Fraction-free Row Reduction of Matrices of Skew
Polynomials

Bernhard Beckermann
Laboratoire d’Analyse Numérique et
d’Optimisation
Université des Sciences et Technologies de Lille
France
bbecker@ano.univ-1lillel.fr

ABSTRACT

We present a new algorithm for row reduction of a matrix
of skew polynomials. The algorithm can be used for finding
full rank decompositions and other rank revealing transfor-
mations of matrices of skew polynomials. The algorithm
is intended for computation in exact arithmetic domains
where the growth of coefficients in intermediate computa-
tions is a central concern. This coefficient growth is con-
trolled by using fraction-free methods. This allows us to
obtain a polynomial-time algorithm: for an m x s matrix of
input skew polynomials of degree N with coefficients whose
lengths are bounded by K the algorithm has a worst case
complexity of O(m®s* N*K?) bit operations.

1. INTRODUCTION

In [2] Abramov and Bronstein give a new fast algorithm for
determining what they call a rank revealing transformations
for skew polynomial matrices. These are transformations
which convert a matrix of skew polynomials into one where
the rank is determined entirely by the leading or trailing co-
efficient matrix. They show that their algorithm can be used
for a number of applications including the desingularization
of linear recurrence systems and for computing rational so-
lutions of a large class of linear functional systems. In the
former application their rank revealing approach improves
on the EG-elimination method of Abramov [1].

In the commutative case the algorithm of [2] is the same as
that given by Beckermann and Labahn [6]. In both cases the
algorithms are fast but their methods require exact arith-
metic while not handling coefficient growth except through
coefficient GCD computations. Without the GCD compu-
tations the coefficient growth can be exponential.

The main contribution in this paper is a new algorithm
which performs row reductions on a given matrix of skew
polynomials into one having a full rank leading or trailing
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coefficient matrix. The reductions can be used to find a full
rank decomposition of a matrix of skew polynomials along
with rank revealing transformations used by Abramov and
Bronstein. The main tool used in the algorithm is order
bases which describes all solutions of a given order problem.
The algorithm is noteworthy because it uses only fraction-
free arithmetic without coefficient GCD computations, while
at the same time controls coefficient growth of intermedi-
ate computations. This is similar to the process used by
the subresultant algorithm for computing the GCD of two
scalar polynomials [9, 10, 11]. The algorithm is based on
the FFFG fraction-free method used in Beckermann and
Labahn [8] which was developed for fraction-free computa-
tion of matrix rational approximants, matrix GCDs and gen-
eralized Richardson extrapolation processes. In the scalar
case the FFFG algorithm generalizes the subresultant GCD
algorithm [7]. We also give a complexity analysis of our algo-
rithm. For an m x s matrix of input skew polynomials whose
coefficients have lengths bounded by K the algorithm has a
worst case complexity of O(m534N4K2) bit operations.

The remainder of the paper is as follows. The next section
gives the basic definitions for the problem and introduces
order bases of skew polynomials, the primary tool that will
be used to solve our problem. Section 3 gives a linear algebra
formulation to our problem while the following section gives
our fraction-free recurrence. Section 5 discusses the stopping
criterion and complexity of our algorithm. The paper ends
with a conclusion along with a discussion of future work.

2. PRELIMINARIES

Let D be an integral domain with @ its quotient field and
let Q[Z;0] be the Ore domain of skew polynomials over Q
with automorphism ¢ and 6 = 0. Thus the elements of Q
interact with the shift Z via Za = o(a)Z. An example of
such a domain is D = K[n],Q = K(n) with Z the shift
operator and o(a(n)) = a(gn + d) for some integers g and d
with g # 0. The case when o(a(n)) = a(n+1) is particularly
important in applications. We remark that, as in [2], we
can handle the problem of computing rational solutions of
linear functional systems containing differential, difference
and g-difference operators by mapping them into the above
domains.

Given a matrix of polynomials of skew polynomials we are
interested in applying row operations which transform the



matrix into a matrix of skew polynomials which has the
property that the rank is revealed by either the trailing or
leading coefficient. We will focus on the case of trailing
coefficients. In this section we provide the preliminary defi-
nitions and tools which form the basis for our approach.

We assume that we are given F(Z), a rectangular m X s
matrix of skew polynomials with entries in Q[Z;0]

N
F(Z) =) F;Z’, with F; € D™**,

j=0

We adapt the convention of denoting the elements of F(Z)
by F(Z)**, and the elements of F; by ij’l. For any vector

of integers & = (&1,... ,&m), we let Z% denote the matrix
of skew polynomials having Z%i on the diagonal and 0 ev-
erywhere else. A matrix of skew polynomials is said to have
row (column) degree [ if the i-th row (column) has maximal
degree fi;. The vector € is the vector consisting only of 1.

The goal of this paper is to construct the type of rank reveal-
ing transformations needed by Abramov and Bronstein [2]
for their applications. Let Q[Z;0][Z";07'] be the iterated
domain where we have the identities

z2-Z2'=2"2=1, ZaZ "'=0(a), Z7"a-Z=0""(a)
for all a € Q.

The rank revealing transformations of Abramov and Bron-
stein can be formalized as follows. Given the matrix of skew
polynomials F(Z) € D[Z;0]™** (possibly after a shift with
Z71), we wish to find T(Z7') € D[Z7';07!]™*™ such that

T(Z™')-F(Z)=W(Z)eD[Z;0]""*,

with the number of nonzero rows r of W(Z) coinciding
with the rank of the trailing coefficient Wy, and hence with
the rank of W(Z). In addition we require the existence of
S(Z) € Q[Z;0]™*™ such that

S(Z)-T(Z™") = L.

Notice that the second formula tells us that the process of
elimination for getting W (Z) is invertible. More precisely,
we obtain for F(Z) the full rank decomposition

F(2)=5(2)-W(Z)=S(2Z)- W(Z) (1)

with VV(Z) € D[Z;0]"*™ obtained by extracting the
nonzero rows of W(Z), and g(Z) € Q[Z;0]™*" by extract-
ing from S(Z) the corresponding columns. Moreover, the
rank of the trailing coefficient of W(Z ) is of full row rank
r, and this quantity coincides with the rank of W(Z) Fi-
nally, from this last equation we see that the rank of F(Z)
is bounded above by r, whereas the first equation tells us
that rank F(Z) > rank W(Z) = r. Thus we have found
r =rank F(Z).

2.1 Order Basis

In this subsection we introduce the notion of order and order
bases for a given matrix of skew polynomials. These are the
primary tools which will be used for our algorithm.

DerFINITION 2.1. Let P(Z) € Q[Z;0]'*™ be a vector of
skew polynomials and & a multi-index of integers. Then

P(Z) is said to have order & if
P(Z)-F(Z)=R(Z)-Z° (2)

with R(Z) € Q[Z;0]'*. R(Z) in (2) is called a residual.
O

In contrast to previous papers dealing with order bases [4, 5,
6, 8], we have chosen an order condition on the right. This
has the advantage that while writing

F(Z)=) FZ’, P(Z)=) PZ"
J k

we have

P(Z)-F(Z)= Zsjzf, S; = Z Pia*(Fi_i). (3)

Hence the unknowns Pj, can be obtained by building a linear
system obtained by putting the undesired coefficients of S;
equal to zero. In order to specify these coefficients (see equa-
tion (5) below), let us write more explicitly cf’l(P(Z)) =

Sf’l for the coefficients occurring in (3).

Notice that, though the algebra Q[Z;c] is non-commutative,
the matrix of coefficients will have elements in the field @.
Thus we may build determinants and apply other techniques
known from fraction—free algorithms which enable us to con-
trol the size of intermediate quantities and to predict com-
mon factors.

In what follows we will construct elements from Q[Z;a]™>*™
(and more precisely from ID [Z;0]™*™) which will enable us
to describe the entire set of vectors of a given order.

DEFINITION 2.2. Let & be some multi-index. A matriz of
skew polynomials M(Z) € Q[Z;0]™*™ is said to be an order
basis of order & and degree fi if there exists a multi-index
f = (f1, s fim) such that

a) every row of M(Z) has order @,

b) for every P(Z) € Q[Z;0]'*™ of order @ there exists a
Q(Z) € Q[Z;0]'*™ such that

P(7) = Q(Z) - M(2),

where degQ(Z)l’j < degP(Z) — i for all j,
¢) there exists a nonzero d € Q such that
M(Z)=d-Z" + L(Z)

mln{/_jk - lvl_jl’ - 1} £ > k,

where deg1(z) < { il SV (2



REMARK 2.3. Note that when & = p-€ for a given p, then
every row of ZP¢ has order &. Hence part (b) of Definition
2.2 implies that there ezists a M*(Z) € Q[Z;0]™*™ such
that

M*(Z)-M(Z) = 2°°, degM*(2)"* <p — jie,

that is, a type of shifted inverse. The existence of a shifted
left inverse M™*(Z) will enable us to generalize the notion of

unemodular transformations of order bases to the case of the
non-commautative algebra Q[ Z;c]. O

An essential implication of Definition 2.2(b) is the following:

THEOREM 2.4. Suppose that there exists an order basis
M(Z) of order & and degree fi. Then there exists only the
trivial row vector P(Z) = 0 with column degree < fi — € and
order > &. Thus, for any k, a row vector with column degree
< fi — €+ €r and order > & is unique up to multiplication
with an element from Q. In particular, an order basis is
unique up to multiplication by constants from Q.

Proof: We only need to show the first part concerning row
vectors P(Z) with column degree i — € and order &, the
other parts being an immediate consequence of the first.
Suppose that P(Z) # 0, d = degP(Z), and let Q(Z) be as
in Definition 2.2(b). We first claim that there exists at least
one index j with

fij + degQ(Z)" = d. (4)

Otherwise, deg Q(Z)"* - M(2)** < jir + degQ(Z2)"* < d
for all k and £ since degM(Z)** < jix by Definition 2.2(c),
in contradiction with the definition of d. Let j be the largest
index verifying (4). Then again by Definition 2.2(c)

degZQ z)"*M(2)"

k=j+1
< > d—jik— 1+ degM(Z)* <d -1,
k:j-}-l
degZQ z)"*M(2)"
< Zdegcz(zl’wm—lg—l,
k=1

degQ(2)" " M(2)" = degQ(2)" + ij = d.

This implies that degP(Z)l’j = d > fij, which contradicts
the assumption of the degree of P(Z). a

3. DETERMINANTAL REPRESENTATIONS
AND MAHLER SYSTEMS

In what follows we will propose an algorithm for computing
recursively order bases M(Z) for increasing order vectors. In
order to predict the size of these objects and predict common
factors, we derive in this section a determinantal represen-
tation together with a particular choice of the constant d.

Suppose that we are looking for a row vector P(Z) of column
degree 77 having order &. Comparing with (3), we know that
P(Z) has order @ iff forall £=1,...,s,7=0,...,d, — 1:

m min{j, 7}

=3 3 PlRon(RRY).

k=1 £=0

0=c; (P(Z

This leads to some system of linear equations of the form

(P01,1 Pl 1

[

WPy P K (D4 E,6) =10, (5)
where the generalized Sylvester matrix is of the form
K(7+2,3) = (K (5 + 1.G0))Ty s

where the v X w submatrix K**(v,w) equals

SR CELY e (R
0 (R o (i)
0 e TR e TR

Clearly, K*“(7), + 1,d,)" (and thus K (7 + &,&)T) may be
written as some striped Krylov matrix [8], that is, a matrix
of the form

B o DR | B o

However, by stepping from one column to the next we not
only multiply with a lower shift matrix but also apply in
addition the application o. Thus, in contrast to [8], here
we obtain a striped Krylov matrix with a matrix C having
operator-valued elements.

How can we exploit this representation in order to derive a
determinantal representation of order bases? According to
(5), it follows from Theorem 2.4 that if there exists an order
basis M(Z) of order & and degree ji then K(fi,d) has full

row rank, and more precisely

k=1,...,m: rank K(fi,&) =rank K(i+ €, o) =|f|
(6)

Suppose more generally that g and & are multi-indices ver-
ifying (6). We call a multigradient d = d(fi,d) any constant
+1 times the determinant of a regular submatrix K. (f,d) of
maximal order of K (fi,&), and a Mahler system correspond-
ing to (fi,d) a matrix polynomial M(Z) with rows having
order @ and degree structure

M(Z)=d- Z% 1 lower order column degrees.

In order to show that such a system exists, we write down
explicitly the linear system of equations needed to compute
the unknown coefficients of the kth row of M(Z): denote
by b*(ji,d) the row added while passing from K(u,w) to
K(fi + €r,d). Then, by (5), the vector of coefficients is a
solution of the (overdetermined) system

¢ K(i,d) =d-b*(i,d)
which by (6) is equivalent to the system
o Ku(jl, @) =d-bk(ii,d), (7)



where in b (j1,3) and in K.(i + &, 3) we keep the same
columns as in K.(fi,d). Notice that, by Cramer’s rule, (7)
leads to a solution with coefficients in ID . Moreover, we may
formally write down a determinantal representation of the
elements of an determinantal order basis, namely

M(Z)k’l = tdet [ Ku(fi+ €, @) | Evj,—146,,.(Z) ] (8)
with
E..(Z) =]0,...,0[1,2,...,2"|0,...,0]", (9)
the nonzero entries in Egyn(Z) occurring in the ¢-th stripe.
In addition, we have that

ZM bip(Z

2y = det [Ku(fi+.3) | Bopye, (2)].
(10)
where
E.5(Z2) = [F(2)",....Z27 7 '"F(Z)"...... |
F(Z)™ ...,z "F(Z)™"".

In both (8) and (10) the matrices have commutative entries
in all but the last column. It is understood that the deter-
minant in both cases is expanded along the last column.

We finally mention that, by the uniqueness result of Theo-
rem 2.4, any order basis of degree fi and order & coincides
up to multiplication with some element in Q@ with a Mahler
system associated to (f,d), which therefore itself is an order
basis of the same degree and order. The converse statement
is generally not true. However, by a particular pivoting
technique we may recover order basis by computing Mahler
systems.

4. THE ALGORITHM

In this section we show how to recursively compute order
bases in a fraction-free way. For an order basis M(Z) of
a given type (fi,d) having a Mahler system normalization,
we look at the first terms of the residuals. If they are all
equal to zero then we have an order basis of a higher order.
Otherwise, we give a recursive formula for building an order
basis of higher order and degree. However, a priori this
new system has coefficients from @ since we divide through
some factors. In our case, however, the new system will be
a Mahler system according to the existence and uniqueness
results established before, and hence we will keep objects
with coefficients in D.

In the following theorem we give a recurrence relation which
closely follows the commutative case of [8, Theorem 6.1(c)]
with the resulting order bases having properties similar to
[8, Theorem 7.2] and [8, Theorem 7.3].

THEOREM 4.1. Let M(Z) be an order basis correspond-
ing to (f,d), G i= @+ éx. Furthermore, denote by r; =
c’J)‘(M(Z))_, the first term of the residual for the j-th row
and A-th column of M(Z).

a) Ifri = ... = 7 = 0 then M(Z) =M

basis of degree U := [i and order &.

(Z) is an order

b) Otherwise, let m be the smallest index with 1= # 0 and

fir = mjin{ﬁj :r; # 0},

Then an order basis M(Z) of degree U := [i + € and

order & with coefficients in Q is obtained via the for-

mulas
pr - M(2)"* =r, -M(2)"* —r,-M(Z2)™* (11)
for £,k =1,2,...,m, L # 7, and

o(px) M(Z2)™* =1 Z-M(2)™* =3 o(pe) - M(2)"

t#x
(12)

for k = 1,2,...,m, where p; = coefﬁcient(M(Z)"’j,

Zﬁj+57r,j—1).

¢) If in addition M(Z) 18 a Mahler system with respect to
(#,3), then M(Z) 18 also a Mahler system with respect
(Z) has coefficients in D .

to (7, ) In particular,

Proof: ~ Part (a) is clear from the fact that the rows of
M(Z) have order @ when 1= ...=7m = 0.

For part (b) notice first that ﬁ(Z) has order & by construc-
tion, as required in Definition 2.2(a). Also, verifying the
new degree constraints of Definition 2.2(c) (with [ being re-
placed by #) for the matrix M(Z) is straightforward and is
the same as in the commutative case, see [8, Theorem 7.2].
Also, notice that the leading coefficient of all M(Z)l’l equals
r= by construction (though for the moment we are not sure
to obtain a new order basis with coefficients in D).

We now focus on the properties of Definition 2.2(b). If

P(Z) € Q[Z;0]"*™ has order & then it has order & and
so there exists an Q(Z) € Q[Z;0]'*™ such that

2)=Y Q@) - M(2)"

with deg Q(Z)l’j < deg P(Z) — fij, where M(Z)j" denotes
the j-th row of M(Z). Applying the first set of row opera-
tions in (11) to rows £ # 7 results in

=30 Q(z) M2+ Q2 M(Z)T (19)
jE®
where
Q2" = Q)" -51 for all j # 7 and

Q)" = Y@t

Note that deg Q(Z)'7 < deg P(Z) — ji; = deg P(Z) — ;
for all j # m while deg Q(Z)1 T < deg P(Z)— u,, because of
the minimality of fir. Since P(Z) and all the M( )j" terms
have order & this must also be the case for Q( Yo M(Z)™.
Hence QO

-7 = 0 and so by assumption on m we have that



Q(l]’” = 0. Writing Q(Z)l’” =Q(2)"" - Z gives

P(2)=)Q(2)" -M(2)" +Q(2)""-Z-M(Z)"™
FELS

(14)
with deg Q(Z)"'™ < deg P(Z) — (fix + 1) = deg P(Z) —
Ur. Completing the row operations which normalize the
degrees of M(Z) in (12) gives a Q(Z) with P(Z) = Q(Z) .
M(Z ) having the correct degree bounds. Consequently, the
property of Definition 2.2(b) holds.

Finally, for establishing part (c¢) we know already from Sec-
tion 3 and the existence of order bases of a specified degree
and order that both (f,&) and (17',5) satisfy (6). By the
uniqueness result of Theorem 2.4 we only need to show that
the “leading coefficient” d of M(Z) in Definition 2.2(c) is a
multigradient of (17,5), the latter implying that M(Z) is a
Mahler system and in particular has coefficients from ID.

Denote by d the corresponding “leading coefficient” of
M(Z). In the case discussed in part (a), we do not in-

crease the rank by going from K(fi,d) to K(l_/',a) (we just
add one column and keep full row rank), hence d = d being
a multigradient with respect to (f,d) is also a multigradient
with respect to (7, EJ) In the final case described in part (b)

we have d = r. Using formula (10) for the residual of the
wth row of M(Z) we learn that r. coincides (up to a sign)

with the determinant of a submatrix of order |7| of K (7, @).

Since r» # 0 by construction, it follows that d = r, is a new
multigradient, as required for the conclusion. a

Theorem 4.1 gives a computational procedure that results
in the FFreduce algorithm given in Table 1. The stopping
criterion and the complexity of this algorithm is given in the
next section.

EXAMPLE 4.2. For the domain D = Z[n], let
. n®+2 0 32 -1 0 0 2
F(Z)_[ 1 o]t o o |ZF|1 s |Z

At the first iteration, we have & = [ = (0,0), and the

constant coefficients in the first column are [n® + 2, —1]T.
Choosing m = 1 and performing the reduction, we obtain

2
+2)Z 0
Mz = [P0
0 0
M(Z)-F(Z) = [0 0]
nt4+2n3 +5n24+4n+6 0
+[ 32 1|2

32n2 +64 —n?—2 72
n? 42 32n° + 64n )

Note that the constant coefficients in the second column of
R(Z) are zero, so no operations are required to increase &
to (1,1).

Now, @ = (1,1), fi = (1,0), and d = n® +2. The coefficients
of Z in the first column is [n4 + 213 + 50 +4n + 6,32]T.

Table 1: The FFreduce Algorithm
ALGORITHM FFreduce

INPUT: Matrix of skew polynomials F € D [Z;0]™*¢.

OuTPUT: Mahler system M € D [Z;a]™>™,
Residual R € D [Z;0]™ % ¢

Degree fi, order &, rank p

INITIALIZATION: M+ I,,,, R+ F,d « 1,
g«0,86+0p+0

While (number of zero rows of R + p # m):
p+0
For A =1,..,sdo
Calculate for £ = 1,..,m:
first term of residuals 7, RS’A
Define set A = {£ € {1,..,m} : r; # 0}.

If A # {} then
Choose w € A such that:
m=min{f € A : B, = min,ex{fi,}}.

Calculate for £ =1,..,m, £ # =:
pe — coefficient(M™¢, Z”E‘H")‘_l).

Increase order for £ = 1,..,m, £ # =
M%  Lipe - ME — 7y M™]
RY « L[r - RY —rp - R™)
Increase order and adjust degree constraints for
row m:
M™" o-l(ld) [rr-Z -M™ — Zl—,“rr 0(?!) ' ML.]
R™ o (d) [rr-Z-R™" — El;érro'(pl) : RL.]

Update multigradient, degree and p:
d=rn, i g+ &, pp+1
end if

Adjust residual in column A: for £ =1,...,m

R%* « RY*/Z (formally)

O =@+ &y
end for

Choosing m = 2 and performing the row reductions, we see

that M(Z) is

(—n® —2n —3)+32Z —5n° —4n—n* —2n -6
1 (n® +2) 4327

while M(Z)-F(Z) s given in Figure 1, where we have divided
row 1 by d androw?byo(d):nQ—l—Zn—l—S. O

Finally, with respect to the rank revealing transformation
mentioned in Section 1, we have the following.

COROLLARY 4.3. Let M(Z) be the final order basis of or-
der & = k€ and degree fi, and let M*(Z) be the shifted
left inverse of M(Z) as explained in Remark 2.3. Then the



0 -1

0 n’4+2n+3 3
+ [32 1024(n+1)]z'

[0 n® +2n+3 ]Z+[—n4—2n3—5n2—4n+1018 -32 (n® 4+ 2n* + 51 +4n® + 6n + 1)

n2—|—2

2
32(n® 4+ 2)n Z

Figure 1: M(Z) F(Z) after two steps in Example 4.2.

quantities
W(Z) = Z7*.R(Z).-2*
T(Zz™') = Z7*.M(2)
S(z) = z7%.M*(2)-2*°
solve the full rank decomposition problem (1). m|

In the case where one is only interested in determining W(Z )
in a full rank decomposition (1), then one can do a sim-
ple modification of our algorithm to obtain an answer with
smaller coefficients. Indeed, it will be shown in the next
section (Remark 5.4) that one can in fact use the residual
one iteration before completion for our rank revealing trans-
formations. One simply uses the rows corresponding to the
pivot rows in the last iteration.

EXAMPLE 4.4. Let D = Z[n,2"] and consider

0 -1 —80 0
F(z) = [ 0 —12356 ] + [ —988480 —8029 ] z
—32 0 2 0 0 3
+ [ -1037712 750 ] Z"+ [ —196928 —300 ] Z
0 1 4 2”(1’1, + 1) 0 5
"’[0 120]Z+[ 0 3077(n+1)]Z’

which is the same as the example from [2] exzcept that it
is multiplied (on the right) by Z*. Using our algorithm,
we terminate at @ = (6,6) in which the residuals are not
all zero in the last two steps. The trailing coefficient of the
residual R(Z) obtained one iteration previously (that is, two
steps ago) at @ = (5,5) has a determinant that is an integer
constant times 2™ (n + 1) — 80.

Writing W(Z) = AR R(Z)- 759 | the determinant of
the trailing coefficient of W(Z) is the same as that in [2], up
to a constant. We remark that the product of all the factors
removed during the complete process is

2350159171880334461640000000000 (2" (n + 1) — 80) .

We remark that the algorithm of [2] also avoids the use
of fractions by taking advantage of fraction-free Gaussian
elimination of Bareiss [3] for the kernel computations used
in their algorithm. The size of the coefficients in the kernel
vectors can be reduced by removing the greatest common
factor among the components as done in the implementation
of [2] in Maple 8. However, extraneous factors introduced
in previous iterations are not removed by such a process.

5. STOPPING CRITERIA AND COMPLEX-
ITY

In this section, we show that the stopping criteria of our
algorithm ensures that the result is correct and discuss the
worst case complexity of the algorithm. For convenience,
we call the computation to increase |@| by 1 as a step, and
the computation to increase @ = ké to &' = (k + 1)€ an
iteration, so that there are s steps in each iteration. As in
the algorithm itself we drop the need to specify the variable
Z. Let My, be the Mahler system of degree /i and R be
the residual after the k-th iteration with R;(0) denoting the
trailing coefficient of Ry.

We first prove a lemma which relates the number of pivots
used during the (k + 1)-st iteration and the rank of R (0).

LeMMA 5.1. Letk > 0, and r be the value of p at the end
of iteration k + 1. Then r = rank R (0).

Proof: Denote by Hy € D™**, A = 1,..., s, the coefficient
of Z* of M- F during the k-th iteration at the beginning the
single step @ + @ + € (thus H) is transformed into Hati
during this step). First, we claim that when row = is chosen
as a pivot for column A, the subspace generated by the rows
of Hj is the same as the subspace generated by row m of H
(called a pivot row) and the rows of Hxyq. This is clearly
true after the order has been increased for rows ¢ # 7 as the
recurrence (11) is invertible. Multiplying row = of M by Z
produces zeros in row 7 in the updated matrix, so that row
7 of Hyx must be kept. Finally, the adjustment from rows
£ # 7 is again invertible. Thus, the subspaces are the same.

In particular, it follows that, after the k-th iteration, the
rows of H; = R;(0) span the same space as all pivot rows
plus the rows of Hyy;. Recalling the first A — 1 columns of
Hy are zero by the order condition for Mahler systems, we
see that H,4y; = 0. Since in addition the A-th component of
the pivot row at stage A equals rr # 0, the pivot rows form
a full row rank upper echelon matrix, and H,y; = 0. Hence
rank R (0) = r. O

We next prove a lemma on the pivots used in each iteration.

LEMMA 5.2. The pivots used in one iteration of FFreduce
are distinct, that is, f**' < ji* + & Moreover, rank Ry(0)
18 increasing in k.

Proof: By Definition 2.2(b), there exists a polynomial Q €
Q[Z;0]™*™ such that

Z-Mi=Q My, degQ' <jf+1— it forall 5L



Comparing the coefficients at 7R+ i position (j,£), we
have on the left a nonsingular lower triangular matrix (with
o(d) on diagonal), and on the right the leading row coeffi-
cient matrix B of Q (with coefficients at power ﬁf—l—l—ﬁf“)
multiplied by a lower triangular matrix A. Since we are now
in the quotient field, A must be nonsingular, and so B is
also nonsingular and hence lower triangular. Hence the de-
grees on the diagonal cannot be smaller than 0, showing that
ﬁf +1> ﬁf"’l, or, in other words, g**' < ¥ + & Thus, the
pivots in one iteration are distinct. Also, denoting by C the
trailing coefficient of Q, we easily obtain that C - Ry41(0)
coincides with the matrix obtained by applying o to all ele-
ments of Rz (0) (which has the same rank as Rx(0)). Hence
the rank of Ry (0) is increasing. O

We are now ready to prove the correctness of the algorithm.

THEOREM 5.3. The matriz R returned by FFreduce sat-
isfies rank R(0) = rank F.

Proof: Since the rank cannot increase after multiplication
with a square matrix, we get from M -F = Ry - Z* the
relation rank F > rank (R - Zk) = rank R;. On the other
hand, using the shifted left inverse M}, of M}, of Remark 2.3
we have that

rank F = rank (Z* . F) rank (M} - Ry - Z%)

< rank(Rg - Zk) = rank Ry,

showing that rank F = rank R for all £. If the algorithm
stops after the (k + 1)-st iteration, then

r = rank Rz (0) < rank Ri41(0) <rankRp4 <7r

by Lemma 5.1, Lemma 5.2 and the fact that Rx41 contains
r nonzero rows. Consequently, we have equality everywhere,
and r =rank Ry41 = rank F. 0

REMARK 5.4. We have shown implicitly in the proof that,
if we stop after iteration (k+ 1), that the trailing coefficient
of Ry already has full rank r. Since all the pivots in one
iteration are distinct by Lemma 5.2, the set of pivot rows
in Ry (0) also has rank r. Therefore, the submatriz of Ry
consisting of the pivot rows already leads to a full rank de-
composition (using the corresponding columns of the shifted
left inverse of the previous Mahler system). a

In order to determine the bit complexity of the FFreduce al-
gorithm we make the assumption that the lengths and costs
of coefficient arithmetic satisfies

length(a -b) = length(a) + length(b),
cost(a-b) = O(length(a) - length(b)).
Here length measures the total storage needed while cost

measures the number of boolean operations. With this as-
sumption we give our complexity in the following.

THEOREM 5.5. IfF(Z) has total degree N then Algorithm
FFreduce requires at most m(N + 1) iterations. Moreover, if

K s a bound on the lengths of the coefficients appearing in
F(Z),2-F(Z),... ,Z2"WN+tUHLR(Z), then the bit complezity
of the algorithm is O(m®s* N*K?).

Proof: ~ From the definition of Ry we see that (N — k)é+
¥ is an upper bound for the sum of the row degrees of
Ry. After iteration k& + 1, we know from Lemma 5.2 that a
component of this upper bound either is constant (for pivot
rows) or otherwise decreases by one. Since, by Lemma 5.1,
for all but the last iteration there is at least one nonzero
row in Ry which is not pivot (but which potentially could
become a zero row in Rk+1), we may conclude that either
the sum of the degree bounds of nontrivial rows in Ry41 is
lowered by at least 1, or we have created an additional zero
row. Taking into account that the initial sum is bounded
above by mN, we conclude that there are at most m(N +1)
iterations.

For bounding the bit complexity, we follow the complex-
ity analysis in [8] where the upper bound O(m|d|*K?) has
been established. The key observation is that all coefficients
can be written as determinants by (8) and (10). Thus,
Hadamard’s inequality can be applied to obtain a bound
on the lengths of the coefficients. a

REMARK 5.6. We remark that since the cost of arithmetic
wn K [n] satisfies our complexity model when we are inter-
ested in field operations in K, the same complexity bound
1s applicable for D = K[n] with K being the mazimum de-
gree (in n) of all the coefficients in appearing in F(Z),Z -
F(Z),..., Zm(Nt1)+1 -F(Z). Note that our complexzity anal-
ysis takes into account the coefficient growth during the al-
gorithm.

6. CONCLUSION

In this paper we have given a fraction-free algorithm for
transforming a given matrix of skew polynomials into one
where the rank is determined only by the trailing or leading
coefficient matrices. The algorithm is a modification of the
FFFG algorithm of [8] in the commutative case. We have
shown that our algorithm runs in polynomial time, with
near-linear growth in the sizes of coefficients in the interme-
diate results.

There are a number of topics for future research. Our ap-
proach increases the degree of the rows of an order basis
from first to last. In fact it is easy to see that one can alter
this order, for example based on the minimum degree of the
rows of the residual, while still making use the fraction-free
recursion given in this paper. This will be discussed in a
coming paper.

We plan to investigate methods for improving the efficiency
of our fraction-free approach. At present, our algorithm
does not appear to do as well as the algorithm of Abramov
and Bronstein [2] (as implemented in Maple 8) unless s is
small. This is due to the fact that the coefficient growth
in our algorithm is significant even though it is controlled.
We would like to find fraction-free methods where linearly
independent rows in the leading or trailing coefficient matrix



are not modified during an iteration, a property satisfied by
the approach in [2, 6].

Furthermore, it is well known that modular algorithms im-
prove on fraction-free methods by an order of magnitude.
An advantage of our fraction-free approach is that the re-
sult computed by our algorithm is well-defined and can be
used as a target for reconstruction in modular algorithms.
We expect to take advantage of the approach of Li [12] to
reduce the coefficients in Q[n] to Z , for some prime p to
obtain an efficient modular algorithm for our rank revealing
computations.

We also plan to see how our algorithm can be used to com-
pute GCDs of scalar skew polynomials and compare it to
the subresultant algorithms of Li [12]. Finally, we are in-
terested in extending our results to nested skew polynomial
domains, allowing for computations in Weyl algebras. This
is a difficult extension since then the corresponding associ-
ated linear systems do not have commutative elements. As
such the standard tools that we use from linear algebra,
namely determinants and Cramer’s rule, do not exist in the
classic sense.
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