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Abstract

Let a and b be two polynomials having numerical coefficients. We consider the question: when
are a and b relatively prime? Since the coeflicients of ¢ and b are approximant, the question is
the same as: when are two polynomials relatively prime, even after small perturbations of the
coeflicients?

In this paper we provide a numeric parameter for determining that two polynomials are prime,
even under small perturbations of the coefficients. Our methods rely on an inversion formula for
Sylvester matrices to establish an effective criterion for relative primeness. The inversion formula
can also be used to approximate the condition number of a Sylvester matrix.

1 Introduction

Let €[z] be the space of polynomials over the complex numbers and let a, b € €[z] be polynomials
a(z)=ap+a1z+ ...+ anz™, b(z)=bo+biz+...4+0,2", au,b,#0

of degree m and n, respectively. The GCD of a and b is given by

gcd(a,b)(z) = H (z—1v), where a(z)=a,- H (z—a), b(z)=b,- H (z-pB).
yEANB acA BEB
This is well defined by the Fundamental Theorem of Algebra. We are interested in the question: when
are two polynomials, a, b relatively prime, that is, when do a and b have no common roots?

In the case of exact arithmetic determining if two polynomials are relatively prime is well known.
This is not the case in the presence of finite precision arithmetic. In this case a computer will not
necessarily decide correctly whether two given polynomials with rational coefficients are coprime. For
instance, after transforming the coefficients of the polynomials

1 5 1

)= (- 3)-2)=F 240, M=z

into (decimal) floating point numbers, the resulting polynomials are coprime. Also, the polynomials

a(z) =50z—-7, b(z)=z-



are not coprime within a precision of two (decimal) digits.

A more reliable computer answer may be expected for the problem of deciding whether two
polynomials remain coprime even after perturbation of coefficients by quantities bounded in norm by
some €. This is the type of problem that is of interest in applications such as robotics and control
theory [11, 16] where the input data is only known up to some fixed accuracy or where noise is present
in the input parameters. In this paper we provide a parameter to determine coprimeness of two
numeric polynomials. This parameter is based on quantities which are efficiently obtainable. Indeed
in [2] we present an algorithm for computing this parameter that is both numerically stable and at the
same time is typically an order of magnitude faster than alternate methods. Because of this efficiency,
computing this parameter as an initial test for coprimeness may always be done before starting the
more expensive computation of an e-GCD [5, 6, 10, 14, 15].

In fact, we are very much interested in determining some non—trivial numerical e-GCD if the
answer to the above question is no. This problem has been treated by several authors each with a
different notion of greatest common divisor. These include methods that are based on optimization
techniques [5, 10] which are probably numerically stable but quite expensive and others which are
more or less based on classical Euclidean concepts [6, 14] but for which one is unable to guarantee
numerical stability [2]. Finally we mention the quasi-gcd of Schénhage [15] where the use of an oracle
makes it difficult to judge the practical use.

It is well known that the Sylvester matrix of two polynomials plays a vital role in determining the
greatest common divisor of two polynomials. The magnitude of the inverse of the Sylvester matrix is
important in determining the distance to the closest polynomials having a common root. In our case,
we use a new inversion formula for the Sylvester matrix to obtain an estimate of the magnitude of the
inverse in terms of only the magnitude of the first and last columns of the inverse. We show that our
estimate is better for determining the distance to the closest polynomials having a common root than
that provided by the magnitude of the inverse of the Sylvester matrix.

The remainder of the paper organized is as follows. In the next section we place our problem in
a linear algebraic setting making use of Sylvester’s matrix. Section 3 gives a new inverse formula for
Sylvester’s matrix while our new “coprime” measure follows in Section 4. Section 5 gives a refinement
of our primeness measure. The final sections include some examples and give a conclusion.

Notation: For the remainder of this paper we make use of the following notation: we denote the
1-Holder vector norm on €™ as well as the subordinate matrix norm by || - ||. For ¢ € C[z], ¢(z) =
co+ ..+ c 2™ we set €= (co, .., )T as the vector of coefficients. Our norm on €[2] is given by

llell = 1ldl = > lesl,
j

and on €[z]"*#, the space of r X s matrices with polynomial entries, by

ezl = ll(llejsl DI = max > 7 llejxl-
j

Note that for all ¢, d € €[z] we have ||c-d|| < ||c||-]|d||, and this inequality also holds for polynomial
matrices of appropriate size.

With this notation we can restate our problem as follows.

Definition 1.1 For a,b € C[z] let

€(a,b) :=inf{||(a — a”, b — b")|| : (a*,b*) have a common root, deg a* < m,degb* < n},



that is, any polynomials a*, b* satisfying ||(a—a*,b—b*)|| < € < €(a, b) and the above degree restrictions
are coprime. We will then refer to a,b as being e—prime.

We are interested in computing approximately sharp “simple” lower bounds for ¢(a, b).

2 Inversion of Sylvester’s Matrix

It is well-known that the greatest common divisor problem can be placed in a linear algebra setting.
This has the advantage that it allows one to make use of concepts from numerical linear algebra (such
as condition number) to give information on the numerical ged problem.

Let S(a,b) denote the Sylvester Matrix for (a,b), that is,

Tay 0 -+ 0 by 0 --- 01
a ay - by by :
: .. .0 ., .0
S(a,b) = o 4 b b e C(m+n)x(m+n)
0 ap ag 0 b, b,
0 0 an 0 0 b, |

Sylvester’s criterion from 1853 states that two polynomials are relatively prime if and only if S(a, b)
is non-singular (see, e.g., [8]). Numerically it is known that

Lemma 2.1 For any two polynomials a and b we have
1

0 2 5@

Proof: According our choice of matrix norms we have

15(a, B)]] = max{ 3 [ag], 32 18513 = [1(a, B).

7=0 7=0
Consequently, using a Theorem of Gastinel [9, Theorem 6.5, p.123] we obtain
€(a,b) = inf{||S(a,b) — S(a”,b")|| : S(a*, b*) singular}
1

> mind([S(a,9) = Bll: B singular} = oy

Remark 2.2 In the case of the Fuclidean norm, we have
j=1,..,m+n: o; =min{|[S(a,b) — Bl|s: defec(B) > j},

with o1 < 03 < ... < Optn being the singular values of S(a,b). This allows one to define the e-defect
of the Sylvester matriz, which has been chosen by Corless, Gianni, Trager and Watt [5] as the degree
of some e-GCD.



Remark 2.3 From the proof of Lemma 2.1 we see that the quantity ||(a, b)||/€(a, b) may be considered
as a structured 1-condition number of S(a,b) in the class of Sylvester matrices (i.e., we consider only
perturbations of S(a,b) being themselves Sylvester matrices). More generally, the distance to the set
of polynomials with GCD having a certain degree (see [5, 6, 10]) may be understood as a structured
singular value (with respect to the 1-Hélder norm) of a Sylvester matriz

€j(a,b) := min{||S(a,b) — S(a™, b")|| : defect(S(a*,b")) > j}
= min{||(a, b) — (a”, b")|| : degree of GCD of (a*,b*) is at least j }.

Lemma 2.1 states that if we perturb the coefficients of our polynomials by any € less than the
reciprocal of the norm of the inverse of the Sylvester matrix then we still have relatively prime poly-
nomials. In fact, a test for coprimeness based on the size of the norm of the inverse of the Sylvester
matrix is already included as a special case in the SVD GCD algorithm proposed by Corless, Gianni,
Trager and Watt [5, p.198], and in [6, Algorithm 1] of Emiris, Galligo and Lombardi. However, in
our case we do not want to estimate the reciprocal of the norm of the inverse by the singular value
decomposition of the Sylvester matrix. This decomposition is expensive and does not take advantage
of the special structure of a Sylvester matrix. Our goal is to find an easily computable bound that
lies between €(a, b) and the reciprocal of the norm of the inverse. This gives a criterion for numerical
coprimeness that is both more precise and also less expensive to compute than previous methods.

Note that €[z] is a principal ideal domain, so that we have < a,b >=< ged(a,b) > for any two
polynomials a, b (where < .. > denotes the ideal generated by the specific elements). Thus, determining
if a and b are relatively prime is the same as solving

Ju,v € C[z],degu < m,degv <n: a-v+b-u=1. (1)

Equation (1) is the same as

2 <

]:(1,0,...,0)T (2)

so that two polynomials are relatively prime if and only if one can determine the first column of
the inverse of their corresponding Sylvester matrix. That this is equivalent to Sylvester’s criterion is
obvious from the next lemma which gives the inverse of a Sylvester matrix entirely in terms of the
first column of its inverse.

S(a,b) - [

Lemma 2.4 Let f(z) = fo1z7  + oo+ fimmnz! ™™™ = wz) | O(z7™ ")2500- Then S(a,b) is

tnvertible with tnverse given by

) r1 o0 0
vo T | bo 0  cor eee oeee 0
. . . . 0
Vaci o w9 0 oo 0 bu_y - bg 0 - 0| R 0 3)
g 0 o +or oo 0 —ag 0 - +ee e 0 o --- 0 1
. . . . 0 f—l fl—m—n
| Um—1 o+ g 0 et 0 —am_y - —ag 0 -0 0 e T :
L0 - 0 fo1r

+
o
Il
Il

Proof: Note that equation (1) gives % O(z7™ ") 500 and so



f(z) = =) + O(z7™ ™) 32500. Thus we have

a0 0 .- 0 bo 0 ... 0
ay by :
0 0
1 0 0 1 Gm ag by bo
0 0 ax 0 by
0 .

0 0 1 S@b)=1 o ... 0 an 0 -+ 0 by
0 fo1 - fi—m-n ug 0o --- 0 v 0 .- 0
| 0 0 for ] _ 0 oy 0
0 Ug 0 —vo

B SR

The inverse formula follows directly by multiplying the right side of the previous equation with the
matrix on the left of equation (3). O

Remark 2.5 We note that for our Sylvester inversion formula it is not important that b has precise
degree n. In fact in the case m = dega > n > degb all formulas remain valid.

Remark 2.6 Similar inversion formula can also be derived for matrices that express information
about the existence of common roots, in particular for the Bézout matriz of two polynomials. If we
assume, without loss of generality, that m = dega > degb, and choose m = n, then the Sylvester
matriz S(a,b) has size 2m X 2m, and we may partition it into four square blocks as follows

[ L@ Lo
5(“”’)—[0(@) U(b)]'

In this case, the matriz B(a,b) := U(a)-L(b) — U(b) - L(a) coincides up to some reordering of columns
and rows with the Bézout of a and b as considered by Fiedler [7, Chapter 7, p.164ff]. By making some
block manipulations and using a similar argument as in Lemma 2. we obtain

f—m f—m—l f1—2m
B(a,b)_l _ fl—m f—m f2—.2m

fi fa o fm

In other words, the inverse of B(a,b) is a (Toeplitz) block found in the factorization of the inverse of

S(a,b).

3 Coprime Parameters

For our purposes we use our inversion formula to obtain information on the magnitude of the inverse
of a Sylvester matrix. In this section we give an upper bound for the norm of the inverse of a Sylvester



matrix. This gives us a (initial) numerical parameter that can be used to determine if two polynomials
are coprime.

Theorem 3.1 Let u,v be polynomials of degrees at most m — 1 and n — 1 solving equation (1). Then

I:

Proof: Since (v, u) defines the first column of the inverse of S(a, b) the inequality on the left of
(4) follows directly from the definition of our polynomial and matrix norms. The bound on the right
follows from our inverse formula. a

< 1S(a,0)7Y| <

Z]HH-IIfII-II(a,b)II- (4)

Theorem 3.1 gives a bound for the norm of the inverse of the Sylvester matrix in terms of the
cofactors u, v, and the easily computable first coefficients f; of the power series u/a. However it still
remains to determine how good (or bad) such a bound will be. In particular, we need to determine
the size of the coefficients f;.

As a first step we note that Sylvester’s matrix has a certain interesting duality property. Namely,
let
a(z) = 2" -a(l/z), b(z)=2z"-b(1/2), (5)

that is,
a(z) =am+ am_1z2+ ...+ apz™, b(z) =by+bu_12+ ...+ bo2".

The Sylvester matrices S(a,b) and S(a,b) are the same up to reordering of rows and columns. In
particular, their inverses have the same matrix norms. As such it is of interest to look at solutions to
the diophantine equations

a(2) - 9(2) + b(2) - a(z) = 1 (6)

with @, % being polynomials of degrees m — 1 and n — 1, respectively. Letting u(z) = 2™~ - @(1/2)
and v(z) = 2”71 - 5(1/z), equation (6) is the same as

IRy 12y

a(2) -v(2) + b(2) - u(z) = 2™, thatis, S(a,b)- [ ] = (O, 50,7 (7)

The polynomials v, u define a Padé approximant [3] of type (m — 1,n — 1) for the power series

ool (0 e MR 12

Let
We may combine the results of Theorem 3.1 and (7), and obtain at the same time an upper bound
for |[£]].

= max{ ,

2 |
e |

Corollary 3.2 With u,v and u,v solutions of (1) and (7) we have
K <[1S(a,0) 7Y <k +2-[Ifl] - [|(a,B)Il, (8)

where || f|| = ||v - u — w- v||. Furthermore, ||f]| < &2.



Proof: The two inequalities in (8) are clear from Theorem 3.1. To determine ||f|| we have that

f(2) =277 [u(2) - u(z) — ul(z) - o(z

_uz) —a(z) 2T [u(z) u(z) -

|§ et
—~ =
N
N’
<
—~~
N
=

ulz
— zl—m—n i —( ) O(Z_m_n)z—mo — O(z—m—n)z_mo,

and so f(z) = 217" - [u(2) - u(z) — u(z) - v(2)] O

Numerical experiences seem to indicate [3, 4] that, for correctly scaled a and b, the quantity
|S(a, )| is proportional to x and not of size k2. A slight generalization of Corollary 3.2 gives us
more information about a class of polynomials (a, b) where this property is true.

First notice that for any Laurent polynomial g(z) = g_127! + g_2272 + ... we have

(v(2) +9(2) - b(2)) - u(z) = (u(2) - 9(2) - a(2)) - v(2) = 2" f(2) +g(2) = 2" f(2) + O 7).

In other words, the polynomial part of the left hand side equals f, and ||f|| < |[(»,v)T]| - ||[(v+ g
b,v+ g - a)||, where we may choose a g to improve the upper bound for ||f|| given in Corollary 3.2.
More generally, let g,, g» be polynomials verifying

deggs <m+n, deggr <m+mn, z2"a(z)9.(z)+ 2"b(2)gs(2) = Z2mtn)=1 | O(zm+n_1)z_>oo. (9)

Then we have that (g, —gs) - (u, v)T = 22"+ -1, f L O(z™+"-1), ., again allowing for an estimate
of ||f||. Using Theorem 3.1 we obtain

Corollary 3.3 Denote by pyin(a,b) the minimum of the set of all products ||(a, b)||-||(ga, g5)T || where
the pair (ga, gs) verifies (9). Then with u,v solutions of (1) we have

I

Note that p,,4n(a,b)/||(a,b)|| may be estimated above for instance by ||(u,v)T|| in terms of the
cofactors of the diophantine equation (7), or by pm4n(a,0)/||a|| (resp. pm+x(0,0)/]]8]|), the norm of
the polynomial obtained by the first m + n coefficients of the power series at zero of a(z)~! (and of

< 115(a, )7 < (142 prnsn(a, b)) - H[ v ]H

b(z)7!, respectively). Therefore, the quantity p,,i.(a,b) may be close to one even if the Sylvester
matrix S(a, b) is ill-conditioned (see for instance the numerical results of [2]).

4 Closest Common Roots

In the previous section we obtained an upper bound (c.f. Corollary 3.2) for the norm of the inverse
of the Sylvester matrix. Assuming, for the time being, that the computation of both (v, u) and (v, u)
can be done in an efficient way (cf. [2]), we will have an effective method of determining when two
polynomials are relatively prime. The only drawback to the above method is that our parameter (in

this case 1/(x + 2||f|| - ||(a, b)||) which is a lower bound for 1/||S(a,b)~!|| and hence for €(a, b)), may



be too small since it could potentially be on the order of 1/x%. In order to obtain a more precise
bound we require a more detailed study for determining €(a, b). The following statement is probably
well known, however for the sake of completeness we provide a proof.

Theorem 4.1 We have

b(z
o) = int | (e Sy o) || (10)

where € := C U {oo}. The infimum on the right side is attained for a z* =: ccr (a,b) € € (called the
“closest common root”).

Proof: Let h(a,b,z) = H(H fzz,z, i ||(1 zn H)H To see that €(a, ) > h(a,b, z) for some z € C, let

a* and b* have the common root z. From Holder s inequality we get
la(2)| = la(2) — a*(2)| <]l@ =@l - [|(L, 2, . 2™) || = [la — a”|| - max{L, [z}
with a similar inequality for &. Therefore
lI(a - a*,b— b%)|| = max{|la — a’[|, /b~ b°][} > h(ab,2).
Taking the infimum on both sides leads to the first half of our assertion.

Note that the function z — h(a, b, z) is continuous over €, and therefore attains its minimum on
the unit disk. Also, we have h(a,b, z) = h(a,b,1/2), leading to

inf h(a,b, z) = min{ inf h(a,b, z), inf h(a,b, 2)},
2€C l2|<1 |21<1

showing that the infimum in (10) is attained. To show equality in (10), suppose that z* is the closest
common root of a,b, and consider

ey . 1 if |z*] < 1,
a*(z) = a(z) — a(z") - { (2/2*)™ otherwise,

along with a similar b*. a

Remark 4.2 We see from the proof of Theorem 4.1 that ccr (a,b) is in fact the common root of the
polynomials a*,b* which under all pairs of not coprime polynomials have minimal distance to a,b.
Here ccr (a,b) = oo is equivalent to saying that dega* < m — 1 and degb* < n — 1. Also,

[ = GBI < i ) M (0] < 1,
DN = minll(a(e), 4 < min (60, | f ecx 9] 2 1,

with a,b as in (5).

Remark 4.3 A statement similar to Theorem 4.1 can also be made for other Holder vector norms,
and one may in addition consider weighted norms (useful, for ezample, in cases where only some of the



coefficients may have inaccuracies). For instance, let o, € C[z] be of degree m, and n, respectively,
with positive coefficients. Then (compare also [5, Remark 4])

b; — b32
1nf{z 2%%
. la )|2 b(z)?
= (=P T AP

Corless et al. [5, Section 2.6] and Karmarkar et al. [10] proposed to apply standard optimization
algorithms for calculating a numerical GCD, and in particular for determining such a 2-counterpart

*(2
- aj
o — ol . (a*,b") have a common root, dega* < m,degb* < n}

of €(a,b). Of course, for the problem of coprimeness it is preferable to take the above expression on
the right since the number of free parameters is reduced from m+n—+1 to 1.

One easily shows that €(a,b) = €(b, a) = €(a, b), and that €(a,bd) < min{||al||, ||b||}. Also, it seems
to be clear that a,b may not be e—prime if they have zeros that are too close. In fact, denoting by z,
a zero of a, and by z, a zero of b, respectively, we may show the estimate

|20 — 2z

(e, 8) < max{m - [lall,m [} o P s

where the distance of zeros is measured in some “chordal” metric.

From Lemma 2.1 and Theorem 4.1 we have

1 S(a,b -S(a,b
ab) > I S@D ) S
1S(a, )= w20 ]yl <€ y@l
where y(z) = (1,z,...,2mT""1). At present our “coprimeness parameter” requires the potentially

large overestimate for ||S(a, ) ™!|| given by Theorem 3.1 and Corollary 3.2. Can we improve this, for
example by the following
?
~=1 1
> — = min
Tk {||Sab) Lel”[|S(a, b)7? €m+n||}

In other words, can the norm of the inverse be replaced by only the norm of the first and/or last

€(a, b)

column of the inverse?

Corollary 4.4 There holds €(a,b) > %, and, more precisely,

1 1
min ||(a(2), b(2))|| > ma min ||(a(z), b(2))| > m

|z|<1 |z|<1

Proof: In view of Remark 4.2, the estimate for ¢(a, b) is a consequence of the other two estimates.

min [|(a(2), b(=))|| > min @ I, 1
e Hl”] _H[]H
u(z) u

Here we have used the fact that, for every polynomial matrix U, there holds

< .
max|[U(=)]| < |IU]

In order to prove the second one, notice that

Finally, the third estimate follows by symmetry. a



Remark 4.5 From Remark 4.2 and the proof of Corollary 4.4 we see that, provided |ccr (a,b)| < 1,
we have the estimate €(a,b) > 1/||(u*,v*)T|| for any polynomials u*,v* satisfying a - v* +b-u* = 1,
even if the degree constraints of (1) are not valid. Thus, the bounds of Corollary 4.4 may be improved
by considering (u*,v*) = (u,v)+ a - (a, —b), where o € A[2] is chosen in order to minimize the norm
of (w*,v*)T. In this contezt it is interesting to mention that by the Corona Theorem [13, Appendiz 8]
we may find functions u¥,v# analytic and bounded in the unit disk (i.e., elements of the Hardy space
H*®) such that

1 -+/log 1 20 -log 1l
a-oFbout =1, maxuF QP+ )P < ¢+ 8 EIRIEE )

provided that € < \/]a(2)|> + [b(2)[? < 1 for all |z| < 1. Consequently, in the case ||(a,b)T|| < 1 it
seems to be possible to ﬁnd polynomials (u*,v*) by a suitable limiting procedure with 1/||(u*,v*)T||
lying between €(a, b) and roughly its square.

Remark 4.2 and Corollary 4.4 tell us that it is sufficient to solve only a single diophantine equation
in order to determine an effective bound for €(a, b), provided that we know in advance that the closest
common root lies in or outside the unit disk. In some cases, such a localization of the closest common
root may be given.

Lemma 4.6 Suppose the roots of a and b all lie in the unit disk. Then |ccr (a,b)| < 1.

Proof: From (5) and Theorem 4.1 we know that
e(a, b) = min{min [|(a(2), b(2)) | min || (a(2), () || }.
Thus for the assertion of Lemma 4.6 it is sufficient to show that |a(z)| < |a(Z)| (and analogously that

|b(2z)| < |b(2)|) for all |z| < 1, where as usual Z denotes the complex conjugate of z. If 24, .., 2, are
the roots of a, then this follows from

|a(2)] la(2) 77— 2l
| 1_[I

az)| " ]a 1/z 1-%-2)

being less or equal to one for any |z| < 1, since |z —z|/|1 —Z - z| < 1 for all z, z lying in the unit disk.
O

For example, suppose that the roots of the polynomial ¢ lie in the unit disk. By the Gaufi-Lucas
Theorem [12, p.22], the zeros of the derivative of ¢ lie in the convex hull of the set of its zeros, and
hence also in the unit disk. Thus if a, b are any (higher order) derivatives of ¢, then |ccr(a,b)| < 1.

5 Examples

In order to illustrate and to compare the findings of the preceding sections, we consider the following
three simple examples

10



Example 5.1 Let a(z) = 2" — 1, and b(z) = by + .. + b,,z™ with ||b|]| < 1. Then

| =L L 1 | -U+L)ytU (U+L)tL
S(a,b)= [ L U ] and S(a,b)”" = (U + L)1 (U + L)1
Therefore
[1S(a, 0)~}[[s 1
S(a,b)|1 =2, ——F———F——€[—,2v/n].
The matriz L + U is circulant, with eigenvalues b(wj), j = 0,1,..,n — 1, where w is a primi-

tive n-th root of unity. Moreover, L + U is normal, and therefore ||(L + U)7!||s = max{1/|}| :
A is an eigenvalue of L+ U}. From Lemma 2.1 and Theorem 4.1 we then have

1 . B
1S(a,0)7 s ~ 2¢/n

Note also that Corollary 3.3 applies in this contexrt with ps,(a,b) < 4, giving

I |

Example 5.2 Let a(z) = 2™, and b(z) = by + .. + b, 2™ with ||b|| < 1. In this case the cofactors can
be obtained explicitly: u from b(z) - u(z) = 1+ O(2™),—0 via the Taylor ezpansion of 1/b at zero and
v as a corresponding remainder. Then

B = mjin|b( N| > e(a, b) >

<1S(a, b)Y <9- H[

— . -1 -1
0 L U-L In]’ ||S(a, b) ||1€[1,2],

_ _ -1 __
S(ab) = [ h ] - IS blh=1, S(ab)= [ L o
the latter observation being in accordance with Corollary 3.8 since pmin(a,b) = 1. For ezample, if
b(z) = (1 —22)/3 then

11 1
6 27 —17 [|S(a,b)7H]x

< €(a,b) < a(1/2) =27,

a consequence of u(z) = 3+ (14 2z + 422 + ... + (22)™71).

Example 5.3 With the same setting as in Ezample 5.2, let b(z) = (

FZ)™. Then ||b|]| =1, and

m—1

— 14N .
uz) =2 (1= o) =2 3 (M)
=0
with a1
m (2m—1 29
[Juf| = 2 - )~ ——
m—1 VT em
This gives

1 1
— gm
~ 20ful] ¥ T8, 071

Thus the criterion of Corollary 4.4 does not always yield sharp bounds, since for large m we have

/6~ 1/[|S(a,b)7Y||1 # €(a,b).

< €(a,b) = b(1/3) = 37™.

From Example 5.3 we also see that a “small” ¢(a, b) in general does not imply that a has a root
which is “close” to one of the roots of b.
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6 Conclusion

We have considered the problem of determining when two polynomials are numerically relatively prime.
A parameter has been given that improves a previous existing measure for numerical primeness. A
sharper measure can be given in the case where it is known that the two polynomials have all their
roots in the unit disk. This parameter is based on quantities which are efficiently obtainable in a
numerically stable way [2]. The efficiency and numerical correctness of such a computation makes a
good initial test for coprimeness before starting the more expensive computation of an e-GCD.
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