaced by v∗(0) = 1 and R∗(0) = Ik. This can be achieved by multiplying
S∗(z) on the left by Γ∗−1, where

Γ∗ = diag [γ∗0 , . . . , γ
∗
k ] .(15)

The NSPS is said to be scaled when each row of S∗(z) has norm equal to 1 and
if, in addition, γ∗α > 0, 0 ≤ α ≤ k. Here, also, scaling a NSPS is accomplished by
multiplying it on the left by an appropriate diagonal matrix.

Remark 6: The nonsingularity condition III, namely γ∗ 6= 0, refers to the non-
singularity of the associated mosaic Sylvester matrix M∗

n defined in (2); in [7] it is
shown that an exact NSPS exists iff M∗

n is nonsingular.

Remark 7: In [5, 6, 9], rather than S∗(z), the simultaneous Padé system is de-
fined to be diag[1, z, . . . , z] · S∗(z). This is for notational convenience only.

3. Duality. Theorem 1 below gives a relationship between Padé-Hermite and
simultaneous Padé systems which is crucial to the results of the subsequent sec-
tions. It generalizes earlier results of Mahler and their extensions to block matrices
[10, 15, 17, 21].

Theorem 1. If S(z) is a NPHS of type n for A(z) and S∗(z) is a NSPS of type
n for A∗(z), then

S∗(z) · S(z) = z‖n‖(a
(0)
0 )−1Γ∗Γ + θI(z),(16)

where

θI(z) = a−1
0 (z)

{[

v∗(z)
zQ∗(z)

]

δT t(z) + δT ∗(z)
[

zQ(z) V (z)
]

}

(mod z‖n‖+1).

Proof. The theorem (in the case that δT (z) = 0 and δT ∗(z) = 0) follows from
[15]. The arguments used in the following proof, however, are considerably simpler.
Let

Bt(z) = [a1(z), · · · , ak(z)].

Then, using (5) and (12),

a0(z) S
∗(z) · S(z)(17)

= a0(z)

{[

v∗(z)
zQ∗(z)

]

[

zp(z) U t(z)
]

+

[

U∗t(z)
zP ∗(z)

]

[

zQ(z) V (z)
]

}

=

[

v∗(z)
zQ∗(z)

]

{

a0(z)
[

zp(z) U t(z)
]

+Bt(z)
[

zQ(z) V (z)
]}

+

{

a0(z)

[

U∗t(z)
zP ∗(z)

]

−

[

v∗(z)
zQ∗(z)

]

Bt(z)

}

[

zQ(z) V (z)
]
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=

[

v∗(z)
zQ∗(z)

]

At(z)S(z) + S∗(z)A∗(z)
[

zQ(z) V (z)
]

= z‖n‖
{[

v∗(z)
zQ∗(z)

]

[

r(z) W t(z)
]

+

[

zW ∗t(z)
R∗(z)

]

[

zQ(z) V (z)
]

}

+

[

v∗(z)
zQ∗(z)

]

δT t(z) + δT ∗(z)
[

zQ(z) V (z)
]

.

But, from (4) and (11), the degrees of S∗(z)S(z) are bounded component-wise by
‖n‖. It then follows from (17) that

S∗(z)S(z) = z‖n‖(a
(0)
0 )−1

[

v∗(0)r(0) 0
0 R∗(0)V (0)

]

+ θI(z)

= z‖n‖(a
(0)
0 )−1Γ∗Γ + θI(z),

which is (16).

Corollary 2. If S(z) is a normalized NPHS of type n for A(z) and S∗(z) is a
normalized NSPS of type n for A∗(z), then for sufficiently small2 δT (z) and δT ∗(z)

S(z) · S∗(z) = z‖n‖(a
(0)
0 )−1Ik+1 + θII(z),(18)

where

θII(z) = S(z) θI(z) [z
‖n‖(a

(0)
0 )−1Ik+1 + θI(z)]

−1 S∗(z).

Proof. If θI(z) is so small, that is, if δT (z) and δT ∗(z) are so small, that

z‖n‖(a
(0)
0 )−1Ik+1 + θI(z) is nonsingular, then from (16)

S∗−1(z) = S(z) · [z‖n‖(a
(0)
0 )−1Ik+1 + θI(z)]

−1.

So,

S(z)S∗(z)− z‖n‖(a
(0)
0 )−1Ik+1

=
{

S(z)− z‖n‖(a
(0)
0 )−1S∗−1(z)

}

S∗(z)

= S(z)
{

Ik+1 − z‖n‖(a
(0)
0 )−1[z‖n‖(a

(0)
0 )−1Ik+1 + θI(z)]

−1
}

S∗(z)

= S(z) θI(z) [z
‖n‖(a

(0)
0 )−1Ik+1 + θI(z)]

−1 S∗(z).

Corollary 3. The residuals T (z) for a normalized NPHS of type n for A(z)
and T ∗(z) for a normalized NSPS of type n for A∗(z) satisfy

T t(z) S∗(z) = (a
(0)
0 )−1 At(z) + θtIII(z),(19)

where

θtIII(z) =
{

At(z)θII(z)− δT t(z)S∗(z))
}

/z‖n‖.

2 It is adequate, for example, that condition (34) of Corollary 6 be satisfied.
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Proof. From (5) and (18), it follows that
{

z‖n‖ T t(z) + δT t(z)
}

S∗(z) = At(z) S(z) S∗(z)

= At(z)
{

z‖n‖ (a
(0)
0 )−1Ik+1 + θII(z)

}

and so (19) is true.

4. The Inverse of a Striped Sylvester Matrix. In this section, a formula is
given for the inverse of Mn expressed in terms of both S(z) and S∗(z). This enables
estimating the condition number of Mn without explicitly computing M−1

n .
Associated with the NPHS S(z), define the order ‖n‖ matrices

P =

























p(0) · · · p(n0−1) q
(0)
1 · · · q

(n1−1)
1 q

(0)
k · · · q

(nk−1)
k

... . .
.

0
... . .

.
0

... . .
.

0

p(n0−1) . .
.

q
(n1−1)
1

. .
.

· · · q
(nk−1)
k

. .
.

0
... 0

... 0
...

...
...

...
0 · · · 0 0 · · · 0 0 · · · 0

























(20)
and, for β = 1, 2, . . . , k,

Uβ =



























u
(1)
β · · · u

(n0)
β v

(1)
1,β · · · v

(n1)
1,β v

(1)
k,β · · · v

(nk)
k,β

... . .
.

0
... . .

.
0

... . .
.

0

u
(n0)
β

. .
.

v
(n1)
1,β

. .
.

· · · v
(nk)
k,β

. .
.

0
... 0

... 0
...

...
...

...
0 · · · 0 0 · · · 0 0 · · · 0



























.(21)

Also, for any power series a(z) =
∑∞

`=0 a
(`)z`, and any integer function f(i, j),

i, j = 1, 2, . . . , let
[

a(f(i,j))]
]

denote a matrix of order ‖n‖ whose element in position

(i, j) is a(f(i,j)).
The main result of this section is Theorem 4 below which gives the inverse ofMn

in terms of the NPHS S(z) and the NSPS S∗(x) of types n for A(z).

Theorem 4. In terms of the normalized NPHS S(z) and the normalized
NSPS S∗(x) of types n for A(z), the inverse ofMn satisfies

M−1
n

{[

a
(i−j)
0

]

+ θIV

}

= a
(0)
0







Pt
[

v∗(‖n‖−i−j+1)
]

+

k
∑

β=1

U t
β

[

q
∗(‖n‖−i−j)
β

]







,(22)

where

θIV = a
(0)
0

{

[

(θIII)
(i−j)
0

]

−
k
∑

α=0

[

a(‖n‖+i−j)
α

] [

(θII)
(i−j)
α,0

]

9



+
[

δr(i+j−2)
] [

v∗(‖n‖−i−j+1)
]

+
k
∑

β=1

[

δw
(i+j−1)
β

] [

q
∗(‖n‖−i−j)
β

]







.

Proof. The coefficient of zi+j−2, for i, j = 1, 2, . . . , ‖n‖, in the first component
of (5), namely,

a0(z) p(z) +

k
∑

α=1

aα(z) qα(z) = z‖n‖−1r(z) + δr(z),

is

n0
∑

`=0

a
(i+j−`−2)
0 p(`) +

k
∑

α=1

nα−1
∑

`=0

a(i+j−`−2)
α q(`)

α = r(−‖n‖+i+j−1) + δr(i+j−2).

This is the (i, j)th component of

[

r
(−‖n‖+i+j−1)

]

+
[

δr
(i+j−2)

]

=
[

a
(‖n‖+i−j)
0

]

[

p
(−‖n‖+i+j−2)

]

(23)

+

k
∑

α=1

[

a
(‖n‖+i−j)
α

] [

q
(−‖n‖+i+j−2)
α

]

+ Mn P
t
.

Similarly, the coefficient of zi+j−1, for i, j = 1, 2, . . . , ‖n‖, in the (β+1)st component,
β = 1, . . . , k, of (5), namely,

a0(z) uβ(z) +

k
∑

α=1

aα(z) vα,β(z) = z‖n‖+1wβ(z) + δwβ(z),

is

n0
∑

`=0

a
(i+j−`−1)
0 u

(`)
β +

k
∑

α=1

nα
∑

`=0

a(i+j−`−1)
α v

(`)
α,β = w

(−‖n‖+i+j−2)
β + δw

(i+j−1)
β .

This is the (i, j)th component of
[

w
(−‖n‖+i+j−2)
β

]

+
[

δw
(i+j−1)
β

]

=
[

a
(‖n‖+i−j)
0

] [

u
(−‖n‖+i+j−1)
β

]

(24)

+

k
∑

α=1

[

a
(‖n‖+i−j)
α

]

[

v
(−‖n‖+i+j−1)
α,β

]

+ Mn U
t
β .

Next, the coefficient of zi−j−1 for i, j = 1, . . . , ‖n‖, in the first row and first
column of (18) for a normalized NPHS and a normalized NSPS, namely,

p(z) v∗(z) +
k
∑

β=1

uβ(z)q
∗
β(z) = z‖n‖−1(a

(0)
0 )−1 + z−1(θII)0,0(z),

is

n0−1
∑

`=0

v∗(i−j−`−1) p(l) +

k
∑

β=1

n0
∑

`=0

q
∗(i−j−`−1)
β u

(`)
β = (θII)

(i−j)
0,0 .

10



This is the (i, j)th component of

[

p(−‖n‖+i+j−2)
] [

v∗(‖n‖−i−j+1)
]

+

k
∑

β=1

[

u
(−‖n‖+i+j−1)
β

] [

q
∗(‖n‖−i−j)
β

]

(25)

=
[

(θII)
(i−j)
0,0

]

.

The coefficient of zi−j−1 in the first column and the (α + 1)st row, α = 1, . . . , k, of
(18), namely,

qα(z) v
∗(z) +

k
∑

β=1

vα,β(z)q
∗
β(z) = z−1(θII)α,0(z)

is

nα
∑

`=0

v∗(i−j−`−1) q(l)
α +

k
∑

β=1

nα
∑

`=0

q
∗(i−j−`−1)
β v

(`)
α,β = (θII)

(i−j)
α,0 .

This is the (i, j)th component of

[

q(−‖n‖+i+j−2)
α

] [

v∗(‖n‖−i−j+1)
]

+

k
∑

β=1

[

v
(−‖n‖+i+j−1)
α,β

] [

q
∗(‖n‖−i−j)
β

]

(26)

=
[

(θII)
(i−j)
α,0

]

.

Also, the coefficient of zi−j , for i, j = 1, . . . , ‖n‖ in the first component of (19)
for a normalized NPHS and NSPS, namely,

r(z)v∗(z) + z2
k
∑

β=1

wβ(z)q
∗
β(z) = (a

(0)
0 )−1 a0(z) + (θIII)0(z).

is the (i, j)th component of

(a
(0)
0 )−1

[

a
(i−j)
0

]

+
[

(θIII)
(i−j)
0

]

=
[

r(−‖n‖+i+j−1)
] [

v∗(‖n‖−i−j+1)
]

(27)

+
k
∑

β=1

[

w
(−‖n‖+i+j−2)
β

] [

q
∗(‖n‖−i−j)
β

]

.

We are finally ready to prove the theorem. ¿From (23), (24), (25), (26) and (27),

Mn







Pt
[

v∗(‖n‖−i−j+1)
]

+

k
∑

β=1

U t
β

[

q
∗(‖n‖−i−j)
β

]







=
{[

r(−‖n‖+i+j−1)
]

+
[

δr(i+j−2)
]

−
[

a
(‖n‖+i−j)
0

] [

p(−‖n‖+i+j−2)
]

−
k
∑

α=1

[

a(‖n‖+i−j)
α

] [

q(−‖n‖+i+j−2)
α

]} [

v∗(‖n‖−i−j+1)
]

11



+
k
∑

β=1

{[

w
(−‖n‖+i+j−2)
β

]

+
[

δw
(i+j−1)
β

]

−
[

a
(‖n‖+i−j)
0

] [

u
(−‖n‖+i+j−1)
β

]

−

k
∑

α=1

[

a(‖n‖+i−j)
α

] [

v
(−‖n‖+i+j−1)
α,β

]} [

q
∗(‖n‖−i−j)
β

]

=
[

r(−‖n‖+i+j−1)
] [

v∗(‖n‖−i−j+1)
]

+

k
∑

β=1

[

w
(−‖n‖+i+j−2)
β

] [

q
∗(‖n‖−i−j)
β

]

+
[

δr(i+j−2)
] [

v∗(‖n‖−i−j+1)
]

+
k
∑

β=1

[

δw
(i+j−1)
β

] [

q
∗(‖n‖−i−j)
β

]

−
k
∑

α=0

[

a(‖n‖+i−j)
α

] [

(θII)
(i−j)
α,0

]

= (a
(0)
0 )−1

[

a
(i−j)
0

]

+ θIV .

The result (22) now follows.

Corollary 5 below drops the requirement in Theorem 4 that S(z) and S∗(z) be
normalized. In particular, the corollary is valid in the case that S(z) and S∗(z) are
scaled.

Corollary 5. In terms of the (unnormalized) NPHS S(z) of type n for A(z)
and the (unnormalized) NSPS S∗(z) of type n for A∗(z), the inverse of Mn is given
by

M−1
n

{[

a
(i−j)
0

]

+ θ̈IV

}

(28)

= a
(0)
0







(γ0γ
∗
0 )
−1Pt

[

v∗(‖n‖−i−j+1)
]

+

k
∑

β=1

(γβγ
∗
β)
−1U t

β

[

q
∗(‖n‖−i−j)
β

]







,

where

θ̈IV = a
(0)
0

{

[

(θ̈III)
(i−j)
0

]

−
k
∑

α=0

[

a(‖n‖+i−j)
α

] [

(θ̈II)
(i−j+1)
α,0

]

(29)

+ (γ0γ
∗
0 )
−1
[

δr(i+j−2)
] [

v∗(‖n‖−i−j+1)
]

+
k
∑

β=1

(γβγ
∗
β)
−1
[

δw
(i+j−1)
β

] [

q
∗(‖n‖−i−j)
β

]







,

θ̈tIII(z) =
{

At(z)θ̈II(z)− δT t(z)(Γ∗Γ)−1S∗(z))
}

/z‖n‖,(30)

θ̈II(z) = S(z) (Γ∗Γ)−1θ̈I(z) (Γ
∗Γ)−1(31)

·[z‖n‖(a
(0)
0 )−1Ik+1 + θ̈I(z)(Γ

∗Γ)−1]−1S∗(z),

θ̈I(z) = a−1
0 (z)

{[

v∗(z)
zQ∗(z)

]

δT t(z)(32)

+ δT ∗(z)
[

zQ(z) V (z)
]}

(mod z‖n‖+1)
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Proof. The normalized NPHS is obtained from an unnormalized one by mul-
tiplying it on the right by the diagonal matrix diag[γ−1

0 , . . . , γ−1
k ]. Similarly, the

normalized NSPS is obtained from an unnormalized one by multiplying it on the left
by the diagonal matrix diag[γ∗−1

0 , . . . , γ∗−1
k ]. The result now follows directly from

(22).

Let

κ =

k
∑

β=0

(γβγ
∗
β)
−1.(33)

In the corollary below, we give a bound for M−1
n in terms of κ.

Corollary 6. If the residual errors δT t(z) and δT ∗(z) associated with the scaled
S(z) and the scaled S∗(z) are not too large, so that

[

(κ+ 1)(k + 2)|a
(0)
0 |(‖a−1

0 (z) (mod z‖n‖+1)‖+ 1)
]2

(34)

·
[

(k + 2)‖δT t(z)‖+ ‖δT ∗(z)‖
]

≤ 1/8,

then

‖M−1
n ‖1 ≤ 2κ · |a

(0)
0 | · ‖a−1

0 (z) (mod z‖n‖+1)‖.(35)

Proof. We use Corollary 5 with S(z) and S∗(z) scaled. We begin by finding
a bound for θ̈IV appearing in the inverse formula (28) for Mn. A bound for θ̈IV
depends on bounds for θ̈I(z), θ̈II(z) and θ̈III(z). ¿From (16),

‖θ̈I(z)‖ ≤ ‖a
−1
0 (z) (mod z‖n‖+1)‖ ·

{

(k + 1)‖δT t(z)‖+ ‖δT ∗(z)‖
}

,

since ‖S(z)‖ = 1 and ‖S∗(z)‖ ≤ k + 1. ¿From (16) and (32), note that θ̈I(z) is a
matrix polynomial of at most degree ‖n‖ and so, using (34),

‖a
(0)
0 z‖n‖θ̈I(z

−1)(Γ∗Γ)−1‖ = ‖a
(0)
0 θ̈I(z)(Γ

∗Γ)−1‖ ≤ κ · |a
(0)
0 | · ‖θ̈I(z)‖ ≤ 1/2,

since ‖(Γ∗Γ)−1‖ ≤ κ. So as in Stewart [22, page 187], the inverse of (a
(0)
0 )−1Ik+1 +

z‖n‖θ̈I(z
−1)(Γ∗Γ)−1 exists and

‖
{

(a
(0)
0 )−1Ik+1 + z‖n‖θ̈I(z

−1)(Γ∗Γ)−1
}−1

‖ ≤
|a

(0)
0 |

1− ‖a
(0)
0 z‖n‖θ̈I(z−1)(Γ∗Γ)−1‖

≤ 2|a
(0)
0 |.

To determine a bound for θ̈II(z) in (31), let N = max0≤β≤k{nβ} and observe

from 18 that θ̈II(z) is also a matrix polynomial, now of degree at most ‖n‖ + N .
Consequently,

‖θ̈II(z)‖ = ‖z‖n‖+N θ̈II(z
−1)‖(36)

= ‖
{

zNS(z−1)
}

(Γ∗Γ)−1
{

z‖n‖θ̈I(z
−1)
}

(Γ∗Γ)−1

13



·
{

(a
(0)
0 )−1Ik+1 + z‖n‖θ̈I(z

−1)(Γ∗Γ)−1
}−1

[z‖n‖S∗(z−1)]‖

≤ κ2‖zNS(z−1)‖ · ‖z‖n‖θ̈I(z
−1)‖ · ‖z‖n‖S∗(z−1)‖

·‖
{

(a
(0)
0 )−1Ik+1 + z‖n‖θ̈I(z

−1)(Γ∗Γ)−1
}−1

‖

≤ 2κ2|a
(0)
0 | · ‖S(z)‖ · ‖θ̈I(z)‖ · ‖S

∗(z)‖

≤ 2κ2(k + 1) · |a
(0)
0 | · ‖θ̈I(z)‖.

In addition, it now follows that a bound for θ̈III(z) in (30) is given by

‖θ̈tIII(z)‖ ≤ 2κ2(k + 1) · |a
(0)
0 | · ‖θ̈I(z)‖+ κ(k + 1) · ‖δT t(z)‖.

We are now ready to give a bound for θ̈IV appearing in the inverse formula (28).
But, first observe that

‖
[

(θ̈III)
(i−j)
0

]

‖1 ≤ ‖θ̈
t
III(z)‖

and that

‖

k
∑

α=0

[

a(‖n‖+i−j)
α

] [

(θ̈II)
(i+j)
α,0

]

‖1 ≤

k
∑

α=0

‖(θ̈II)α,0(z)‖ ≤ ‖(θ̈II)(z)‖.

Thus,

‖θ̈IV ‖1 = ‖a
(0)
0

{

[

(θ̈III)
(i−j)
0

]

−

k
∑

α=0

[

a(‖n‖+i−j)
α

] [

(θ̈II)
(i−j)
α,0

]

+ (γ0γ
∗
0 )
−1
[

δr(i+j−2)
] [

v∗(‖n‖−i−j+1)
]

+
k
∑

β=1

(γβγ
∗
β)
−1
[

δw
(i+j−1)
β

] [

q
∗(‖n‖−i−j)
β

]







‖1

≤ |a
(0)
0 | ·







‖θ̈tIII(z)‖+ ‖θ̈II(z)‖+ (γ0γ
∗
0 )
−1‖δT t(z)‖+

k
∑

β=1

(γβγ
∗
β)
−1‖δT t(z)‖







≤ |a
(0)
0 |

{

‖θ̈tIII(z)‖+ ‖θ̈II(z)‖+ κ‖δT t(z)‖
}

≤ |a
(0)
0 |

{

κ(k + 1)‖δT t(z)‖+ 4κ2(k + 1)|a
(0)
0 | · ‖θ̈I(z)‖+ κ‖δT t(z)‖

}

≤ κ(k + 2) · |a
(0)
0 |

{

‖δT t(z)‖

+4κ|a
(0)
0 | · ‖a−1

0 (z) (mod z‖n‖+1)‖
[

(k + 1)‖δT t(z)‖+ ‖δT ∗(z)‖
]

}

≤ 4‖a−1
0 (z) (mod z‖n‖+1)‖

[

(κ+ 1)(k + 2)|a
(0)
0 |
]2
[

(k + 2)‖δT t(z)‖+ ‖δT ∗(z)‖
]

.

It then follows from (34) that

‖
[

a
(i−j)
0

]−1

θ̈IV ‖1 ≤ ‖a
−1
0 (z) (mod z‖n‖+1)‖ · ‖θ̈IV ‖1 ≤ 1/2,
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and so I‖n‖ +
[

a
(i−j)
0

]−1

θ̈IV is invertible. In addition,

‖
{[

a
(i−j)
0

]

+ θ̈IV

}−1

‖1 ≤ ‖

{

I‖n‖ +
[

a
(i−j)
0

]−1

θ̈IV

}−1
[

a
(i−j)
0

]−1

‖1

≤
‖
[

a
(i−j)
0

]−1

‖1

1− ‖
[

a
(i−j)
0

]−1

θ̈IV ‖1

≤ 2‖
[

a
(i−j)
0

]−1

‖1

≤ 2‖a−1
0 (z) (mod z‖n‖+1)‖.

Therefore, a bound for M−1
n in (28) is given

‖M−1
n ‖1 ≤ ‖

{[

a
(i−j)
0

]

+ θ̈IV

}−1

‖ · ‖a
(0)
0

{

(γ0γ
∗
0 )
−1Pt

n

[

v∗(‖n‖−i−j+1)
]

+

k
∑

β=1

(γβγ
∗
β)
−1U t

n,β

[

q
∗(‖n‖−i−j)
β

]







‖1

≤ 2κ|a
(0)
0 | · ‖a−1

0 (z) (mod z‖n‖+1)‖.

¿From (35), it follows that a bound for the 1-norm condition number of Mn is

‖Mn‖1 · ‖M
−1
n ‖1 ≤ 2κ|a

(0)
0 | · ‖a−1

0 (z) (mod z‖n‖+1)‖,

since it is assumed that each aβ(z) is scaled.

5. The Inverse of a Mosaic Sylvester Matrix. In this section, a formula is
given for the inverse of M∗

n expressed in terms of both S(z) and S∗(z). This enables
estimating the condition number of M∗

n without explicitly computing M∗−1
n .

Associated with the NPHS S(z) and the NSPS S∗(z), for β = 1, 2, . . . , k, define
the ‖n‖ × k‖n‖ matrices

Vβ =









v
(‖n‖−1)
1,β · · · v

(0)
1,β v

(‖n‖−1)
k,β · · · v

(0)
k,β

... . .
.

· · ·
... . .

.

v
(0)
1,β v

(0)
k,β









,

Q =













q
(‖n‖−2)
1 · · · q

(0)
1 0 q

(‖n‖−2)
k · · · q

(0)
k 0

... . .
.

· · ·
... . .

.

q
(0)
1

. .
.

q
0)
k

. .
.

0 0













,
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V∗ =

























v∗(1) · · · v∗(η0) u
∗(1)
1 · · · u

∗(η1)
1 u

∗(1)
k · · · u

∗(ηk)
k

... . .
.

0
... . .

.
0

... . .
.

0

v∗(η0) . .
.

u
∗(η1)
1

. .
.

· · · u
∗(ηk)
k

. .
.

0
... 0

... 0
...

...
...

...
0 · · · 0 0 · · · 0 0 · · · 0

























and

Q
∗
β =

























q
∗(0)
β · · · q

∗(η0−1)
β p

∗(0)
β,1 · · · p

∗(η1−1)
β,1 p

∗(0)
β,k · · · p

∗(ηk−1)
β,k

... . .
.

0
... . .

.
0

... . .
.

0

q
∗(η0−1)
β

. .
.

p
∗(η1−1)
β,1

. .
.

· · · p
∗(ηk−1)
β,k

. .
.

0
... 0

... 0
...

...
...

...
0 · · · 0 0 · · · 0 0 · · · 0

























,

where ηβ = ‖n‖ − nβ . For β = 1, 2, . . . , k, also define the ‖n‖ × k‖n‖ residual error
matrices

δWβ = [δW̄β ,0n1
, . . . ,0nk ]

and

δR = [δR̄,0n1
, . . . ,0nk ],

where

δW̄β =





















δw
(‖n‖−1)
β · · · δw

(n0)
β

...
... δw

(0)
β

. .
.

δw
(0)
β





















, δR̄ =

























δr(‖n‖−2) · · · δr(n0−1)

...
... δr(0)

. .
.

0

δr(0) . .
. ...

0 · · · 0

























,

and 0nβ is a ‖n‖ × ‖n‖ − nβ matrix of zeroes. Also, let

θ =







θ0,0 · · · θ0,k
...

...
θk,0 · · · θk,k






,

where each θα,β is an (‖n‖ − nα)× (‖n‖ − nβ) matrix given by

θα,β =









(θII)
(‖n‖+1)
α,β · · · (θII)

(2‖n‖−nβ)
α,β

...
...

(θII)
(nα+2)
α,β · · · (θII)

(‖n‖+nα−nβ+1)
α,β









16



with θII(z) the error appearing in (18). Finally, let
[

a
(i−j)
0

]

denote an order ‖n‖,

lower triangular, matrix as in §4.
The main result of this section is Theorem 7 below which gives the inverse ofM∗

n

in terms of the NPHS S(z) and the NSPS S∗(z) of types n for A(z).

Theorem 7. In terms of the normalized NPHS S(z) and the normalized
NSPS S∗(x) of types n for A(z), the inverse ofM∗

n satisfies

M∗−1
n

{

(a
(0)
0 )−1Ik‖n‖ + θ∗IV

}

= Qt
[

a
(i−j)
0

]−1

V∗ +

k
∑

β=1

Vtβ

[

a
(i−j)
0

]−1

Q∗β ,(37)

where

θ∗IV = θ − δRt
[

a
(i−j)
0

]−1

V∗ −

k
∑

β=1

δW t
β

[

a
(i−j)
0

]−1

Q∗β(38)

Proof. Let

Q̄ =

























p(‖n‖−2) · · · p(n0−1) q
(‖n‖−2)
1 · · · q

(n1−1)
1 q

(‖n‖−2)
k · · · q

(nk−1)
k

...
...

...
... p(0)

... q
(0)
1 . . .

... q
(0)
k

. .
.

0 . .
.

0 . .
.

0

p(0) . .
.

q
(0)
1

. .
.

q
(0)
k

. .
.

0 0 0

























.

Then, the order condition (5) for an NPHS implies that

M∗
n · Q

t = Q̄t ·
[

a
(i−j)
0

]

− δRt.(39)

To see this, note the (i, j)th component, 1 ≤ i ≤ ‖n‖−n0, 1 ≤ j ≤ ‖n‖, of (39) is the
coefficient of z‖n‖−i−j in

a0(z) p(z) +
k
∑

α=1

aα(z) qα(z) = z‖n‖−1r(z) + δr(z).

The remaining components of (39) are obvious identities.
Similarly, for 1 ≤ β ≤ k, let

V̄β =





















u
(‖n‖−1)
β · · · u

(n0)
β v

(‖n‖−1)
1,β · · · v

(n1)
1,β v

(‖n‖−1)
k,β · · · v

(nk)
k,β

...
...

...
... u

(0)
β

... v
(0)
1,β . . .

... v
(0)
k,β

. .
.

. .
.

. .
.

u
(0)
β v

(0)
1,β v

(0)
k,β





















.
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Then, the coefficient of z‖n‖−i−j+1, 1 ≤ i ≤ ‖n‖ − n0, 1 ≤ j ≤ ‖n‖, in the order
condition (5) for an NPHS, namely,

a0(z) uβ(z) +
k
∑

α=1

aα(z) vα,β(z) = z‖n‖+1wβ(z) + δwβ(z),

gives the (i, j)th component of

M∗
n · V

t
β = V̄tβ ·

[

a
(i−j)
0

]

− δW t.(40)

The remaining components of (40) are easy to verify.
Next, observe that Theorem 1 and Corollary 2 imply that

Q̄t · V∗ +

k
∑

β=1

V̄tβ · Q
∗
β = (a

(0)
0 )−1Ik‖n‖ + θ.(41)

Combining (39), (40) and (41), we obtain the result (37).
Corollary 8 below drops the requirement in Theorem 7 that S(z) and S∗(z) be

normalized. In particular, the results of the corollary apply when S(z) and S∗(z) are
scaled.

Corollary 8. In terms of the NPHS S(z) (unnormalized) of type n for A(z)
and the NSPS S∗(z) (unnormalized) of type n for A∗(z), the inverse of M∗

n is given
by

M∗−1
n

{

(a
(0)
0 )−1Ik‖n‖ + θ̈∗IV

}

(42)

= (γ0γ
∗
0 )
−1Qt

[

a
(i−j)
0

]−1

V∗ +
k
∑

β=1

(γβγ
∗
β)
−1Vtβ

[

a
(i−j)
0

]−1

Q∗β ,

where

θ̈∗IV = θ̈ − (γ0γ
∗
0 )
−1δRt

[

a
(i−j)
0

]−1

V∗ −
k
∑

β=1

(γβγ
∗
β)
−1δW t

β

[

a
(i−j)
0

]−1

Q∗β

and

θ̈ =







θ̈0,0 · · · θ̈0,k
...

...

θ̈k,0 · · · θ̈k,k







with

θ̈α,β =









(θ̈II)
(‖n‖+1)
α,β · · · (θ̈II)

(2‖n‖−nβ)
α,β

...
...

(θ̈II)
(nα+2)
α,β · · · (θ̈II)

(‖n‖+nα−nβ+1)
α,β









Proof. The normalized NPHS is obtained from an unnormalized one by mul-
tiplying it on the right by the diagonal matrix diag[γ−1

0 , . . . , γ−1
k ]. Similarly, the
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normalized NSPS is obtained from an unnormalized one by multiplying it on the left
by the diagonal matrix diag[γ∗−1

0 , . . . , γ∗−1
k ]. The result now follows directly from

(37).
Corollary 9. If the conditions of Corollary 6 are satisfied, then3

‖M∗−1
n ‖∞ ≤ 2κ · |a

(0)
0 | · ‖a−1

0 (z) (mod z‖n‖+1)‖.(43)

Proof. ¿From (36),

‖θ̈‖∞ ≤ (k + 1)‖θ̈II(z)‖

≤ 2κ2(k + 1)2 · |a
(0)
0 | · ‖a−1

0 (z) (mod z‖n‖+1)‖ ·
{

(k + 1)‖δT t(z)‖+ ‖δT ∗(z)‖
}

.

Thus,

‖θ̈∗IV ‖∞ = ‖θ̈ − (γ0γ
∗
0 )
−1δRt

[

a
(i−j)
0

]−1

V∗ −
k
∑

β=1

(γβγ
∗
β)
−1δW t

β

[

a
(i−j)
0

]−1

Q∗β‖∞

≤ ‖θ̈‖∞ + (γ0γ
∗
0 )
−1(k + 1) · ‖δT t(z)‖ · ‖a−1

0 (z) (mod z‖n‖+1)‖ · ‖S∗(z)‖

+

k
∑

β=1

(γβγ
∗
β)
−1(k + 1) · ‖δT t(z)‖ · ‖a−1

0 (z) (mod z‖n‖+1)‖ · ‖S∗(z)‖

≤ κ(k + 1)2 · ‖a−1
0 (z) (mod z‖n‖+1)‖

·
{

‖δT t(z)‖+ 2κ|a
(0)
0 | ·

[

(k + 1)‖δT t(z)‖+ ‖δT ∗(z)‖
]

}

≤ 4|a
(0)
0 | ·

[

(κ+ 1)(k + 2)(‖a−1
0 (z) (mod z‖n‖+1)‖+ 1)

]2

·
[

(k + 2)‖δT t(z)‖+ ‖δT ∗(z)‖
]

.

Therefore, using the assumption (34),

‖
{

(a
(0)
0 )−1Ik‖n‖ + θ̈∗IV

}−1

‖∞ ≤ 2|a
(0)
0 |

and so

‖M∗−1
n ‖∞ ≤ ‖

{

(a
(0)
0 )−1Ik‖n‖ + θ̈∗IV

}−1

‖∞ · ‖(γ0γ
∗
0 )
−1Qt

[

a
(i−j)
0

]−1

V∗

+

k
∑

β=1

(γβγ
∗
β)
−1Vtβ

[

a
(i−j)
0

]−1

Q∗β‖∞

≤ 2κ|a
(0)
0 | · ‖a−1

0 (z) (mod z‖n‖+1)‖.

6. Conclusions. In this paper we have presented new formulae for the “near”
inverses of striped and mosaic Sylvester matrices. The formulae are given in terms
of numerical Padé-Hermite and simultaneous Padé systems. They are important for

3 The ∞-norm, rather than the 1-norm, is used here because it is more suitable for purposes in
[6].

19



numerical computation since they incorporate errors caused by floating-point arith-
metic. In particular, the formulae can be used to determine good estimates for the
condition numbers of these matrices.

Our primary motivation for obtaining these formulae is the numerically stable
computation of Padé-Hermite and simultaneous Padé approximants, the subject of
the companion paper [6]. As such we have restricted our attention to a striped and a
specific mosaic Sylvester matrices. We conjecture that a similar approach can also be
used for determining near inverse formulae of other structured matrices, for example,
of mosaic Hankel, Toeplitz or Sylvester matrices [13, 16]. Some preliminary work on
this topic has already been done in [8].

Together with the results of [6], we believe that the formulae given in this paper
can be used to stably invert striped and mosaic Sylvester matrices and to stably solve
systems of linear equations with these as coefficient matrices. This matter requires
formal verification, such as that reported in [11] for the case k = 1 and a0(z) = 1.

Acknowledgement. We are very greatful to a referee who contributed much in
terms of the correctness of results and the clarity of presentation.
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