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Abstract

Heinig and Tewodros [18] give a set of components whose existence provides a
necessary and sufficient condition for a mosaic Hankel matrix to be nonsingular.
When this is the case they also give a formula for the inverse in terms of these
components.

By converting these components into a matrix polynomial form we show that the
invertibility conditions can be described in terms of matrix rational approximants
for a matrix power series determined from the entries of the mosaic matrix. In
special cases these matrix rational approximations are closely related to Padé and
various well-known matrix-type Padé approximants. We also show that the inversion
components can be described in terms of unimodular matrix polynomials. These are
shown to be closely related to the V and W matrices of Antoulas used in his study
of recursiveness in linear systems. Finally, we present a recursion which allows for
the efficient computation of the inversion components of all nonsingular “principal
mosaic Hankel” submatrices (including the components for the matrix itself).

Key words: Hankel matrices, Mosaic Hankel matrices, matrix inversion.
Subject Classifications: AMS(MOS): 15A09, 15A57.
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1 Introduction

In this paper we study matrices that can be partitioned as

H =


H1,1 · · · H1,`

...
...

Hk,1 · · · Hk,`

 ,
with each Hα,β = [h

(α,β)
i+j ]

mα nβ
i=1,j=1 an mα× nβ Hankel matrix. We assume that the partition

sizes are such that m =
∑k
α=1 mα =

∑`
β=1 nβ so that H is square of size m ×m. Such

a matrix is called a mosaic Hankel matrix having k layers and ` stripes. We study the
inversion problem for these matrices, that is, the problem of efficiently determining when
H is nonsingular, and when this is the case, of constructing the inverse.

Examples of mosaic Hankel matrices appear in numerous applications in many
branches of mathematics. The simplest case when k = 1 and ` = 1 represents the classical
Hankel matrix. When the mα and nβ are all equal, the matrix H is a simple permutation
of a block Hankel matrix [25] (see Section 2). More generally, when the mα are the same
and all the nβ are the same then H is a matrix that can be partitioned into non-square
blocks [12], [22] having a Hankel structure. Mosaic Hankel matrices having k = 1 are
called striped Hankel matrices [17], [21] while those having ` = 1 are called layered Han-
kel. These appear as coefficient matrices in the linear systems defining Hermite-Padé and
simultaneous Padé approximants [21]. Other examples of mosaic Hankel matrices include
Sylvester matrices [11] and p-Hankel matrices [3].

It is easy to see that H has a rank decomposition of order k + `, and hence from
[25] we know that the inversion problem requires solutions to k + ` linear systems with
H as the coefficient matrix. There are, however, a number of possibilities for such linear
systems. In our case we follow the work of Heinig and Tewodros [18] where the linear
systems consist of k standard equations (i.e. having columns of the identity) together
with ` other equations called the “fundamental” equations. Since the transpose of H is
also a mosaic Hankel matrix, these inverse components exist both in column form and in
row form.

The inverse components can be converted into a pair of (k + `)-square matrix poly-
nomials. The entries of each matrix polynomial are closely related to a pair of rational
approximations to a certain matrix power series determined from the entries of H. In spe-
cial cases these rational approximations are the same as Padé or well-known matrix-type
Padé approximants (such as matrix Padé, Hermite-Padé and simultaneous Padé approxi-
mants). In such cases we can use existing matrix-type Padé algorithms to obtain fast and
superfast methods for computing these inverse components (cf., [5], [9]).

The matrix polynomials are also shown to be closely related to the V and W uni-
modular matrices of Antoulas [2] used for the computation of minimal realizations of a
matrix sequence. In this sense our work extends the results of [19], [21] and [22]. As in
the last two papers, the principal tool is a commutativity relation satisfied by the ma-
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trix polynomials. By reversing the orders of the coefficients this relation gives the main
criterion of the V and W matrices, namely that they are unimodular.

We also present a recursion which can be used to compute any nonsingular “principal
mosaic Hankel” submatrices. Indeed, the recursion can be interpreted as computing the
inversion components by recursively computing the components for all principal mosaic
Hankel submatrices of H (including H itself). In all cases our methods are reliable in
exact arithmetic. By this we mean that no restrictions are needed on the nonsingularity
structure of submatrices of H. Of course one can only take advantage of this recursion if
at least one of the principal mosaic Hankel submatrices is nonsingular.

The paper is organized as follows. Section 2 gives necessary and sufficient condi-
tions for the existence of an inverse for H in terms of solutions to k + ` linear equations
along with an inversion formula that computes the inverse in terms of these inverse com-
ponents. Section 3 converts the inverse components into matrix polynomial form. The
linear equations defining the components are shown to be equivalent to certain types of
matrix Padé-like approximants of a matrix power series associated to H. Section 4 com-
bines these matrix polynomials together and shows the strong relationship between the
inverse components and the main tools used by Antoulas. Section 5 gives a method that
recursively computes the inversion components of all nonsingular principal mosaic Hankel
submatrices of H. The last section discusses directions for further research.

2 Preliminaries

In this section, we give some preliminary results necessary for the subsequent development.
In particular, we give necessary and sufficient conditions for a mosaic Hankel matrix to be
nonsingular and show how to compute the inverse based on these conditions. The results
of this section follow directly from the work of Heinig and Tewodros [18] on the inversion
of mosaic matrices.

Let N be a fixed integer such that N − mα − nβ ≥ −1 for all α and β and define
~m = (m1, · · · ,mk), ~n = (n1, · · · ., n`) (for example we might choose N = max(~m) +
max(~n)− 1 = maxα{mα}+ maxβ{nβ} − 1). For convenience we renumber the entries in
the Hankel blocks so that

H := H(~m,~n,N − 1) = [Hα,β]k `
α=1,β=1, Hα,β = [a

(α,β)
i+j+t]

mα nβ
i=1,j=1, (1)

where t = N − 1−mα−nβ. This indexing is chosen in this way so that the bottom right
hand corner of each block in the mosaic has index N − 1. This indexing scheme will be
useful in Section 3 where the inversion components are converted into a matrix polynomial
form representing rational approximants of a matrix power series. Indeed, this scheme is
common when Hankel matrices appear in applications involving Padé approximation.
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Let

H · V = −


W1
...
Wk

 (2)

with V of size m× ` and where each Wα is a matrix block of size mα × ` given by

Wα =


a

(α,1)
N−mα+1 · · · a

(α,`)
N−mα+1

...
...

a
(α,1)
N · · · a

(α,`)
N

 , (3)

that is, W := H(~m,~e,N) with ~e = (1, ..., 1). The a
(α,β)
N in each Wα are allowed to be

arbitrary. Similarly, let
H ·Q = E(m1,···,mk) (4)

where Q is a m×k matrix and where the α-th column of E(m1,···,mk) is the m1 + · · ·+mα-th
column of the m×m identity matrix.

Clearly if H is nonsingular then there are solutions to equations (2) and (4). Central
to our work is the fact that the converse is also true.

Theorem 2.1. (Heinig and Tewodros [18]) H is nonsingular if and only if there
are solutions to equations (2) and (4).

Consider now
V ∗ ·H = − [W ∗

1 , · · · ,W ∗
` ] (5)

where V ∗ is a matrix of size k×m and each W ∗
β is a matrix block of size k× nβ given by

W ∗
β =


a

(1,β)
N−nβ+1 · · · a

(1,β)
N

...
...

a
(k,β)
N−nβ+1 · · · a

(k,β)
N

 . (6)

Also let
Q∗ ·H = F(n1,···,n`) (7)

where Q∗ is a matrix of size `×m and where the β-th row of F(n1,···,n`) is the n1+· · ·+nβ-th
row of the m×m identity.

Taking transposes and substituting HT for H shows that (5) and (7) are equivalent
to (2) and (4). Since HT is also a mosaic Hankel matrix we have a second nonsingularity
characterization.

Theorem 2.2. H is nonsingular if and only if there are solutions to equations (5)
and (7).

Theorems 2.1 and 2.2 both give necessary and sufficient conditions for the nonsingu-
larity of a mosaic Hankel matrix. In addition, Theorem 2.3 below states that the solutions
so constructed can actually be used to compute the inverse when it exists.
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Let E(i) and F (i) denote the i-th column and row of the m×m identity matrix. Set

X(β) = V (β) + E(n1+···+nβ+1) for 1 ≤ β ≤ `− 1, X(`) = V (`), (8)

and
X(α)∗ = V (α)∗ + F (m1+···+mα+1) for 1 ≤ α ≤ k − 1, X(k)∗ = V (k)∗ (9)

where V (β) denotes the β-th column of a solution V to (2) and V (α)∗ denotes the α-th
row of a solution V ∗ to (5).

Theorem 2.3 Suppose there are solutions V , Q, V ∗ and Q∗ to equations (2), (4),

(5) and (7), respectively. Let X and X∗ be constructed from V and V ∗ as in (8) and (9),

Then H is nonsingular with inverse given by

H−1 =
k∑

α=1



x
(α)
m−1 · · · x

(α)
1 δα,`

...

x
(α)
1

δα,`





q(α)∗
m · · · · · · q

(α)∗
1

. . .
...

. . .
...

q(α)∗
m



−
∑̀
β=1



q
(β)
m−1 · · · q

(β)
1 0

...

q
(β)
1

0





x(β)∗
m · · · · · · x

(β)∗
1

. . .
...

. . .
...

x(β)∗
m


. (10)

Here [q(α)
m , . . . , q

(α)
1 ]T and [q(β)∗

m , . . . , q
(β)∗
1 ] denote the α-th column and β-th row of Q and

Q∗, respectively, and [x(α)
m , . . . , x

(α)
1 ]T and [x(β)∗

m , . . . , x
(β)∗
1 ] denote the α-th column and

β-th row of X and X∗, respectively.

Proof: Theorem 2.3 follows directly from the Bezoutian representation of the in-

verse of a mosaic Hankel matrix given in Theorem 2.1 of Heinig and Tewodros [18]. 2

Remark 1. In the special case of layered or striped matrices these results follow

from the work of Lerer and Tismenetsky [25]. The original results in the case of scalar

Hankel matrices are due to Heinig and Rost [20].

Remark 2. Let R be an m×m rectangular-block Hankel matrix with blocks of size

r × s with m = k · r = ` · s. Then H = P ·R ·Q is a mosaic Hankel matrix where P and

Q are permutation matrices such that the i + (j − 1)s-th row of P is the j + (i− 1)r-th
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row of the identity and the j+ (i−1)s-th column of Q is the i+ (j−1)r-th column of the

identity matrix. The formulation of Theorems 2.1-2.3 for these matrices first appeared in

Gohberg and Shalom [12] (see also [22]).

Remark 3. Since the existence of solutions to both (2) and (4) implies that H is

nonsingular, it is clear that the solutions are unique. Similarly, the existence of solutions

for both (5) and (7) implies that the solutions are unique.

Remark 4. When the a
(α,β)
N are zero, rather than arbitrary, the results of Theorem

2.3 follow directly from the rank decomposition of the matrix H. However, formula (10) of

Theorem 2.3 holds even in the case when arbitrary choices a
(α,β)
N are non-zero. Additional

inversion formulas in the latter case can also be found in [23] (for example, the inverse

can be expressed in terms of sums of products of factor-circulants).

Example 2.4. Let H be the 4×4 mosaic Hankel matrix having 3 layers and 2 stripes

given by

H =



1 2 0 0

2 3 0 1

−1 −2 1 1

3 4 2 0


For ease of presentation we will assume that the entries of H are from the field Z19 of

integers modulo 19. This allows us to limit the growth of the numbers appearing in our

examples to at most single digits. Assuming for this example that N = 3 and that the

arbitrary constants a
(α,β)
3 are all 0, the inversion components (on the right) are given by

V =



1 −6

−2 −7

−7 4

4 −5


and Q =



1 −1 −9

9 −9 −5

9 −9 5

−9 −9 −5
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while the inverse components (on the left) are

V ∗ =


5 7 −7 3

−3 −7 7 −4

−5 −4 4 −2

 and Q∗ =

 7 9 −9 −5

5 −9 −9 −5

 .

Formula (10) then gives the inverse of H to be
−2 −6 4 0

−6 4 0 0

4 0 0 0

0 0 0 0

 ·


7 9 −9 −5

0 7 9 −9

0 0 7 9

0 0 0 7

+


−7 4 −5 1

4 −5 1 0

−5 1 0 0

1 0 0 0

 ·


5 −9 −9 −5

0 5 −9 −9

0 0 5 −9

0 0 0 5



−


9 9 −9 0

9 −9 0 0

−9 0 0 0

0 0 0 0

 ·


5 7 −6 3

0 5 7 −6

0 0 5 7

0 0 0 5

−

−9 −9 −9 0

−9 −9 0 0

−9 0 0 0

0 0 0 0

 ·

−3 −7 7 −3

0 −3 −7 7

0 0 −3 −7

0 0 0 −3



−


−5 5 −5 0

5 −5 0 0

−5 0 0 0

0 0 0 0

 ·

−5 −4 4 −2

0 −5 −4 4

0 0 −5 −4

0 0 0 −5

 =


6 1 −1 −9

7 9 −9 −5

−4 9 −9 5

5 −9 −9 −5

 .

2

3 Polynomial Matrix Forms

In the special case of a Hankel matrix (k = ` = 1, mα = nβ = n,N = m+ n),

H =


a

(1,1)
m−n+1 · · · a(1,1)

m

...
...

a(1,1)
m · · · a

(1,1)
m+n−1

 , (11)

(2) is called the Yule-Walker equation. When H is nonsingular, it is well known that the

solution of (2) defines the denominator for the Padé fraction of type (m,n) for the power
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series A(z) =
∑∞
i=0 a

(1,1)
i · zi. That is, it defines a polynomial V (z) of degree at most n

and from this a polynomial U(z) of degree at most m such that

A(z) =
U(z)

V (z)
+O(zm+n+1).

In the Hankel case solutions to equation (4) also define certain Padé approximants. These

simple observations have been very useful in constructing efficient algorithms for Hankel

matrix inversion. Indeed Padé approximation was one of the main tools used by Brent,

Gustavson and Yun [6] to obtain the first superfast algorithm for computing inverses of

Hankel matrices.

Let us define a formal k× ` matrix power series A(z) being associated to the Hankel

mosaic matrix H = H(~m,~n,N − 1) by

A(z) =
∞∑
r=0

Arz
r with Ar = H(~e,~e, r) =


a(1,1)
r · · · a(1,`)

r

...
...

a(k,1)
r · · · a(k,`)

r

 for r ≤ N − 1. (12)

We may assume that a(α,β)
r = 0 for r ≤ N−mα−nβ. As already shown for the special case

of layered, striped and block Hankel matrices [21, 22], solutions of the fundamental equa-

tions (2), (4), (5) and (7) are also closely connected to the denominators of matrix-type

Padé approximants for the matrix power series A(z). In order to specify the correspon-

dence, define for a vector ~n = (n1, .., n`) of integers (with each ni ≥ −1) the matrix

Π~n(z) :=



zn1 · · · z1 1

0 · · · 0 0
...

...
...

0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 0
...

...
...

0 · · · 0 0

zn` · · · z1 1


Then, for any matrix Q for which H(~m,~n+ ~e,N) ·Q is well-defined, it is straightforward

to see that Q(z) := Π~n(z) ·Q gives a matrix polynomial with row degree rdeg Q(z) ≤ ~n,

and that the i-th row of the α-th block of H(~m,~n + ~e,N) · Q, 1 ≤ i ≤ mα, 1 ≤ α ≤ k,

gives the coefficient of zN−mα+i in the α-th component of the product A(z) · Q(z). This

motivates the following approximation problem.

Definition 3.1. Let A(z) be a matrix polynomial satisfying equation (12) and

let ~m = (m1, ..,mk), ~n = (n1, .., n`) be vectors of integers with each mα ≥ −1 and each
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nβ ≥ −1. Define δ := δ(~m,~n) := |~n|+ `−|~m| ≥ 1, |~m| := m1 + ..+mk, |~n| := n1 + ..+n`.

A pair of matrix polynomials (P (z), Q(z)) of size k× δ and `× δ, respectively, is called a

right hand approximant of type (~m,~n,N) with respect to A(z) if

I) rdeg P (z) ≤ N · ~e− ~m, rdeg Q(z) ≤ ~n, and

II) A(z) ·Q(z)− P (z) = zN+1R(z) with R(z) a power series (called the residual).

A pair of matrix polynomials (P ∗(z), Q∗(z)) is called a left hand approximant of type

(~m,~n,N) with respect to A(z) if (P ∗(z)T , Q∗(z)T ) is a right hand approximant of type

(~n, ~m,N) with respect to A(z)T . 2

Of course, a left hand approximant satisfies degree constraints with respect to the

degree of the columns, i.e., cdeg P ∗(z) ≤ N · ~e − ~n, cdeg Q∗(z) ≤ ~m. Note that the

existence of a nontrivial approximant follows immediately from comparing the number of

coefficients and unknowns in the system H(~m,~n + ~e,N) · Q = 0 of linear homogeneous

equations. Moreover, we may add the canonical condition that the columns of Q have to

be linearly independent.

Definition 3.1 contains several well-known approximation problems such as simulta-

neous Padé forms (` = δ = 1) and Hermite-Padé approximants (k = δ = 1) for a vector

of power series (cf. [21]). When all the mα and nβ are equal and δ = `, the matrix H is a

block Hankel matrix and we obtain right matrix Padé forms. The term form rather than

fraction is used to signify that P (z) and Q(z) may have a common factor (or, equivalently,

Q(0) is singular), and hence the rational form P (z) ·Q(z)−1 may not satisfy the full order

condition (for the scalar case, cf. Gragg [15]). Consequently, we are especially interested

in approximants satisfying further classical normalized properties where also the square

Hankel mosaic matrix H = H(~m,~n,N − 1) is involved. Note that, for these particular

vectors of nonnegative integers ~m, ~n, we have δ(~m,~n) = `, δ(~m−~e, ~n−~e) = k, δ(~n, ~m) = k

and δ(~n− ~e, ~m− ~e) = `.

Theorem 3.2. There exists a right hand approximant (U(z), V (z)) of type (~m,~n,N)

with normalized denominator, (i.e., V (0) = I`, the ` × ` identity matrix) with residual

W (z) if and only if there exists a solution of (2). In addition, there exists a right hand

approximant (P (z), Q(z)) of type (~m−~e, ~n−~e,N−2) with a normalized residual R(z) (i.e.,
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R(0) = Ik), if and only if there exists a solution to equation (4). Similarly, there exists

a left hand approximant (U∗(z), V ∗(z)) of type (~m,~n,N) with normalized denominator,

(i.e., V ∗(0) = Ik) with residual W ∗(z) if and only if there exists a solution to equation (5).

Finally, there exists a left hand approximant (P ∗(z), Q∗(z)) of type (~m− ~e, ~n− ~e,N − 2)

with residual R∗(z) which is normalized, (i.e., R∗(0) = I`) if and only if there exists a

solution of (7).

Proof: In order to obtain the denominator V (z) of an right hand approximant

(U(z), V (z)) of type (~m,~n,N), we use the scalar matrices V, V0, V1 defined by V (z) =

Π~n(z) · V = V0 + z · Π~n−~e(z) · V1 and solve the system of linear equations

H(~m,~n+ ~e,N) · V = H(~m,~n,N − 1) · V1 +H(~m,~e,N) · V0 = 0.

Consequently, an approximant with normalized denominator exists if and only if the

above system with V0 = V (0) = I` has a solution which is identical to (2). For the

second equivalence, notice that a right hand denominator Q(z) =: Π~n−~e(z) · Q of type

(~m− ~e, ~n− ~e,N − 2) with corresponding residual R satisfies

H(~m− ~e, ~n,N − 2) ·Q = 0 and H(~m,~n,N − 1) ·Q = R(0).

The last two equivalences follow immediately from the fact that A(z)T is a matrix power

series associated with the Hankel mosaic matrix HT = H(~m,~n,N − 1)T . 2

Remark. Theorem 3.2 combined with Theorem 2.1 implies that the mosaic Hankel

matrix H = H(~m,~n,N − 1) is nonsingular if and only if there are matrix polynomials

U(z), V (z), P (z) and Q(z) satisfying the properties of Theorem 3.2. Also, as mentioned

in the previous section, the corresponding matrix polynomials are unique when they exist.

Similar statements are also true for the left hand counterparts.

Example 3.3. Let H be the matrix from Example 2.4 with N = max(mα) +

max(nβ)− 1 = 3. Then one matrix power series A(z) satisfying (12) is given by

A(z) =


1 + 2 z + 3 z2 z2

−z − 2 z2 z + z2

3 z + 4 z2 2 z

+O(z4)
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(so that the arbitrary elements a
(i,j)
3 are all 0). In this case Example 2.4 and the construc-

tions in the proof of Theorem 3.2 gives

U(z) =


1 −7 z

−z + 4 z2 z + 3 z2

3 z + 6 z2 2 z + 7 z2

 , V (z) =

 1− 2 z + z2 −7 z − 6 z2

4 z − 7 z2 1− 5 z + 4 z2

 ,

P (z) =


9 −9 −5

z 0 0

9 z −7 z −6 z

 and Q(z) =

 9 + z −9− z −5− 9 z

−9 + 9 z −9− 9 z −5 + 5 z

 .

The residuals are

W (z) =


−4 5

−9 −3

4 −5

+O(z) and R(z) =


1− 7 z 7 z −3 z

7 z 1− 7 z 4 z

4 z −4 z 1 + 2 z

+O(z2).

On the left side,

U∗(z) =


1 + 9 z 0

−8 z z

−z 2 z

 and V ∗(z)


1 + 7 z + 5 z2 −7 z 3 z

−7 z − 3 z2 1 + 7 z −4 z

−4 z − 5 z2 4 z 1− 2 z

 .

Similarly,

P ∗(z) =

 9 0

−9 0

 and Q∗(z) =

 9 + 7 z −9 −5

−9 + 5 z −9 −5


with

W ∗(z) =


−4 5

−9 −3

4 −5

+O(z) and R∗(z) =

 1 + 2 z 7 z

−4 z 1 + 5 z

+O(z2).

2

11



4 Matrix Polynomial Systems

In this section, the matrix polynomials from Theorem 3.2 are combined into two (k +

`) × (k + `) matrix polynomials V(z) and W(z) associated to solutions of (2), (4), (5)

and (7). These matrices are then shown to be closely related to the V and W matrices of

Antoulas [2], used as the main tools in the study of recursiveness in linear system theory.

For special cases such as the case of striped or layered Hankel matrices, these matrix

polynomials correspond to various Padé-like systems ([8], [9], [21]). The motivation and

approach used closely follows from similar results given in [21] and [22].

Set

V(z) =

 −zP (z) U(z)

−zQ(z) V (z)

 and W(z) =

 V ∗(z) −U∗(z)

zQ∗(z) −zP ∗(z)

 , (13)

matrix polynomials of size (k + `)× (k + `). Note that in terms of rows

rdeg(V(z)) ≤ [N −m1, · · · , N −mk, n1, · · · , n`]T (14)

and in terms of columns

cdeg(W(z)) ≤ [m1, · · · ,mk, N − n1, · · · , N − n`]. (15)

In addition, these matrix polynomials satisfy the order conditions

[I, − A(z)] · V(z) = zN [R(z), − zW (z)] (16)

and

W(z) ·

 A(z)

I

 = zN

 zW ∗(z)

R∗(z)

 (17)

for any matrix power series A(z) satisfying (12).

As mentioned in the previous section, it is possible to define the V and W matrices

satisfying the degree constraints (14) and (15) along with the order conditions (16) and

(17) for all mosaic Hankel matrices. However, if these matrix polynomials also satisfy the

normalization conditions

V (0) = R∗(0) = I` and V ∗(0) = R(0) = Ik, (18)
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then the H is nonsingular and the V and W matrices are unique.

Theorem 4.1. Let V(z) and W(z) be as above. Then

W(z) · V(z) = zN · Ik+`, (19)

V(z) · W(z) = zN · Ik+`. (20)

Furthermore, the residuals satisfy W (z) ·R∗(z) = R(z) ·W ∗(z).

Proof: Let

A(z) =

 I −A(z)

0 −I

 , (21)

where A(z) is a matrix power series satisfying (12). Then, A(z) is its own inverse, and

from (16), (17)

A(z) · V(z) =

 zNR(z) −zN+1W (z)

zQ(z) −V (z)

 , W(z) · A(z) =

 V ∗(z) zN+1W ∗(z)

zQ∗(z) −zNR∗(z)

 .
Therefore,

W(z) · V(z) = W(z) · A(z) · A(z) · V(z)

=

 V ∗(z) zN+1W ∗(z)

zQ∗(z) −zNR∗(z)

 ·
 zNR(z) −zN+1W (z)

zQ(z) −V (z)


= zN

 V ∗(z) zW ∗(z)

zQ∗(z) −R∗(z)

 ·
 R(z) −zW (z)

zQ(z) −V (z)

 .
But, from (14) and (15), the component-wise bounds for the degrees of W(z) · V(z) are

given by

degree(W(z) · V(z)) ≤ N. (22)

It then follows that

W(z) · V(z) = zN

 V ∗(0)R(0) 0

0 R∗(0)V (0)

 = zNIk+`, (23)

which is (19). To obtain (20), multiply both sides of (19) on the left by V(z) and on the

right by its inverse. Finally, the last assertion follows from the identity

zN ·Ik+` = A(z)·V(z)·W(z)·A(z) =

 zNR(z) −zN+1W (z)

zQ(z) −V (z)

·
 V ∗(z) zN+1W ∗(z)

zQ∗(z) −zNR∗(z)

 .
13



2

Set

V(z) = diag (zN−m1 , · · · , zN−mk , zn1 , · · · , zn`) · V(z−1)

W(z) = W(z−1) · diag (zm1 , · · · , zmk , zN−n1 , · · · , zN−n`).
(24)

Thus V(z) reverses the order of the coefficients of the matrix polynomial V(z) (on a per

row basis), while W(z) reverses the order of the coefficients of the matrix polynomial

W(z) (on a per column basis). Let us use the same partition of V(z) andW(z) as in (13),

namely,

V(z) =

 −P (z) U(z)

−Q(z) V (z)

 and W(z) =

 V
∗
(z) −U∗(z)

Q
∗
(z) −P ∗(z)

 .
Moreover, due to the condition a(α,β)

r = 0 for r ≤ N −mα − nβ on the initial coefficients

of our power series A, we may define

A(z−1) := zN · diag (z−m1 , · · · , z−mk) · A(z) · diag (z−n1 , · · · , z−n`)

and notice that A is a stictly proper power series in z−1, i.e., A(z) = A1z
−1 +Az−2 + . . ..

Note that the entry a
(α,β)
k of Ak is obtained by indexing the mosaic Hankel matrix such

that the top left hand corner of each Hankel submatrix has index 1.

Theorem 4.1 then gives:

Corollary 4.2. V(z) and W(z) are unimodular matrix polynomials which are

inverses of each other. They induce the following partial realization for the strictly proper

power series A

U(z) · V (z)−1 = V
∗
(z)−1 · U∗(z) (25)

= A(z) + z−1 · diag (z−m1 , · · · , z−mk) ·R(z−1) · diag (z−n1 , · · · , z−n`)

with a power series R. In the special case of rectangular block Hankel matrices, i.e.,

m1 = · · · = mk and n1 = · · · = n`, the matrices V and W reduce to the V and W

matrices of Antoulas [2].

Proof: Because of the degree constraints (14) and (15), it is clear that both V(z)
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and W(z) are indeed matrix polynomials. ¿From (19) and (20) of Theorem 4.1, we have

V(z) · W(z) = Ik+` and W(z) · V(z) = Ik+`.

Hence, the two matrix polynomials are both unimodular and inverses of each other. Note

also that

U(z) · V (z)−1 = V
∗
(z)−1 · U∗(z) and V (z)−1 ·Q(z) = Q

∗
(z) · V ∗(z)−1.

Moreover, since U(z) · V (z)−1 = A(z) + zN+1 ·R(z) with a power series R, we have

U(z) · V (z)−1 = diag (zN−m1 , · · · , zN−mk) · U(z−1) · V (z−1)−1 · diag (z−n1 , · · · , z−n`)

= diag (zN−m1 , · · · , zN−mk) · A(z−1) · diag (z−n1 , · · · , z−n`)

+z−1 · diag (z−m1 , · · · , z−mk) ·R(z−1) · diag (z−n1 , · · · , z−n`)

= A(z) + z−1 · diag (z−m1 , · · · , z−mk) ·R(z−1) · diag (z−n1 , · · · , z−n`)

giving the desired approximation properties. In order to get the equality to Antoulas’

matrices [2, p.1123], it remains to show that the expression V (z)−1 · Q(z) is strictly

proper rational. But this follows from

V̄ (z)−1 · Q̄(z) = z−1 · V (z−1)−1 ·Q(z−1) and Q̄∗(z) · V̄ ∗(z)−1 = z−1Q∗(z−1)V ∗(z−1)−1.

2

Remark 1. In the case of square-block matrices, Theorem 4.1 first appeared in

[24]. In that paper the relations (19) and (20) were used as commutativity relationships

between certain left and right matrix Padé approximants (note that (19) in particular

implies that the Padé type fractions U(z) · V (z)−1 and V ∗(z)−1 · U∗(z) are equal). These

relationships in turn were used to develop inversion formulas for square-block Hankel

matrices. Similar identities in the case of layered or striped block Hankel matrices were

shown in [21] to be a matrix generalization of fundamental duality identities of Mahler

[26] between simultaneous Padé and Hermite-Padé approximants. In the present setting

Theorem 4.1 generalizes the striped and layered cases found in [21] and the rectangular-

block case found in [22].
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Remark 2. In the scalar Hankel matrix case relationships (19) and (20) were used

in [10] as tools in proving that the Cabay-Meleshko Padé algorithm was (weakly) stable

over floating point arithmetic.

Remark 3. It can also be shown that the matrix V(z) (and similarly the matrix

W(z) for the transposed problem) forms a particular sigma basis for a suitable power

Hermite Padé approximation problem in the sense of [4, 5], but satisfying more refined

degree and normalization constraints.

Remark 4. For solving a generalized partial realization problem as given in the

assertion of Corollary 4.2, one looks for an equivalent linearized problem. In extension

to the considerations given in [2, p.1124], we should suppose for the rational expression

U(z) · V (z)−1 that diag (z−n1 , .., z−n`) · V (z) is column reduced with column degree ~κ,

since this leads to the equivalent condition

U(z) = A(z) · V (z) + z−1 · diag (z−m1 , · · · , z−mk) ·R′(z−1) · diag (zκ1 , · · · , zκ`)

with a power series R′, and we are dealing with minimal partial realizations if the numbers

κj (also called Kronecker indices) are as small as possible.

5 Recursive Computation of Mosaic Inverses

Identification of the inversion components in terms of matrix-type Padé approximants

provide efficient and reliable algorithms for the components, for example using the algo-

rithms of [5] or [9]. In this section we describe an alternate method of computing the

inversion components in terms of the inversion components of submatrices of a mosaic

Hankel matrix. When viewed as computing minimal partial realizations, the recursion is

similar to the recursion used by Antoulas.

Algorithms for computing the inverses of structured matrices are often described

in terms of computing inverses of submatrices along a given computational path. For

example, in the k = ` = 1 case of a Hankel matrix (11) the work of [7] combined with [24]

gives an algorithm to invert H by constructing the inverse components of the nonsingular
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principal submatrices

H(i) =


a

(1,1)
m−n+1 · · · a

(1,1)
m−i

...
...

a
(1,1)
m−i · · · a

(1,1)
m+n−2i−1

 ,
that is, the nonsingular Hankel submatrices along the diagonal. In this section we describe

a recursion in terms of nonsingular “principal mosaic Hankel” submatrices along the

diagonal.

For simplicity of presentation, we use the following description of a diagonal path

passing through a vector. For an arbitrary vector ~v = (v1, · · · , vs) of integers and t an

integer, we define a vector ~v(t) = (v1(t), · · · , vs(t)) with vi(t) = max{0, vi−t}. The vectors

~v(t) describe an s-dimensional “diagonal” line passing through v.

Let H be a mosaic Hankel matrix determined by the integer vectors ~m and ~n and

indexed as in (2) using N = max(~m) + max(~n) − 1, i.e., H = H(~m,~n,N − 1). Let σ

and τ be two integers such that |~m(σ)| = |~n(τ)| and let H(σ,τ) be an abbreviation for the

mosaic Hankel submatrix H(~m(σ), ~n(τ), N̂) of H with N̂ := max(~m(σ))+max(~n(τ))−1 =

N − σ − τ (for example, H = H(0,0)). The matrix H(σ,τ) matrix is what we refer to as a

“principal mosaic Hankel” submatrix of H. In fact, H(σ,τ) is build up by taking principal

submatrices of suitable size from each block of H.

Suppose now that H(σ,τ) is nonsingular. Let A(z) be a matrix power series satisfying

(12) for the original matrix H. Then A(z) also satisfies (12) for H(σ,τ). Because H(σ,τ) is

nonsingular, there are matrix polynomials P̂ (z), Q̂(z), Û(z) and V̂ (z) along with residual

power series R̂(z) and Ŵ (z) satisfying the conditions for right hand approximants of

Theorem 3.2 with A(z). By Theorem 3.2, we have that R̂(0) = Ik and so we can form the

matrix power series

A#(z) = z · R̂−1(z) · Ŵ (z).

Let H# be the mosaic Hankel matrix of type ~m− ~m(σ) and ~n− ~n(τ) associated with the

first N# terms of A#(z), where N# = σ + τ = max(~m− ~m(σ)) + max(~n− ~n(τ)).

The recursion in this case is then given by
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Theorem 5.1. Suppose the principal mosaic submatrix H(σ,τ) of H is nonsingular.

Then H is nonsingular if and only if H# is nonsingular. In this case the corresponding

inversion components satisfy

V(z) = V̂(z) · V#(z), (26)

and

W(z) =W#(z) · Ŵ(z). (27)

Proof: Let A(z) = [I, − A(z)]. Then

A(z) · V̂(z) · V#(z) = zN̂ [R̂(z), − zŴ (z)] · V#(z)

= zN̂ R̂(z) · [I, − A#(z)] · V#(z)

= zN̂+N#
R̂(z) · [R#(z), − zW#(z)]

= zN [R(z), − zW (z)]

where

R(z) = R̂(z) ·R#(z) and W (z) = R̂(z) ·W#(z). (28)

Thus, the order condition is satisfied.

The product also satisfies the correct degree constraints. Consider the degree of row

α where 1 ≤ α ≤ k. Then the degree of row α of the product is bounded by

N̂ −mα(σ) + max(rdeg(V#(z)))

which is easily seen to be at most N−mα. For row β where k+1 ≤ β ≤ k+`, if nβ(τ) > 0

then row β of the product is bounded by

nβ − τ + max(rdeg(V#(z)))

which again is easily shown to be at most nβ. On the other hand, if nβ(τ) = 0 then the

β-th row of V̂(z) is 0 except for a 1 in column β. Therefore the degree of row β of the

product is bounded by the degree of row β of V#(z), that is, by nβ − nβ(τ) = nβ. Hence,

the degree bounds hold in all cases.
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¿From (28) we see that R(0) = Ik if and only if R#(0) = Ik. In addition, let V (z) be

the lower right `× ` submatrix of V̂(z) · V#(z). From the partitioning of both V̂(z) and

V#(z) as in (13), it follows that

V (z) = V̂ (z)V #(z)− zQ̂(z)U#(z).

Hence, V (0) = I` if and only if V #(0) = I`. Therefore the product is normalized as in

(18) if and only if V# is normalized as in (18). Thus, H is nonsingular if and only if

H# is nonsingular. In addition, in this case the V matrices are unique; hence (26) holds.

Equation (27) follows from (26) and Theorem 4.1. 2

Remark 1. When k = ` = 1 (i.e. the Hankel case) the recursion computes all

inverses of nonsingular principal submatrices. When k = ` and mα = nβ for all α, β

the algorithm computes (up to permutations of the rows and columns) the inverse of a

block Hankel matrix. In this case, the recursion computes the inverses of all nonsingular

principal block submatrices. The complexity of an algorithm based on this recursion is

O(m2) (cf., [7]).

Remark 2. Theorem 5.1 shows that the recursion solves the inversion problem

by solving the inversion problem for two smaller mosaic matrices. One can develop an

efficient algorithm based only on the recursion in Theorem 5.1 (see [21] [22] for special

cases) by using Gaussian elimination to compute the inversion components of the initial

nonsingular principal mosaic Hankel submatrix and then recursively proceeding using the

recursion. This is particularly useful when floating-point, rather than exact arithmetic

is used [10], and one is looking for well-conditioned rather than nonsingular principal

submatrices. The overhead for this is the generation of the residual matrix power series

to a prescribed number of terms, the computation of the inversion components in each

case and finally combining the two matrix polynomials together. The efficiency of this

approach depends both on the number of nonsingular principal mosaic submatrices and

the mosaic structure of the original matrix itself.

Remark 3. The cost of computing the quotient matrix power series A#(z) to K

terms is k2 · ` · K2 + O(k · ` · K) operations. On the other hand, from Theorem 4.1 we
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know that

R̂−1(z) · Ŵ (z) = Ŵ ∗(z) · R̂∗−1(z). (29)

Hence, if ` < k then one can use the right side of (29) for computing A#(z) at a cost of

k · `2 ·K2 +O(k · ` ·K) operations.

Remark 4. As was pointed out by one of the reviewers, there are alterate forms

for the recursion of Theorem 5.1. Note that the inversion components for a given mosaic

Hankel matrix H = H(~m,~n,N) depend on a given choice for the arbitrary coefficients

in aN . The recursion given in Theorem 5.1 is such that for any given step this arbitrary

coefficient is determined by the matrix of power series A(z) for the full mosaic Hankel

matrix.

It is also possible to define alternate recursions for other specifications of the arbitrary

coefficient aN̂ at a given recursive step. For example, suppose H(σ,τ) = H(~m(σ), ~n(τ), N̂)

is a nonsingular principal mosaic submatrix of H and that Â(z) is an associated matrix

power series for H(σ,τ) satisfying âN̂ = 0. Note that Â(z) is determined solely from the

elements of the principal mosaic submatrix rather than the entire mosaic Hankel matrix

H (as was used for the recursion in Theorem 5.1). Let Q̂(z), V̂ (z), R̂(z) and Ŵ (z) be

the (unique) matrix polynomials corresponding to the inversion components of H(σ,τ) and

Â(z), and set

A#(z) = (R̂(z) + zÃ(z)Q̂(z))−1 · (zŴ (z) + Ã(z)V̂ (z))

with Ã(z) = z−N · (A(z) − Â(z)). Here A(z) is the matrix power series for the entire

matrix H. Then it can be shown that the recursion given in Theorem 5.1 also holds for

the corresponding H#.

In this case it is always true that âN̂ = 0 at every step. This form of the recursion is

useful when approaching the inversion problem using the notion of a rank decomposition

of a structured matrix. Our approach is more natural when using the correspondence

with the inversion problem and existing algorithms for rational approximation.
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Example 5.2. Let H be the 7 × 7 mosaic Hankel matrix having 3 layers of size

(5, 1, 1) and 2 stripes of size (4, 3) given by

H =



1 2 2 −2 0 2 1

2 2 −2 3 2 1 −9

2 −2 3 8 1 −9 −1

−2 3 8 −2 −9 −1 0

3 8 −2 −4 −1 0 −9

1 3 8 2 −7 8 1

0 5 −9 9 −8 4 1



.

As before, we assume that arithmetic is over the field Z19. We use

A(z) =


1 + 2 z + 2 z2 − 2 z3 + 3 z4 + 8 z5 − 2 z6 − 4 z7 2 z2 + z3 − 9 z4 − z5 − 9 z7

z4 + 3 z5 + 8 z6 + 2 z7 −7 z5 + 8 z6 + z7

5 z5 − 9 z6 + 9 z7 −8 z5 + 4 z6 + z7

+O(z9)

as a power series that satisfies (12) for H. Let σ = τ = 2. Then the principal mosaic

Hankel submatrix of type (3, 0, 0) and (2, 1) is

H(2,2) =


1 2 0

2 2 2

2 −2 1


which is nonsingular. The inverse components of H(2,2) are determined to be

V̂(z) =



4 z 0 0 1− 9 z −8 z

0 z4 0 z4 0

0 0 z4 0 0

4 z − 8 z2 0 0 1 + 8 z + z2 −8 z − 5 z2

4 z 0 0 −8 z 1 + 3 z
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and

Ŵ(z) =



1− 8 z − z2 + z3 0 0 −1 + 6 z − 4 z2 −2 z2 − 4 z3

4 z − 2 z2 − 4 z3 1 0 −4 z − 6 z2 −8 z3

0 0 1 0 0

−4 z + 2 z2 + 4 z3 0 0 4 z + 6 z2 8 z3

−4 z − 7 z2 + 3 z3 0 0 4 z − 4 z2 8 z3


.

Note that these are computed with the arbitrary elements a
(α,β)
4 given by

A4 =


−2 1

0 0

0 0

 .

Computing the first few terms of the residuals R̂(z) and Ŵ (z) using A(z) with V̂(z)

and Ŵ(z) gives

R̂(z) =


1 + 8 z − 4 z2 − 4 z3 − 2 z4 0 0

−4 z + 5 z2 − 2 z3 − 5 z4 1 0

−7 z2 + 3 z3 + 2 z4 0 1

+O(z5)

and

Ŵ (z) =


7− 3 z + 7 z2 − 4 z4 −4− 6 z + 5 z2 − 4 z3 + z4

−8− 6 z + 5 z2 − 3 z3 + 2 z4 4− 4 z + 3 z2 + 4 z3 + 9 z4

5 + 5 z2 − 2 z3 + 9 z4 −8− 3 z + 3 z2 − 5 z3 − 7 z4

+O(z5)

so that

A#(z) =


7 z − 2 z2 − 6 z3 − 8 z4 −4 z + 7 z2 + 9 z3 − 7 z4

−8 z + 3 z2 − 3 z4 4 z − z2 − 6 z3 − 3 z4

5 z − 3 z3 + z4 −8 z − 3 z2 − 6 z3 − z4

+O(z5).

Note that the corresponding mosaic Hankel matrix of type (2, 1, 1) and (2, 2) indexed by
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N# = 4 is given by

H# =



7 −2 −4 7

−2 −6 7 9

3 0 −1 −6

0 −3 −3 −6


.

H# is nonsingular with inverse components on the right (in matrix polynomial form)

given by

V#(z) =



−8 z2 −4 z2 −3 z2 7 z − 7 z2 −4 z + 5 z2

−7 z2 + 3 z3 −2 z2 + 5 z3 −6 z2 − 4 z3 −8 z − 2 z2 + 4 z3 4 z + 9 z2 − 4 z3

z2 + 3 z3 −5 z2 + 6 z3 8 z2 − 8 z3 5 z − 5 z2 + 5 z3 −8 z + 8 z2 + 9 z3

−4 z + z2 6 z − 6 z2 9 z − 2 z2 1− 9 z + 8 z2 −8 z − 6 z2

−5 z − 5 z2 2 z + 9 z2 7 z + 9 z2 −5 z − 6 z2 1− 4 z + 3 z2


whereas the inverse components on the left are given by

W#(z) =



1− 3 z + 9 z2 −2 z −9 z −7 z − 5 z2 4 z − 7 z2

9 z2 1− 2 z −7 z 8 z − 3 z2 −4 z − 9 z2

9 z − 5 z2 6 z 1− 8 z −5 z + 6 z2 8 z + 8 z2

4 z + z2 −6 z −9 z 7 z2 6 z2

5 z + 5 z2 −2 z −7 z 3 z2 −9 z2


.

Multiplying as in (26) and (27) gives the V and W matrix polynomials for H. From this

we obtain the V (z), Q(z), V ∗(z) and Q∗(z) matrix polynomials and hence the solutions

to equations (2), (4), (5) and (7). These are given by
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V =



−1 −4

6 −8

5 −2

−1 3

4 1

3 1

6 −1



, Q =



5 0 4

1 7 −7

−9 −7 5

4 −6 −9

−2 −2 7

7 −5 4

5 −2 −7


and

V ∗ =


6 0 −1 −2 8 −2 −9

8 0 1 2 4 −2 −7

5 7 −8 −8 9 6 −8

 , Q∗ =

 9 −1 5 2 4 −6 −9

9 1 2 −5 5 −2 −7

 .

The inverse formula (10) from Theorem 2.3 then gives

H−1 =



−7 −5 −3 5 5 0 4

−2 7 2 −6 1 7 −7

−8 0 −5 −7 −9 −7 5

9 −1 5 2 4 −6 −9

−5 −2 −2 −1 −2 −2 7

9 −6 −1 −4 7 −5 4

9 1 2 −5 5 −2 −7



.

2

6 Conclusions

In their study of the inversion problem for mosaic Hankel matrices, Heinig and Tewodros

[18] give a set of linear equations that both provide necessary and sufficient conditions

24



for the existence of an inverse along with the tools required to compute the inverse when

it exists. In this paper we have converted the solutions of these linear equations into a

matrix polynomial form. These matrix polynomials are closely related to matrix-type

Padé approximants of a related matrix power series. It is shown that they satisfy an

important commutativity relationship. This commutativity relationship is then used to

show that these matrix polynomials are, up to a reordering of coefficients, the same as

the V and W matrices of Antoulas [2]. A method is also described that recursively solves

the inversion problem for “principal mosaic Hankel” submatrices. All our results hold for

arbitrary mosaic Hankel matrices - no other extra conditions are required.

There are still a number of open research topics in this area. Our approach leads to a

computational technique that recursively computes the inverses along a type of diagonal

path of mosaic Hankel submatrices. As such this can be called a mosaic Hankel solver. It

is of interest to develop a mosaic Toeplitz solver that computes the inverses along a type

of anti-diagonal path of mosaic submatrices. This could be possible by a generalization

of the scalar Toeplitz solver of Gutknecht [16].

It would be of interest to extend the results to structured matrices. In particular,

this would give efficient inversion algorithms for these matrices without any addition

restrictions. In addition, it would of interest to extend our work to inversion of matrices

such as generalized Loewner matrices that appear in rational interpolation problems,

rather than in rational approximation problems (cf. [1]).
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Look-ahead Solvers for Non-Hermitian Toeplitz Systems, IPS Research Report 92-14,
ETH-Zentrum (1992)

[17] G. Heinig, Structure theory and fast inversion of Hankel striped matrices, Integral Equa-
tions and Operator Theory, 11 (1988) 205-228

[18] G. Heinig & A. Tewodros, On the Inverses of Hankel and Toeplitz Mosaic Matrices,
Seminar Analysis Operator equat. and numer. anal. 1987/1988, Karl-Weierstrass-Institut
fur Mathematik, (1988) 53-65

[19] G. Heinig & P. Jankowski, Kernel Structure of Block Hankel and Toeplitz Matrices and
Partial Realization, Linear Algebra and its Applications, 175 (1992) 1-30

[20] G. Heinig & K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators ,
Birkhauser Verlag, Basel, (1984)

[21] G. Labahn, Inversion Components of Block Hankel-like Matrices, Linear Algebra and its
Applications, 177 (1992) 7-49

[22] G. Labahn, Inversion Algorithms for Rectangular-block Hankel Matrices, Research Report
CS-90-52 (1990), Univ. of Waterloo.

[23] G. Labahn, Inversion of Mosaic Hankel Matrices via the Unimodular Matrix Polynomials
of Antoulas, Research Report CS-93-04 (1993), Univ. of Waterloo.

[24] G. Labahn, D.K. Choi & S. Cabay, Inverses of Block Hankel and Block Toeplitz Matrices,
SIAM J. of Computing, 18 (1990) 98-123

26



[25] L. Lerer & M. Tismenetsky, Generalized Bezoutians and the Inversion Problem for Block
Matrices, Integral Equations and Operator Theory, 9 (1986) 790-819

[26] K. Mahler, Perfect systems, Compos. Math. 19 (1968) 95-166.

27


