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In this paper we describe the SNAP package, a new MAPLE package for algebraic
manipulation of univariate numeric polynomials. The package includes commands
for quotient, remainder, greatest common divisors and related operations. We
discuss the methods used in the package along with the key issues that were en-
countered during the implementation.

1 Introduction

There are a number of application areas which can be formally described in
terms of algebraic operations on polynomials and matrix polynomials such as
division, remainders and greatest common divisors. Areas which make use
of such an approach include control theory, linear systems theory and signal
processing’*. While an algebraic polynomial formalism is extremely useful for
theoretical studies of properties, it has drawbacks when one tries to take ad-
vantage for computations. The primary problem is that many applications use
inexact data and finite precision computations while the formalism assumes
exact information and error-free computations!®2°,

In this paper we describe the SNAP (Symbolic-Numeric Algorithms for
Polynomials) package for computing with polynomials having inexact coeffi-
cients. This package is a first attempt to provide the standard functionalities
for inexact polynomials that exist for exact polynomials, including the tak-
ing of quotients and remainders, determining if two polynomials are relatively
prime and finding greatest common divisors (GCDs). The package is included
in the coming release of the MAPLE computer algebra system.

Several algorithms exist for performing such operations, in particular for
computing the various notions of the so-called approximate GCDs. These
algorithms include modifications of the Euclidean algorithm®®16:19 optimiza-
tion techniques®!%13, subresultant-based algorithms®7, and polynomial root
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approximation'”. For the most part, the previously mentioned algorithms

resort to either infinite or adaptive precision. In our case, the software we
present works under the customary model of numerical computation using
fixed precision floating-point arithmetic and the underlying algorithms bene-
fit from round-off error analysis which ensures numerical stability®.

This approach, based on estimating the distance to the closest pair of
polynomials having a common factor®, also allows for computations that typ-
ically run in quadratic time. Also, the two approximate GCDs that we focus
on in the package (quasi-GCD!® and e-GCD?) are certified in the sense of
Emiris et al 7.

The remainder of the paper is organized as follows. The next section
gives a description of the commands in the SNAP package. Since the nu-
merical computation of GCDs plays such a significant role in the package,
we summarize in Section 3 the Beckermann-Labahn algorithm, which is the
main tool used for this computation and for a number of commands inside the
package. Section 4 then gives some details of the implementation used while
Section 5 gives some of the practical features of the package. The paper ends
with a conclusion along with topics for future research.

2 Overview of the SNAP package

The SNAP package has been designed for univariate polynomials with real
floating-point coeflicients. The commands it offers are described below, where
(a,b) denotes a pair of such numeric polynomials:

e AreCoprime: coprimeness test for (a,b) when known up to a given ¢;

e DistanceToCommonDivisors: estimate the distance between (a,b) and
the set of polynomial pairs with at least one nontrivial common divisor;

e DistanceToSingularPolynomials: estimate the distance between a and
the set of polynomials with at least one multiple root;

e EpsilonGCD: compute a polynomial g and a quantity € such that g is an

¢-GCD for (a, b);

e FEuclideanReduction: return a degree reduced basis that is numerically
equivalent to the basis (a, b);

e IsSingular: decide whether a has at least one mutiple root when known
up to a given e;
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e QuasiGCD: compute a polynomial ¢ and a quantity € such that g is a
quasi-GCD with precision € for (a, b);

e Quotient: compute the quotient of a divided by b;
e Remainder: compute the remainder of a divided by b.

A typical use of a SNAP command is illustrated through the simple example
below (with 10 digits) where one investigates the relative primeness of two
polynomials up to a tolerance of 0.5 and 0.1:

> with(SNAP):
> a := 0.1%z"2+1.5%z-0.2:
> Db := 0.2%z"3+0.15:
> AreCoprime(a,b,z,0.5);
false
> AreCoprime(a,b,z,0.1);
true

Since for the latter tolerance the above polynomials are coprime, their Bézout
coefficients for the associated linear diophantine equation can also be obtained
using an optional parameter:

> AreCoprime(a,b,z,0.1,output="BC?);

true,

[—0.8710041008177655812% — 0.112232907263963163z — 0.05851459268,
0.435502050408882734z + 6.588647210]

3 Solving polynomial Diophantine equations numerically

Let a(z), b(z) be two univariate polynomials over C with degrees m, n. Except
for Quotient and Remainder, the majority of the current functions in the
SNAP package are based on the following approach, developed by Beckermann
and Labahn?3: compute polynomial solutions u(z), v(z), u(z), v(2) to the
Diophantine equations

a(z)v(z) + b(z)u(z) =1, degu <m, degv < n, (1)
a(z)u(z) + b(z)u(z) = ZmT=l 0 degu < m, degu < m, (2)

in a fast and numerically stable way. Here, “fast” means arithmetic complexity
in O((m + n)z) and “stable” means weakly stable in the sense of Bunch®.
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This approach provides a numerical coprimeness test together with Bézout
coefficients. Additionally, a solution (u,v,u,v) to Equations (1), (2) yields a
sharp estimation of the distance €(a,b) to the set of polynomial pairs with a
common root. Indeed, denoting by || || the l-norm for the space of matrix
polynomials over C, one has

€(a,b) = min{||(a —a*, b—b")|| : deg gcd(a*, b*) > 0, dega* < m, degb* < n}.
If we let S(a,b) be the Sylvester matrix associated with a(z), b(z) then it can
1

be shown? that
v
1S (a, b))~ ] [“ ]

This improves upon the well known lower bound 1/||S(a, b)™"|| for €(a, b).

Of course, a solution to Equations (1), (2) may not exist. However, the
COPRIME? algorithm of Beckermann and Labahn always returns a reduced
pair of polynomials from which one often can deduce a solution of (under
additional assumptions) some approximate GCDs.

g |=

1
< —<e€(a,b) where f’ﬁ:‘
K

‘ . (3)

8.1 The algorithm COPRIME

We may assume®!! w.lo.g. that m > n and that the input numerical

polynomials have been scaled to satisfy 1/2 < ||(a,b)|| < 1. Starting with
(a© 50 ) = (a(z),b(z), —z"~1), the COPRIME algorithm computes for
k < m a numerical polynomial remainder sequence (a(k), bk, c(k)) by means
of so-called unimodular reductions U*)(z) € C[z]?*? of order k together
with associated vectors Q(k)(z) € C[z]?*1. More precisely,

(@®), b)) = (a,b) - U®),  c®) = (a,b) . UF) — grtk-1 (4)
with U(*) unimodular and where, for k > 1,

n > dega(k) =m-k> degb(k), degc(k) <m-—k-—1,

degU(k)<[n—m+k—1n—m—|—k n—m—l—k—l]

k-1 k k-1

The two main features of this Euclidean-like reduction process are summarized
in the theorem below.

Theorem 3.1 The pairs (a,b) and (a'*),b*)) define two different bases of
the same ideal with a*) of smaller degree than a. When k = m, a solution
(u,v,u,v) to Equations (1), (2) is given by

[Z] - a<m1)(o) i [3] ) [i] =ut. (5)

] , degU™ < [
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In finite precision arithmetic, some remainders defined by (4) may corre-
spond to ill-conditioned subproblems®. In order to ensure numerical stability,
such remainders are discarded by a “look-ahead” strategy: one jumps from
(a®) b(*) (k) to the first (aF+2), b(E+s) c(k+3)) with s > 1 such that

|det U+ (0)| > 7 and [[UF+)|| < 1/7. (6)

Here, 7 is a threshold parameter of order the cubic root of the machine preci-
sion and (a(¥+#) b(E+4)) is the first basis after (a(¥), b(¥)) that is numerically
well-behaved in the sense of (6). The set A of the indices of all such accepted
bases clearly satisfies A C {0,1,2,...,m}.

On the other hand, U*+#) and Q(k+s) are determined from a(*), p(¥) (k)
Uk, Q(k) in a numerically stable manner as follows. Consider the 2s x 2s
complex matrix

_ ai:)_k 0 -
k k k

afn)—k—l afn)—k bfn)—k—l

M®) = 0 (7)
k k
ain)—k bin)—k—l
k) k) k : k :
_ain)—k—Zs+1 CL?(n)—k—s bin)—k—23+1 b7(n)—k—s_

and solve the three linear systems Ms(k):m = y; with

Y1 = (07 .0, 1)T7 Y2 = _(bglk—j)j:17,,725’ Y3 = (cfvl':)—k—j)j—l 2" (8)

Setting up the 2 x 2 and 2 x 1 polynomial matrices
s—1 1,0
(k,k-}—s) N z ez Z 0 ...... 0 . ( ) 0 0
U (Z) - [ 0 ...... 0 zs_l PP Zl ZO $17:B2 + 0 Zs

and

one finally obtains®

plets) — gk) . glekts)  ang g+ — k) _ k) glkkes).

When k + s € A, additional scaling ensures that 1/2 < ||[U*+#)|| < 1. The
resulting algorithm, called COPRIME, is given in Table 1.
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Method: Construct (scaled) unimodular reductions U*) of (a, b) of
order k € A together with associated vectors u®)

for 1 <k <m.

Input: Two polynomials a, b with dega = m > degb.
A stability parameter 7.

Output: If m € A: RETURN 1/« given by (3) and (5).

If m ¢ A: message, for 1/x does not exist or is “too small”.

Initialization: k = 0, A = {}, U®) = [é (1)] and U(®) = [g]

Single Step: For s =1,2,...

Compute UFk+s) pkFE+s) py solving linear systems (7-8)
(if det Ms(k)‘: 0 then increase s and restart).
Rescale U*) . U(*:k+3) 4 obtain U*+5),

Exit s-loop: if (6) holds. In this case k + k+ s and A + AU {k}.
Exit ALGO: If k+s=m.

Table 1. The algorithm COPRIME

Theorem 3.2 The algorithm COPRIME is weakly stable and requires in most
cases O((m + n)z) flops.

Quadratic complexity can be achieved mainly because for most dense
polynomial pairs (a,b) only small jumps (s < 3) and thus only small linear
systems are typically encountered. Note further that the products of (4) can
be replaced with the “shorter” products

(alk) pl+a)y = (q(8) p0y.gr(kibbs)  lhba) — oo o) _ (gk) (k). rikobte),

When m € A we conclude that (a,b) are numerically coprime up to
perturbations of order € < 1/k. When m ¢ A then the last accepted basis
(a(k), b(k)) may still provide various approximate GCDs.

8.2 Approzimate GCDs from the last accepted basis

Recall that a polynomial g is a quasi-GCD!® with precision ¢ for a, b if
there exist polynomials uy, v1, 42, v2 such that

(@, b) —g(uz, v2)|| <€ [lava+bus—g[| <ellgll, degus <m, degvs <n.
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Also, g is an e-GCD? for a, b if there exist polynomials &, b with degrees
at most m, n such that ||(a,b) — (@, b)|] < € and g = ged(a, b) has maximal
degree.

All the computations in the COPRIME algorithm are done using finite
precision arithmetic. As such there are residual error polynomials a(*) and

B*) 50 that
(a,b) = Uk . (a(k),b(k)) + (a(k)”g(k))

with dega®*) = m —k > degb(*). Additionally, let p;(a, b) be the minimum of
the set of all products ||(a,b)|| - ||(ga, 5)T || where the polynomial pair (g4, gs)
is such that deg g, < I, deg gp < [ and

2"a(2)gq(z) + 2™ b(2)gs(2) = Zminti=1 O(z"" 1, 0. (9)

Beckermann and Labahn point out that when the last accepted basis has
“small” errors then it can often still be used for computing either a quasi-

GCD or an ¢-GCD.

Theorem 3.3 Let U*) be the last well-behaved unimodular reduction com-
puted by the algorithm COPRIME. Then

(a) If |p®))] + |[(a®), pE))|| < €|det UF)(0)|/12 with 0 < € < 1/6 then al*)

s a quasi—-GCD with precision €.

(B) 1 2O + (2 + dpu_mran(a:8) - [[(@®), O] < €|det UM (0)] and
| det U(k)(0)| > 4pp_myar(a,b) - € then a®) s an e-GCD.

4 Implementation details

4.1 Fast and stable update of QR factorizations

It may happen that the look-ahead procedure has several jumps of order
s = O(m). In this case, successively computing QR decompositions of
Ml(k), . ..,M,Sk) by the classical method costs Y ;_; * flops, resulting in an
O((m+ n)4) algorithm. However, by taking advantage of the recursive struc-
ture of the matrix Ms(k) of (7) it is possible to reduce the above complexity to
O((m+ n)s) Indeed, we can determine the ith QR decomposition from the
(i — 1)th one in quadratic rather than cubic time®. This is precisely why such
intermediate linear systems are solved via QR decomposition rather than say

Gaussian elimination®. The details of such QR updates can be found in the
SNAP user’s guidell.
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4.2 Using MAPLE hardware floats

MAPLE has two floating point systems, hardware float and software float!®.
Software floats are used for extended precision arithmetic while hardware float
makes use of double precision arithmetic available on all computers. Hardware
floating point is much faster than software float, but is limited in its usage.
Our implementation of COPRIME was done is such a way that it could run
in either setting, making use of hardware floats where valid. We remark that
the structures allowed inside procedures that can work with hardware floating
point are limited (for example sets, lists and sequences are not allowed).

4.3 Determining p(a,b) via least squares

In order to check the conditions of Theorem 3.3, we need to estimate p;(a, d)
(see Equation (9)). Computing a 2-norm equivalent of p;(a, b) allows to reduce
to the following least squares problem.

When [ > 0, consider the [ x 2! complex matrix

am bn
M = :
Am—i4+1 * " Om bn—l+1 bn

In the case where [ < 0, it suffices to replace | with —! and a(z), b(z) with
z™a(z71), 2"b(271) respectively. We then compute the Moore-Penrose inverse
M+ of M by singular value decomposition®. We then take for p;(a,b) the
product ||[M*(.,1)||, - ||(a,b)||, where M*(.,1) denotes the first column of
MT*.

The SNAP commands EpsilonGCD and QuasiGCD are based on this ap-
proach.

5 Practical features of SNAP

5.1 Efficient coprimeness test

The SNAP package allows for numerical coprimeness to be detected efficiently
for most inputs. Dense polynomials of degree of order 1000 can typically be
handled by our implementation of COPRIME within a few minutes (on a
Pentium IIT 800 MHz with 512MB of RAM, under Linux). This is illustrated
in the table below. For comparison, we also give the time (in seconds) required
to estimate €(a, b) via setting up the Sylvester matrix S(a, b) and solving the
associated linear systems by LU decomposition (with the MAPLE command
LinearAlgebral[LinearSolve]):
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m=mn+1 | Sylvester | COPRIME
50 0.33 0.34
100 1.30 1.34
250 8.6 8.7
500 43 33
103 307 126
2-103 3360 515

5.2 Certified approximate GCDs

Another important feature of the package is the ability to compute approxi-
mate GCDs at the same cost as a coprimeness test. Such GCDs are certified
by Theorem 3.3. As an illustration, we consider the following example due to
Rupprecht!®. Let

a(z) = (z* = 1.000001) (2> — 3.000001z + 0.99999999)
and
b(z) = (z* — 0.9999999)(z* — 3.0000003z — 2.9999999).

Calling SNAP[EpsilonGCD](a,b,z) with 10 digits (the default in MAPLE)
yields the 0.0006481143605-GCD

z* 4+ 5.198691325 107823 + 5.804634175 10~ ">
+9.873862873 10" "z — 1.000000584

after normalization of the leading coeflicient.

5.8 Satisfactory answers from EBuclidean reduction

When the conditions of Theorem 3.3 are not satisfied, the SNAP command
Euclideanreduction proves in general to be very useful for two reasons: in
most cases, the returned polynomial pair has much smaller degrees that the
input; also, the first component can be seen as a satisfactory candidate for an
approximate GCD. For example, let

a(z) = 2°—12.42° +62.532* — 163.5422° +232.97762> — 170.691842 + 50.18112
and

b(z) = 2° — 17.62* + 118.262° — 372.9922% + 538.33332 — 274.09272
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Calling SNAP[EuclideanReduction](a,b,z,tau=1e-8) with 10 digits then
yields the reduced pair

0.250000000022 — 0.87500037652z 4 0.6600005057,
—0.90726410 "z 4 0.133529610~°.

Degrees have decreased from (6,5) to (2,1) but the second component has
l-norm of order O(10~7) and should be interpreted as a zero remainder.

6 Concluding remarks

In this paper we have given a description of the SNAP package, a new MAPLE
package for arithmetic with univariate numeric polynomials. This package is a
first version and it is by no means complete with its primary focus being on the
operations of quotient, remainder and GCDs. As such there are a number of
additional commands that need to be investigated and implemented for future
versions of the package. These include commands for numerical division of
univariate polynomials, reduction of numeric rational expressions and others.
Furthermore, commands that allow for numerically correct arithmetic with
multivariate polynomials will also be needed.

In this paper, we have focused only on two types of approximate GCDs.
The package would thus gain by the inclusion of the algorithms which follow
an adaptive precision model, for example as found in Corless et al * and Kar-
markar and Lakshman'3. It would also be interesting to compare our available
software with implementations of the methods of Noda and Sasaki'®, Pan'”
and Zarowski et al 2. Because of these various definitions and algorithms for
approximate GCDs, it may be of interest to provide a user with an automatic
selection facility, depending on the problem to be solved.

Finally, the package would also gain significant use if it included algebraic
operations for matrix polynomials, particularly in such application areas as
control theory and linear systems theory. The delay in this aspect of the
package has to do with the lack of numerically stable algorithms for computing
such operations as numeric matrix greatest common divisor or even numeric
matrix normal forms.
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