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Abstract5

In this paper we give a method for computing the fair insurance fee associated with the6

guaranteed minimum death benefit (GMDB) clause included in many variable annuity contracts.7

We allow for partial withdrawals, a common feature in most GMDB contracts, and determine8

how this affects the GMDB fair insurance charge. Our method models the GMDB pricing9

problem as an impulse control problem. The resulting quasi-variational inequality is solved10

numerically using a fully implicit penalty method. The numerical results are obtained under11

both constant volatility and regime-switching models. A complete analysis of the numerical12

procedure is included. We show that the discrete equations are stable, monotone and consistent13

and hence obtain convergence to the unique, continuous viscosity solution, assuming this exists.14

Our results show that the addition of the partial withdrawal feature significantly increases the15

fair insurance charge for GMDB contracts.16
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1 Introduction21

A variable annuity or equity-linked insurance contract is a retirement and/or investment vehicle22

created by insurance companies. It is a contract between the customer and the insurance company23

where the insurer generally agrees to make periodic payments to the client starting at a given date.24

These contracts may also include a death benefit. Specific examples of variable annuity contracts25

include guaranteed minimum income benefits, guaranteed minimum withdrawal benefits [34, 20, 12]26

and guaranteed minimum death benefits.27

In the case of the guaranteed minimum death benefit (GMDB), if the customer passes away28

before the maturity of the contract, then the beneficiary receives the greater of the investment29
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account value or the death benefit. We consider the case of market guarantees, where some form30

of market returns are guaranteed through periodic ratchet dates [35]. A GMDB contract has two31

phases: the accumulation phase and the continuation phase. During the accumulation phase, the32

value of the death benefit is reset periodically to the maximum of the current account value or the33

prior death benefit value1. Once the accumulation phase is over, the continuation phase begins34

with the value of the death benefit now remaining constant. The contract usually expires when the35

client turns a certain age (e.g. 90) or else when the client passes away.36

A common feature in GMDB contracts is the ability to have partial withdrawals from the37

account. Determining the fair insurance fee for a GMDB contract allowing partial withdrawals is a38

challenging and important problem. The stochastic nature of the contract maturity caused by the39

death benefit wih the market guarantees exposing insurance companies to considerable risk during40

prolonged periods of weak equity markets. Allowing for partial withdrawal of funds introduces a41

second level of uncertainty to these contracts. As discussed in [18], a conservative approach to42

pricing these guarantees is based on assuming optimal withdrawal at any given instant (i.e. the43

worst case from the hedger’s point of view). Thus determining insurance fees for GMBD contracts44

with partial withdrawal becomes an optimal control problem.45

GMDB contracts have been particularly popular in the United States and the United Kingdom46

since the investment gains are tax-deferred until the funds are withdrawn or annuitized at retire-47

ment. Their popularity along with the recent market turmoil has highlighted the importance of48

correctly pricing and hedging these complex contracts. As an example, poor hedging of variable49

annuities has caused large mark-to-market losses for insurance companies [10, 25].50

Bauer, Kling and Russ [7] give a solution to the GMDB problem allowing optimal withdrawal51

at discrete instances under a constant volatility Brownian motion pricing model. In between the52

withdrawal times, the solution of a modified Black-Scholes PDE is determined by a Green’s function53

integral, which is approximated numerically. The optimal withdrawal at each withdrawal time is54

determined by a grid search. Other methods for pricing GMDB contracts but without partial55

withdrawals can be found in [33, 24, 15].56

The main results of this paper are57

• We determine the fair insurance charge for a GMDB contract from a combined no-arbitrage58

and actuarial approach (see [43]). We characterize the GMDB pricing problem as an impulse59

control problem and develop a pricing model based on partial differential inequalities. We use60

a regime switching model [8, 21, 28] for the underlying stochastic process. Regime switching61

is considered to be a realistic model for long term contracts, while being more parsimonius62

than a stochastic volatility model with jumps.63

• Our valuations for the fair insurance fee of GMDB contracts are determined as solutions to64

a four dimensional system of nonlinear PDEs. This nonlinear system is solved using a fully65

implicit penalty method, where we allow both complete lapsation and partial withdrawal.66

We take care to ensure that our discretization converges to the unique viscosity solution [19]67

between rachet dates. It is well known that the viscosity solution is the financially relevant68

solution of option pricing problems.69

• Our results show that the the withdrawal feature is very valuable and results in significantly70

higher insurance fees than found previously in the literature when withdrawals are ignored.71

1Intuitively, this can be viewed as a discretely observed lookback option based on the maximum value of the
underlying [41].
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Due to the recent drop in equity markets, these guarantees are now substantially in the money.72

If these guarantess have not been hedged correctly, large mark-to-market losses will ensue.73

Unlike previous work mentioned above, our approach gives a complete solution to the GMDB74

problem with partial withdrawal. By this we mean that we: (a) give a complete specification of75

the problem in terms of PDEs, including localized boundary conditions; (b) discretize the system76

of PDEs using a fully implicit method; and (c) prove that the discrete equations converge to the77

viscosity solution [19] (assuming it exists) away from ratchet dates. The last named property follows78

from proving that our discrete equations are monotone, stable and consistent.79

While we have looked at a particular pricing problem which results in an impulse control80

problem, such problems occur naturally in many other financial contexts. We expect that our81

techniques, along with the ability to obtain provably correct solutions, will generalize to other82

impulse control problems in finance.83

The remainder of this paper is organized as follows. In Section 2, we give the model for pricing84

GMDB contracts with constant volatility in terms of an impulse control problem. The pricing model85

is then extended in Section 3 to include the concept of regime-switching with Section 4 detailing the86

boundary conditions. Section 5 outlines details of the numerical solution method, while Section 687

contains a theoretical analysis of the discrete pricing model. Proofs justifying the theory are given88

in the following section. Numerical results obtained when computing the no-arbitrage insurance89

charge for the GMDB guarantee are presented in Section 7. Concluding remarks are made in90

Section 8. The appendix contains descriptions of GMDB contracts needed to construct our pricing91

model along with some technical details of the proofs.92

2 Pricing the GMDB with Partial Withdrawls Problem93

The cost to the issuer of a GMDB guarantee can be modelled as a function of four variables94

V = V (S,B,D, t) with t being time and:95

• S is the current value of the underlying investment account,96

• B is the current death benefit level,97

• D is the current amount deposited in the investment account.98

For ease of exposition, we will first consider the no-arbitrage valuation of the GMBD under the99

Black-Scholes framework. We ignore the possibility of partial withdrawal for the moment. Recall100

that a typical GMDB contract provides market guarantees by locking in gains at ratchet dates.101

At each ratchet date, the death benefit B is reset to the maximum of the current benefit and the102

investment account S. No-arbitrage implies that for any rachet date to we have103

V (S,B+, D, t+o ) = V (S,B−, D, t−o ), (2.1)

where B+ = max(B−, S) and t−o and t+o are times just before and after to. As such we only need104

determine the prices away from the rachet dates.105

We assume that the underlying S follows a classic geometric Brownian motion process (under106

the risk-neutral measure)[29]:107

dS

S
= (r − ρtotal)dt+ σdZ. (2.2)
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Here r is the risk-free rate, ρtotal are the mortality and expense (M&E) fees, σ is the asset volatility108

and dZ is the increment of a Wiener process [41].109

We remark that the annual fees ρtotal associated with variable annuity contracts, are charged110

to the policy owner. These fees are calculated as a predetermined percentage of the account value111

S, and include both management fees (ρman) and insurance charges (ρins) so that112

ρtotal = ρman + ρins. (2.3)

Assuming the management fees (ρman) are known, we will determine in Section 7 the value of ρins113

such that the issuer does not incur any loss, assuming the contract is hedged. As outlined in [35],114

these M&E charges can be modeled similarly to dividends.115

When the GMDB contract expires at t = T , the owner, if still alive, receives a payoff corre-116

sponding to the value of the invested capital at contract maturity. As such, the issuing company is117

not liable for any additional payment at maturity beyond the current investment account value so118

V (S,B,D, T ) = 0. (2.4)

Following the derivation in [42, 43], and described in Appendix A, the cost of the GMDB119

guarantee in the Black-Scholes framework is then given by120

Vt +
1
2
σ2S2VSS + (r − ρtotal)SVS − rV −R(t)ρinsS +M(t)f = 0, (2.5)

whereM(t) represents the mortality function of the policy owners,R(t) is the survival probability of121

policy owners and f = f(S,B,D, t) denote the death benefit exposure to the issuer. The mortality122

function is defined such that the fraction of original owners who pass away during the time interval123

[t, t + dt] is M(t)dt. Consequently, the portion of policy owners still alive at time t, denoted by124

R(t), is:125

R(t) = 1−
∫ t

0
M(n)dn, (2.6)

where the integral term represents the owners who have died during the period [0, t]. Note that126

equation (2.5) is derived under the assumption that mortality risk is diversifiable amongst many127

policy owners [33]. In Appendix B we show that the death benefit f is given by128

f(S,B,D, t) = max(B − S, 0) + γ(t)D (2.7)

where γ(t) is the partial or full withdrawl (lapsing) charge.129

In this paper we also include a second level of uncertainty by allowing holders of GMDB contracts130

to withdraw some of their funds at any time. Many GMDB contracts include a feature allowing131

the policy owner to make partial withdrawals from the invested capital at any time prior to the132

maturity of the contract (during both the accumulation and continuation phase). When the owner133

makes a withdrawal, both the deposit D and the death benefit B are reduced [37]. In this work,134

we assume that D and B are reduced on a dollar-for-dollar basis following a partial withdrawal.2135

In Appendix C we give the details showing that the pricing problem with partial withdrawals136

for the GMDB guarantee (away from the ratchet dates) can be given as an impulse control problem.137

2We remark that our PDE approach can easily be extended to model different withdrawal policies. For example,
an alternate withdrawal policy whereby the deposit is reduced by the amount withdrawn but the death benefit is
reduced on a proportional basis, could be easily implemented.
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If we change variables to τ = T − t, the time to maturity (with an abuse of notation, we now let138

V = V (S,B,D, τ), M =M(τ), and so on), then this impulse control problem is139

min
(
Vτ − LV +R(τ)ρinsS −M(τ)f, V −AV

)
= 0. (2.8)

Here the differential operator L is defined as140

LV =
1
2
σ2S2VSS + (r − ρtotal)SVS − rV (2.9)

while AV (S,B,D, τ) given by141

AV ≡ max
(
−R(τ)γ(τ)S, max

W∈[0,S−ω]

(
V (S −W,max(B −W, 0),max(D −W, 0), τ)−R(τ)γ(τ)W

)
− c
)

(2.10)
with c > 0 denoting a small fixed cost added to the constraint to ensure that the impulse control142

problem is well-posed. The operator AV represents the value of the guarantee after a full or partial143

withdrawal.144

Equation (2.8) can be interpeted in the following intuitive way. If it is optimal continue to hold
the contract, then

Vτ − LV +R(τ)ρinsS −M(τ)f = 0 (2.11)

and, since we are better off not withdrawing

V −AV > 0. (2.12)

Conversely, if it is optimal to withdraw assets from the account, we have

V −AV = 0 , (2.13)

and since we are better off withdrawing rather than coninuing to hold

Vτ − LV +R(τ)ρinsS −M(τ)f > 0 . (2.14)

We can also express equation (2.8) as a penalized problem145

lim
ε→0

(
Vτ − LV +R(τ)ρinsS −M(τ)f − 1

ε
max(AV − V, 0)

)
= 0. (2.15)

In Section 6 we will show that a discrete version of equation (2.15) is consistent with equation 2.8.146

We remark that, while our formulation requires that c > 0, the numerical scheme presented in147

this paper accepts both c = 0 and c > 0. We expect in practice that very small values of c will148

have little effect on the numerical solution obtained. This is confirmed by the examples included149

in Section 7.150
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3 Pricing the GMDB Guarantee with Regime-Switching151

Assuming that a market has constant volatility for option contracts is well-known to be inconsistent152

with the implied volatility observed in the market. In particular, this is totally unrealistic for options153

that ae based on long term horizons. At a minimum one would at least need assumptions that154

takes into consideration that, over a long time frame, markets will somehow alternate between high,155

medium and low volatility states.156

In this section, we introduce the concept of regime-switching to the GMDB impulse control157

problem in equation (2.15). The underlying assumption with regime-switching is that the volatility158

switches randomly between a finite number of states or regimes. Each regime has a different159

volatility value and is meant to represent a different economic state. While the underlying account160

value follows a log-normal process within a given state, a jump in S occurs when the state of the161

economy changes. While stochastic volatility [41] also provides a valid alternative when dealing with162

long-term contracts such as variable annuities, such models implies solving a higher dimensional163

PDE. Regime-switching appears to be less expensive from a computational point of view and is164

somewhat more intuitive.165

Introduced in [27], the concept of regime-switching has since been used extensively when model-166

ing both interest rates [26, 45, 14] and pricing option contracts [8, 21, 46, 11, 9]. Regime switching167

models have also been suggested for use in long term insurance contracts [28]. These models allow168

for a parsimonius model which takes into account the fact that the economy typically alternates169

between high, medium and low volatility states. It is straightforward to incorporate long-term170

views about different states of the economy with a regime switching model, possibly employing171

both market and historical data. This contrasts with the use of a local volatility model, which172

is usually calibrated to short term market data, and is of questionable applicability for long term173

contracts.174

To extend our modelling framework to regime-switching, we introduce an additional model-175

ing variable E which represents the current state of the economy and define M distinct states:176

E ∈ {e1, e2, . . . , eM}. Associated with each state em is a constant volatility value denoted as σm.177

Assuming we are in state em, the value of the GMDB guarantee is denoted as:178

V m = V (S,B,D, em, t). (3.1)

For a given regime em, the value of the underlying investment account S follows (under the risk179

neutral measure):180

dS

S
=
(
r − ρtotal −

M∑
l=1
l 6=m

λm→l(Jm→l − 1)
)
dt+ σmdZ +

M∑
l=1
l 6=m

(Jm→l − 1)dqm→l, (3.2)

where dqm→l is an independent Poisson process and Jm→l ≥ 0 (l 6= m) is an impulse function181

producing a jump from S to Jm→lS when the state of the economy changes from em to el. We182

define λm→l (l 6= m) as the risk-neutral probability of a jump from economic state em to state el183

and have (for l 6= m):184

dqm→l =

{
0 with probability 1− λm→ldt,
1 with probability λm→ldt.

(3.3)
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A system of coupled PDEs can then be derived to determine the value of the GMDB guarantee185

in the regime-switching context. Each PDE represents a different economic state and can be written186

as (see [14]) (assuming for the moment no withdrawal or lapsing):187

V m
t +

(
r − ρtotal −

M∑
l=1
l 6=m

λm→l(Jm→l − 1)
)
SV m

S +
1
2
σ2
mS

2V m
SS − rV m

−R(t)ρinsS +M(t)f +
M∑
l=1
l 6=m

λm→l( V (SJm→l, B,D, el, t)− V m ) = 0. (3.4)

For a given regime em, the withdrawal constraint AV m = AV m(S,B,D, em, t) can be written as:188

AV m ≡ max
(
−R(t)γ(t)S, max

W∈[0,S−ω]

(
V (S −W, max(B −W, 0), max(D −W, 0), em, t)

−R(t)γ(t)W
)
− c
)
, (3.5)

where c is a small fixed cost. We remark that determining the optimal withdrawal amount in189

equation (3.5) is a local optimization problem whose solution is discussed later in Section 5.2.190

The jump condition applied at each ratchet date can be written as:191

V (S,B+, D, em, t
+
o ) = V (S,B−, D, em, t−o ), (3.6)

where B+ = max(B−, S). The initial conditions for this pricing problem are similar to those192

outlined in equation (2.4) and can be written as:193

V (S,B,D, em, T ) = 0. (3.7)

Consequently, we obtain a set of M impulse control problems which are solved simultaneously194

to determine the value of the GMDB guarantee. Assuming the economy is in state em, we solve195

the following equation in terms of time to maturity (τ = T − t):196

min
(
V m
τ − LV m +R(τ)ρinsS −M(τ)f, V m −AV m

)
= 0, (3.8)

where now V m = V (S,B,D, em, τ) and LV m is now defined as:197

LV m =
1
2
σ2
mS

2V m
SS +

(
r − ρtotal −

M∑
l=1
l 6=m

λm→l(Jm→l − 1)
)
SV m

S − rV m

+
M∑
l=1
l 6=m

λm→l(V (SJm→l, B,D, el, τ)− V m). (3.9)

Equation (3.8) can also be written in penalized form:198

lim
ε→0

(
V m
τ − LV m +R(τ)ρinsS −M(τ)f − 1

ε
max

(
AV m − V m, 0

))
= 0. (3.10)

7



This set of coupled PDEs is solved, working backward in time, using an iterative penalty scheme [23]199

to determine the value of the guarantee at each timestep. See [22] for a description of the iterative200

method and a proof of convergence.201

4 Boundary Conditions202

For each regime em, the GMDB guarantee pricing problem in equation (3.10) is solved on an203

S×B×D× τ domain. Since B = D0 at τ = T (or t = 0), equation (2.1) indicates that the benefit204

level B can only increase, unless a withdrawal occurs. Similarly, D = D0 at τ = T and the deposit205

D decreases only when a partial withdrawal occurs. Since D is reduced by the same amount as B206

following a withdrawal, we have that B ≥ D and so the solution domain is207

[0,∞]× [D,∞]× [0,D0]× [0, T ], (4.1)

where D0 is the initial investment deposit and T is the contract maturity. For numerical purposes,208

we localize the problem to the following domain209

[0, Smax]× [D,Bmax]× [0,D0]× [0, T ]. (4.2)

To localize the GMDB pricing problem, additional boundary conditions are necessary. As S →210

0, the partial withdrawal policy is no longer applicable and the penalized problem in equation (3.10)211

reduces to (noting the definition of f = f(S,B,D, τ) in equation (2.7)):212

V m
τ + rV m −M(τ)(B + γ(τ)D) = 0. (4.3)

As S → Smax, we make the common assumption that V m
SS → 0 [44], which implies that V m is a213

linear function of S, along with the additional assumption that the linear term dominates in size214

(see Appendix D). In the case when the state of the economy does not change then using the above215

assumptions, we obtain the following approximation to equation (3.10):216

V m
τ + ρtotalV

m +R(τ)ρinsS −
1
ε

max(AV m − V m, 0) = 0 ; S = Smax. (4.4)

However the presence of jumps in S when the state of the economy changes requires careful con-217

sideration when S → Smax. More specifically, the case when S jumps outside the discrete domain218

following a regime change, i.e. SJm→l > Smax, must be dealt with in an appropriate manner. We219

assume that any asset value that jumps outside the discrete S grid is set to Smax, which implies220

that the jump size Jm→l (l 6= m) is now a function of S:221

Jm→l(S) =

{
Jm→l when 0 ≤ S ≤ Smax

Jm→l ,
Smax
S when Smax

Jm→l < S ≤ Smax.
(4.5)

Again, this is an approximation, where we expect the error to be small as Smax → ∞. This will222

be verified in some numerical tests in Section 7. This new dependence of the jump size on S is223

one of complications that need to be addressed when our discretization is analyzed for stabilty and224

convergence to the expected solution.225

The penalized GMDB pricing equation with regime-switching can then be written as:226

V m
τ − LV m +R(τ)ρinsS −M(τ)f − 1

ε
max

(
AV m − V m, 0

)
= 0, (4.6)
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where:227

LV m =
1
2
σ2
mS

2V m
SS +

(
r − ρtotal −

M∑
l=1
l 6=m

λm→l(Jm→l(S)− 1)
)
SV m

S − rV m (4.7)

+
M∑
l=1
l 6=m

λm→l(V (Jm→l(S)S,B,D, el, τ)− V m).

As B → D, no additional boundary condition is required and the pricing equation in (3.10) is228

solved. As B → Bmax, equation (3.10) is solved but the jump condition in equation (2.1) needs to229

be modified to take into consideration the discrete solution domain. For those grid nodes where230

S > Bmax, the discrete S × B plane does not contain the required data to calculate the jump231

condition outlined in equation (2.1). We assume that no ratchet events occur for those nodes232

where S > Bmax, which implies (in terms of τ = T − t):233

V (S,B,D, em, τ+
o ) =


V (S,B,D, em, τ−o ) if S ≤ B,
V (S, S,D, em, τ−o ) if B < S ≤ Bmax,

V (S,B,D, em, τ−o ) if S > Bmax,

(4.8)

where τo denotes the ratchet date, while τ−o and τ+
o denote the instants immediately before and after234

a ratchet event. This is clearly an approximation but the resulting error will be small, assuming235

Bmax is chosen sufficiently large. Numerical tests conducted in Section 7 verify this to be the case.236

In the D direction, no additional boundary condition is required as D → D0, since AV m
237

requires information only from problems where D < D0 (from equation (2.10)). As D → 0, the238

partial withdrawal feature remains applicable and the usual pricing equation (3.10) is solved.239

The boundary conditions for each regime can therefore be summarized as240

V m
τ + rV m −M(τ)(B + γ(τ)D)−

M∑
l=1
l 6=m

λm→l(V (0, B,D, el, τ)− V m) = 0 for S =0, (4.9)

V m
τ +R(τ)ρinsS + ρtotalV

m −
M∑
l=1
l 6=m

λm→lJm→l(S)
(
V (S,B,D, el, τ)− V m

)

−1
ε

max(AV m − V m, 0) = 0 for S =Smax, (4.10)

while the usual pricing equation in (4.6) is solved on the boundaries of the B ×D plane.241

5 Numerical Solution of the GMDB Problem with Regime-Switching242

In this section, we present details for the numerical solution of the GMDB pricing problem. This243

includes the description of the discrete equations for the GMDB pricing problem and how the local244

optimization problem is handled when determining the value of the partial withdrawal constraint.245
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B

B

0 S = B S Smax

max

maxS = D
B = D

Figure 5.1: Representation of a [0, Smax] × [D,Bmax] plane where each one-dimensional S grid is
built using the scaled grid technique defined in equation (5.2).

5.1 Discrete Equations246

The discretization of equation (3.8) on the S ×B×D×E domain follows the standard techniques247

of replacing derivatives by difference approximations. The discretization takes place for a sequence248

of four dimensional points (Sji , B
k
j , Dk, em) where for each economic state em we have identical249

grids in [0, Smax] × [D,Bmax] × [0,D0]. Each such grid is build using a set of discrete values {Bl}250

for l = 0, . . . , lmax in the B direction and {Dk}, for k = 0, . . . , kmax in the D direction. Here251

B0 = 0, Blmax = Bmax, D0 = 0 and Dkmax = D0, where D0 is the initial deposit made by the policy252

owner. We also build the grid so that {Dk} ⊂ {Bl}, that is, each of the discrete deposit levels has253

a corresponding benefit level, and that the bulk of the nodes in {Bl} are placed around the initial254

deposit amount D0..255

For each state em and each discrete deposit level Dk, the grid points Bk
j for j = 0, . . . , jmax256

along the B direction are given by257

Bk
j = Bp+j for j = 0, . . . , jmax. (5.1)

where p is the value such that Bp = Dk. For each discrete benefit level Bl the grid points S`i for258

i = 0, . . . , `max along the S direction are given by259

Sli = Bi
Bl
D0

for i = 0, . . . , lmax − 1 and Slimax
=

(Blmax)2

D0
. (5.2)

The grid construction ensures that we use the minimum number of nodes to solve the GMDB260

pricing problem for each economic state em. In addition, the grid construction defined in equation261

(5.2) has the characteristic hat the bulk of the nodes in the S direction are placed around the262

current benefit level Bl. This scaled grid construction enables a more precise calculation of the263

jump condition in equation (4.8). Note that interpolation is generally required when calculating264

the jump condition in (4.8) on a scaled grid. The resulting S × B grid for a fixed deposit amount265

Dk is shown in Figure 5.1 and the final three-dimensional domain for a fixed economic state em is266

given in Figure 5.2.267
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maxS0

B

B

B = D
D

Dmax

max

S

Figure 5.2: Three dimensional solution domain to price the GMDB guarantee in economic state
em. Each S ×B plane is constructed as in Figure 5.1.

Denote V n+1
i,j,k,m = V (Sji , B

k
j , Dk, em, τ

n+1), and AhV n+1
i,j,k,m = AV (Sji , B

k
j , Dk, em, τ

n+1) as the268

discrete values and discrete version of the withdrawal constraint defined in equation (3.5), respec-269

tively. In terms of notation, discrete operators will be denoted as Ah and Lh where the superscript270

h represents the space discretization parameter.271

Assuming fully implicit timestepping is used, the discrete form of equation (3.8) is obtained by272

applying standard finite difference approximations:273

V n+1
i,j,k,m − V

n
i,j,k,m

∆τ
= [LhV ]n+1

i,j,k,m −R
n+1ρinsS

j
i +Mn+1fn+1

i,j,k +
µn+1
i,j,k,m

ε

(
AhV n+1

i,j,k,m − V
n+1
i,j,k,m

)
, (5.3)

where274

Mn+1 =M(τn+1), Rn+1 = R(τn+1), γn+1 = γ(τn+1), (5.4)

fn+1
i,j,k = f(Sji , B

k
j , Dk, τ

n+1) = max(Bk
j − S

j
i , 0) + γn+1Dk, (5.5)

and275

µn+1
i,j,k,m =

{
1 if AhV n+1

i,j,k,m > V n+1
i,j,k,m,

0 otherwise.
(5.6)

The discrete differential operator Lh can be written as:276

[LhV ]n+1
i,j,k,m = αi,j,mV

n+1
i−1,j,k,m + βi,j,mV

n+1
i+1,j,k,m − (αi,j,m + βi,j,m + r)V n+1

i,j,k,m

+
M∑
l=1
l 6=m

λm→l(H(Jm→l)iV n+1
j,k,l − V

n+1
i,j,k,m), (5.7)

where αi,j,m, βi,j,m are defined in Appendix E and satisfy:277

αi,j,m ≥ 0 ; βi,j,m ≥ 0 ∀i, j,m, (5.8)
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and H(Jm→l)iV n+1
j,k,l represents the interpolated guarantee value in regime el when the asset price278

jumps to Jm→l(S)S. Assuming linear interpolation is chosen, we have:279

H(Jm→l)iV n+1
j,k,l = (1− wi,j,m)V n+1

a,j,k,l + wi,j,mV
n+1
a+1,j,k,l , (5.9)

where Sja ≤ Jm→l(Sji )S
j
i ≤ S

j
a+1 and the interpolation weight 0 ≤ wi,j,m ≤ 1 can be written as:280

wi,j,m =
Jm→l(Sji )S

j
i − S

j
a

Sja+1 − S
j
a

. (5.10)

Since the node (Sji −W,max(Bk
j −W, 0),max(Dk,−W, 0)) does not always coincide with an281

existing grid node, interpolation must be used when calculating the discrete withdrawal constraint282

AhV n+1
i,j,k,m. We define the vector I(W )i,j,k as the interpolation operator used when calculating the283

value of the GMDB guarantee following a withdrawal W . Thus, we have:284

AhV n+1
i,j,k,m = max

(
−Rn+1γn+1Sji , max

W∈[0,Sj
i−ω]

[
I(W )i,j,kV n+1

m −Rn+1γn+1W
]
− c

)
, (5.11)

where V n+1
m is a vector containing the GMDB values for regime em:285

V n+1
m =


V n+1

0,0,0,m

V n+1
1,0,0,m

...
V n+1
imax−1,jmax,kmax,m

V n+1
imax,jmax,kmax,m

 , (5.12)

and I(W )i,j,k can be written as follows assuming linear interpolation:286

I(W )i,j,kV n+1
m =

∑
u,v,w

ηu,v,w,mV
n+1
u,v,w,m , (5.13)

where 0 ≤ ηu,v,w,m ≤ 1 are the interpolation weights and:287 ∑
u,v,w

ηu,v,w,m = 1. (5.14)

Letting Wn+1
i,j,k,m denote the optimal withdrawal amount at node (Sji , B

k
j , Dk, em) and time τn+1,288

and defining the indicator variable an+1
i,j,k,m as:289

an+1
i,j,k,m =

{
1 if it is optimal to lapse,
0 if it is optimal to withdraw Wn+1

i,j,k,m,
(5.15)

we can rewrite equation (5.11) as:290

AhV n+1
i,j,k,m = −an+1

i,j,k,mR
n+1γn+1Sji + (1− an+1

i,j,k,m)
(
I(Wn+1

i,j,k,m)i,j,kV n+1
m −Rn+1γn+1Wn+1

i,j,k,m − c
)
.

(5.16)
The numerical scheme in equation (5.3) is a positive coefficient discretization [22] when the291

following definition is satisfied.292
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Definition 5.1 (Positive Coefficient Scheme). The numerical scheme defined in equation (5.3) is293

a positive coefficient discretization when:294

αi,j,m , βi,j,m ≥ 0, ∀i, j,m ,

r ≥ 0 ,

λm→l ≥ 0, when m 6= l ,

and the interpolation operators H(Jm→l)i and I(W )i,j,k represent linear interpolation.295

Since αi,j,m, βi,j,m ≥ 0 by construction (see Appendix E), λm→l ≥ 0, when m 6= l and r ≥ 0 for296

all problems considered, the numerical scheme in (5.3) is a positive coefficient scheme.297

Remark 5.2. The nonlinear discrete equations (5.3) can be solved using a policy type iteration, a298

method which is guaranteed to converge for any initial iterate (see [22]).299

5.2 Optimal Withdrawal300

At each discrete grid node (Sji , B
k
j , Dk, em) we need to determine the optimal withdrawal W when301

calculating the constraint in equation (3.5). This local optimization problem is solved by considering302

all possible discrete withdrawals. This is done by first checking that a withdrawal is possible by303

verifying Sji > ω, where ω is the minimal deposit amount, and then carrying out a linear search304

over all possible discrete withdrawals W̄ . Here305

W̄ = min(Sjl , S
j
i − ω), (5.17)

assuming Sjl < Sji . For each W̄ considered, we calculate the effect of the partial withdrawal to the306

issuer, denoted by A(W̄ ):307

A(W̄ ) = I(W̄ )i,j,kV n+1
m −Rn+1γn+1W̄ , (5.18)

where I(W̄ )i,j,k is defined in (5.13).308

The optimal withdrawal is determined by taking the maximum of A(W̄ ) over all discrete with-309

drawals W̄ and the final withdrawal constraint for node (Sji , B
k
j , Dk, em) is computed as310

AhV n+1
i,j,k,m = max

(
−Rn+1γn+1Sji ,max

W̄

[
A(W̄ )

]
− c
)
. (5.19)

This search procedure is summarized in Algorithm 5.1.311

6 Convergence to the Viscosity Solution312

In [38], the authors demonstrate how some reasonable discretization schemes either never converge313

or converge to a wrong solution. Thus, it is important to ensure that our discretization method314

converges to the unique viscosity solution [19], which corresponds to the financially relevant solution.315

Assuming that a unique, continuous viscosity solution to equation (5.3) exists, the numerical scheme316

in (5.3) converges to the viscosity solution away from the ratchet dates if it satisfies certain stability,317

consistency and monotonicity requirements [4, 6].318
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W̄ = 0 ; A = 0 ; Amax = 0

if Sji > ω then
Determine maximum withdrawal: W̄ = Sji − ω
Calculate: Amax = I(W̄ )i,j,kV n+1

m −Rn+1γn+1W̄

Determine index imax s.t.: Sji−1 < Sjimax
< Sji − ω

for l = 0, . . . , imax do
Determine withdrawal: W̄ = Sjl
Calculate: A = I(W̄ )i,j,kV n+1

m −Rn+1γn+1W̄
Amax = max(A,Amax)

end for
end if

AhV n+1
i,j,k = max

(
Amax − c,−Rn+1γn+1Sji

)
Algorithm 5.1: Calculation of Withdrawal Constraint for GMDB Contracts

Assuming a given state em, the solution domain for the GMDB pricing problem in equation (3.8)319

is [0, Smax]× [D,Bmax]× [0,D0]. When working backward in time, we denote the ratchet dates as320

τuo for u = 0, . . . , umax, and use τu−o and τu+
o to denote the times right before and after a ratchet321

event. Thus, we define the solution domains Πu and Π by:322

Πu = [0, Smax]× [D,Bmax]× [0,D0]× [τu+
o , τ (u+1)−

o ] for u = 0, . . . , umax − 1, and (6.1)

Π =
⋃
u

Πu = [0, Smax]× [D,Bmax]× [0,D0]×
⋃
u

[τu+
o , τ (u+1)−

o ]. (6.2)

This enables us to define the pricing problem for the GMDB guarantee in detail.323

Definition 6.1 (GMDB Pricing Problem with Discrete Ratchets). The pricing problem for the324

GMDB guarantee with discrete ratchet events is defined in Π as follows: within each domain Πu, for325

u = 0, . . . , umax−1, we determine the solution to the pricing problem presented in equation (3.8) with326

initial conditions expressed in equation (3.7) when u = 0 or in equation (4.8) when u > 0, boundary327

conditions described in equations (4.9)–(4.10) and localization conditions in equations (4.5) and328

(4.8).329

Remark 6.2. Note that we have not defined the pricing problem for the GMDB guarantee over the330

entire contract lifetime τ ∈ [0, T ] since the solution can be discontinuous across ratchet dates τuo ,331

for u = 0, . . . , umax − 1, due to the no-arbitrage condition in equation (4.8).332

Assumption 6.3. We assume that a unique, continuous viscosity solution exists [4, 32, 36] for333

the localized pricing problem in Definition 6.1 which satisfies equations (4.9)–(4.10) and localization334

conditions in equations (4.5) and (4.8). More specifically, we assume that the unique viscosity335

solution is continuous within each domain Πu, for u = 0, . . . , umax − 1.336

Remark 6.4. A unique, continuous viscosity solution exists if the PDE satisfies a strong com-337

parison property. In a financial context, the strong comparison property states that if U(S, τ) and338

V (S, τ) are two contingent claims with U(S, 0) ≥ V (S, 0), then U(S, τ) ≥ V (S, τ) for any time339
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τ [17]. Strong comparison has been shown to hold for similar (but not identical) scaler impulse340

control problems in [40, 1, 30]. In the regime switching case, existence of a continuous, viscosity341

solution is shown using properties of the value function [36]. Note that the definition of viscosity342

solution has to be generalized for systems of weakly coupled PDEs, such as regime switching models343

[32, 36].344

If Assumption 6.3 holds, then showing that the discrete equations are monotone, stable and345

consistent will enable us to conclude that the solution of the numerical scheme in equation (5.3)346

converges to the unique viscosity solution of the pricing problem outlined in Definition 6.1.347

6.1 Stability348

In order to show that the discrete equations in (5.3) satisfy l∞-stability one needs to show that the
discrete contract value V n+1

i,j,k,m is bounded. We define:

∆Sjmax = max
i

(Sji+1 − S
j
i ), ∆Bk

max = max
j

(Bk
j+1 −Bk

j ), ∆Dmax = max
k

(Dk+1 −Dk) and ∆τ =
T

N
.

Definition 6.5 (Stability). For fixed Smax, Bmax and T , the numerical scheme presented in equa-349

tion (5.3) is l∞-stable if:350

||V n||∞ ≤ C (6.3)

for 0 ≤ n ≤ N , as ∆τ → 0, maxj ∆Sjmax → 0, maxk ∆Bk
max → 0, ∆Dmax → 0 and ε → 0. The351

constant C is independent of ∆τ , ∆Sjmax, ∆Bk
max, ∆Dmax and ε.352

For notational convenience, we make the following assumption.353

Assumption 6.6. We assume that ∆Bk
max, ∆Sjmax, ∆τ and ε are parametrized as354

∆Bk
max = c0h, ∆Sjmax = c1h, ∆τ = c2h and ε = c3h,

with c0, c1, c2 and c3 constants.355

Theorem 6.7. Assume the numerical scheme satisfies Definition 5.1, that the boundary conditions356

are described by the discrete version of equations (4.9)–(4.10), that the initial conditions are given357

by the discrete version of equation (3.7) and that fully implicit timestepping is used. Then:358

−Sji ≤ V
n+1
i,j,k,m ≤ C

n+1
0 Bmax + Cn+1

1 Dmax ∀i, j, k,m, n, (6.4)

where the constants 0 ≤ Cn+1
0 ≤ 1 and 0 ≤ Cn+1

1 are defined as:359

Cn+1
0 = ∆τ

n+1∑
i=0

Mi and Cn+1
1 = ∆τ

n+1∑
i=0

Miγi. (6.5)

Proof. A proof is given in Appendix F.1.360

Theorem 6.7 implies that the numerical scheme for V n+1
i,j,k,m, as defined in equation (5.3), is stable361

according to Definition 6.5.362
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6.2 Monotonicity363

In this section, we show that the discrete equations presented in (5.3) are monotone. To facilitate364

exposition, we denote the discrete equations on interior nodes (when Sji < Smax) as:365

G
(
h, x, V n+1

i,j,k,m, V
n
i,j,k,m, {V n+1

a,p,u,l}
)

=
V n+1
i,j,k,m − V

n
i,j,k,m

∆τ
− [LhV ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

− 1
ε

max
(
AhV n+1

i,j,k,m − V
n+1
i,j,k,m, 0

)
, (6.6)

where x = (Sji , B
k
j , Dk, em, τ

n+1), h is the discretization parameter, and {V n+1
a,p,u,l} represents all366

discrete nodes, other than V n+1
i,j,k,m and V n

i,j,k,m, included in the discrete equations. Similarly, at the367

boundary when Sji = Smax, the discretization is given as:368

G
(
h, x, V n+1

imax,j,k,m
, V n

imax,j,k,m, {V
n+1
a,p,u,l}

)
=
V n+1
imax,j,k,m

− V n
imax,j,k,m

∆τ
+ ρtotalV

n+1
imax,j,k,m

+Rn+1ρinsS
j
imax

−
M∑
l=1
l 6=m

λm→lJm→limax
(V n+1
imax,j,k,l

− V n+1
imax,j,k,m

)

− 1
ε

max
(
AhV n+1

imax,j,k,m
− V n+1

imax,j,k,m
, 0
)
. (6.7)

Definition 6.8 (Monotonicity). The numerical scheme G(h, x, V n+1
i,j,k,m, V

n
i,j,k,m, {V

n+1
a,p,u,l}) presented369

in equations (6.6) and (6.7) is monotone if for all Y n
i,j,k,m ≥ V n

i,j,k,m:370

G(h, x, V n+1
i,j,k,m, Y

n
i,j,k,m, {Y n+1

a,p,u,l})− G(h, x, V n+1
i,j,k,m, V

n
i,j,k,m,{V n+1

a,p,u,l}) ≤ 0. (6.8)

371

Note that this definition of monotonicity is equivalent to the one presented in [4].372

Theorem 6.9 (Monotone Discretization). Assuming that the discretization satisfies Condition (5.1),373

the numerical scheme G(h, x, V n+1
i,j,k,m, V

n
i,j,k,m, {V

n+1
a,p,u,l}) defined in equations (6.6) and (6.7), is374

monotone.375

Proof. Notice that the numerical scheme presented in equations (6.6) and (6.7) is a positive coeffi-376

cient discretization since it satisfies Condition 5.1. In [22], the authors demonstrate that a positive377

coefficient discretization of a control problem, such as the one considered here, is monotone. Using378

the same technique as in [22], it is straightforward to show that the numerical scheme presented in379

equations (6.6) and (6.7) is monotone and satisfies Definition 6.8.380

6.3 Consistency381

The final step in showing that our discretization converges to the viscosity solution is to show that382

the numerical scheme in equation (5.3) is consistent. For the GMDB pricing problem, the impulse383

control problem can be written in compact form as:384

F (V (x)) = 0 for all x = (S,B,D, em, τ), (6.9)
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where385

F (V (x)) =

{
Fin(V (x)) if S < Smax,

Fbound(V (x)) if S = Smax.
(6.10)

The continuous problem evaluated at discrete interior nodes when Sji < Smax is then:386

Fin(V )n+1
i,j,k,m =

[
min

(
Vτ − LV +R(τ)ρinsS −M(τ)f, V −AV

)]n+1

i,j,k,m

= 0, (6.11)

while at boundary nodes when Sji = Smax we have:387

Fbound(V )n+1
imax,j,k,m

=
[
min

(
Vτ + ρtotalV −

M∑
l=1
l 6=m

λm→lJm→l(S)
(
V (S,B,D, el, τ)− V

)
+R(τ)ρinsS,

V −AV
)]n+1

imax,j,k,m

= 0, (6.12)

where the continuous operator L is defined in equation (3.9) and f = f(S,B,D, τ) is defined in388

equation (2.7).389

Since ε > 0, the discrete scheme in equation (6.6) can be rewritten as:390

Ĝ
(
h, x, V n+1

i,j,k,m, V
n
i,j,k,m, {V n+1

a,p,u,l}
)

=

min

(
ε

(
V n+1
i,j,k,m − V

n
i,j,k,m

∆τ
− [LhV ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)
+ V n+1

i,j,k,m −A
hV n+1

i,j,k,m,

V n+1
i,j,k,m − V

n
i,j,k,m

∆τ
− [LhV ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)
= 0, (6.13)

at interior nodes when Sji < Smax, while equation (6.7) can be rewritten as:391

Ĝ
(
h, x, V n+1

imax,j,k,m
, V n

imax,j,k,m, {V
n+1
a,p,u,l}

)
= min

(
ε

(
V n+1
imax,j,k,m

− V n
imax,j,k,m

∆τ
+ ρtotalV

n+1
imax,j,k,m

−
M∑
l=1
l 6=m

λm→lJm→limax
(V n+1
imax,j,k,l

− V n+1
imax,j,k,m

) +Rn+1ρinsS
j
imax

)

+ V n+1
imax,j,k,m

−AhV n+1
imax,j,k,m

,
V n+1
imax,j,k,m

− V n
imax,j,k,m

∆τ
+ ρtotalV

n+1
imax,j,k,m

−
M∑
l=1
l 6=m

(λm→lJm→l)imax(V n+1
imax,j,k,l

− V n+1
imax,j,k,m

) +Rn+1ρinsS
j
imax

)
= 0, (6.14)

on the boundary when Sji = Smax.392

To formally define the notion of consistency, we require the concept of upper and lower semi-393

continuous envelope of a function.394
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Definition 6.10. Assume we have a function f : C → R where C is a topological space. Then the395

upper semi-continuous and lower semi-continuous envelopes of f are defined as:396

f∗(y) = lim sup
x→y
y∈C

f(x) and f∗(y) = lim inf
x→y
y∈C

f(x). (6.15)

Definition 6.11 (Consistency). For any smooth test function φ with bounded derivatives of all397

orders with respect to S and τ , the numerical scheme Ĝ(h, x, φn+1
i,j,k,m, φ

n
i,j,k,m, {φ

n+1
a,p,u,l}) is consistent398

if, for all points in the domain x̂ = (Ŝ, B̂, D̂, em, τ̂) with x = (Sji , B
k
j , Dk, em, τ

n+1), we have:399

lim sup
h,ξ→0

x→x̂

Ĝ
(
h, x, φn+1

i,j,k,m + ξ, φni,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)
≤ F ∗(φ(x̂)), (6.16)

lim inf
h,ξ→0

x→x̂

Ĝ
(
h, x, φn+1

i,j,k,m + ξ, φni,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)
≥ F∗(φ(x̂)), (6.17)

where φni,j,k,m = φ(Sji , B
k
j , Dk, em, τ

n) and ξ ≥ 0.400

Remark 6.12 (Continuous Scheme). When the numerical scheme is continuous over the entire401

domain (both interior nodes and boundary), the conditions in equations (6.16) and (6.17) reduce402

to:403

lim
h→0

∣∣∣∣∣F (φ)n+1
i,j,k,m − Ĝ

(
h, x, φn+1

i,j,k,m, φ
n
i,j,k,m, {φn+1

a,p,u,l}
)∣∣∣∣∣ = 0. (6.18)

Equation (6.18) is the typical formulation used when verifying consistency of a numerical scheme404

and applies, for example, to cases where the equation on the boundary is obtained by taking the limit405

of the equation on the interior nodes. Unfortunately, this is not the case for our GMDB pricing406

model which is why the consistency requirements are outlined as in equations (6.16) and (6.17).407

Theorem 6.13 (Consistent Discretization). The numerical scheme presented in equation (5.3) is408

consistent according to Definition 6.11.409

Proof. See Appendix F.2.410

7 Results from Numerical Experiments411

In the previous section we have shown that our discretization converges to the financially relevant412

solution for the GMDB problem allowing partial withdrawls. In this section we give some numerical413

results. In particular we focus on determining the fair insurance charge associated with a GMDB414

guarantee from the issuer’s perspective. More specifically, we are looking for ρins such that:415

V (ρins;S = D0, B = D0, D = D0, E = em, τ = T ) = 0, (7.1)

where D0 is the initial deposit made by the contract owner and T is the contract maturity in years.416

Newton iteration is used to determine the fair insurance charge ρins that satisfies equation (7.1)417

assuming an economic state em. The Newton iteration tolerance, denoted by tol, ensures that:418

|ρk+1
ins − ρ

k
ins|∞ ≤ tol, (7.2)
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where tol = 1 × 10−6 and k is the iteration index. Unless otherwise stated, this tolerance level is419

used for all numerical results included in this section.420

Intuitively (and as seen in the numerical examples)421

• If ρins = 0, then the value of the guarantee is strictly positive for B > 0 if the mortality422

M > 0 in [0, T ] (this is a free guarantee).423

• If ρins is sufficiently large, then the value of the guarantee is negative (since it will be optimal424

to withdraw and pay the surrender charge).425

• The guarantee value is decreasing in ρins (no-arbitrage).426

If the above properties hold, then the Newton iteration will always converge to a unique solution.427

In our numerical experiments, the Newton iteration always converges (using rhoins = 0 as an initial428

estimate). However, we have no proof of these properties and this would be an interesting avenue429

for further research.430

7.1 Comparison with Previous Results431

We were not able to find previous work with handles the case of continuous partial and full with-432

drawal. In [33], an analytical solution was developed for the case with no withdrawals, continuous433

ratchets, no management fees, and constant volatility. This is, of course, a special case of our434

model. In Appendix G, we find that our results are in good agreement with the results in [33] for435

this special case.436

7.2 Results for Constant Volatility437

In this section we consider the simplest case where we have only one economic state e0 and constant438

volatility. The volatility associated with e0, as well as other contract parameters, are presented in439

Table 7.1. We are looking to determine the insurance fee ρins which satisfies:440

V (ρins;S = $100, B = $100, D = $100, E = e0, τ = T ) = 0. (7.3)

Additional assumptions are necessary regarding the owner of the GMDB contract. We assume441

that the owner of the variable annuity is a male of 50 years of age at the time of purchase. As such,442

the accumulation period of the contract, during which there are periodical ratchet events, will last443

30 years. The contract is assumed to come to maturity when the owner turns 90 years old which444

implies that T = 40 years, as reflected in Table 7.1. The mortality data used to price the GMDB445

guarantee is taken from the Complete life table, Canada, 1995-1997 for males and females found446

in [16].447

Table 7.1 also specifies some grid construction details. While an unequally spaced grid contain-448

ing 36 nodes is built along S, the grid built in the D direction contains 21 nodes spanning [0,D0].449

Though not presented here, numerical tests were carried out to ensure that the choice of Bmax,450

and consequently Smax, provides a minimum of 6 digits of accuracy. Recall that Smax = B2
max/D0,451

where D0 is the initial deposit (see Section 5.1 for more details). Similarly, numerical tests show452

that choosing a sufficiently small fixed cost, such as c = 1×10−10, results in values identical to those453

obtained when c = 0 up to at least 6 digits. Consequently, for all numerical experiments in this454

section, we set c = 1×10−10. From Theorem 6.13 we have that the discretization (5.3) is consistent455
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State Information - e0

σ0 - Volatility 0.20
Contract Information

r - Interest rate 0.06
ρman - Management fees 0.015
Ratchet interval 1 year
Last Ratchet Date 30 years
T - Contract maturity 40 years

Grid Construction
D0 - Initial deposit $100
Smax - Grid parameter $3.6× 107

Bmax - Grid parameter $60000

Table 7.1: Parameter values used when pricing the GMDB guarantee in the classic Black-Scholes
context.

if the penalty parameter ε (see equations (6.6) and (6.7)) is ε = ∆τC1 for any C1 > 0. In practice,456

in order to obtain reasonable results for finite ∆τ , we use C1 = 10−6. Using C1 ∈ [10−4, 10−8] does457

not change the computed values of ρins to six digits. It is not desirable to select C1 too small (i.e.458

< 10−14 with double precision arithemtic) since numerical roundoff problems arise in this case [23].459

In addition to the parameters in Table 7.1, the surrender charge imposed when a withdrawal460

occurs (denoted as γ̂(t) in equation (2.10)) is defined as in [35]:461

γ(t) =

{
0.08− 0.01dte t ≤ 7 years,
0.00 t > 7 years,

(7.4)

where d·e represents the ceiling function.462

To determine the accuracy level that can be attained, we carry out a convergence analysis463

when pricing the GMDB guarantee. Table 7.2 holds the cost of the GMDB guarantee assuming464

ω = $80 for different refinement levels when the parameters in Table 7.1 are used. Note that we465

have set ρins = 0.008 for the time being. The top section of Table 7.2 contains the values obtained466

when fully implicit timestepping is used while the bottom panel presents the values recovered when467

Crank-Nicolson timestepping is used. Constant timesteps are taken for both fully implicit and468

Crank-Nicolson timestepping and the initial timestep is ∆τ = 0.05 years on the coarsest grid. To469

eliminate oscillations in the final Crank-Nicolson solution, two fully implicit timesteps are taken at470

the start of the solution process [39]. Note that Crank-Nicolson is not monotone, and hence is not471

guaranteed to converge to the viscosity solution.472

We see that the results for the highest refinement level in Table 7.2 provide an acceptable level473

of accuracy. However, results from higher refinement levels would be required to establish a definite474

conclusion about the convergence rate of the numerical scheme with both timestepping methods475

considered. Clearly the results in Table 7.2 show that the convergence has not settled down to the476

asymptotic rate. Results from higher refinement levels were not generated due to the prohibitive477

running time for such large problems. Nonetheless, since our interest lies in determining the fair478

insurance fee associated with the contract, the results in Table 7.2 provide adequate accuracy for479

practical purposes.480
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Cost of a GMDB guarantee
Refinement Nodes

Level S B D Option Value Difference Ratio
Fully Implicit

0 36 36 21 1.653844 n.a. n.a.
1 71 71 41 1.728004 0.074161 n.a.
2 141 141 81 1.752456 0.024452 3.03

Crank-Nicolson
0 36 36 21 1.711003 n.a. n.a.
1 71 71 41 1.761588 0.050585 n.a.
2 141 141 81 1.769926 0.008338 6.07

Table 7.2: Cost of the GMDB guarantee when the owner is assumed to be a male of 50 years old
at the time of purchase, ω = $80 and ρins = 0.008. Other contract parameters are presented in
Table 7.1. Nodes - B indicates the maximum number of nodes in the B direction (i.e. when D = 0).
The initial timestep is ∆τ = 0.05 years on the coarsest grid.

Fair Insurance Fee for GMDB Guarantee
Refinement Nodes Insurance

Level S B D Fee (ρins)
0 36 36 21 0.009255
1 71 71 41 0.009225
2 141 141 81 0.009216

Table 7.3: Fair insurance fee (ρins) for a GMDB guarantee for different grid refinement levels when
the owner is assumed to be a male of 50 years old at the time of purchase, ω = $80. Crank-Nicolson
timestepping is used and the initial timestep is ∆τ = 0.05 years on the coarsest grid. Other contract
parameters are presented in Table 7.1. Nodes - B indicates the maximum number of nodes in the
B direction (i.e. when D = 0).

Table 7.3 presents the convergence of the fair risk charge obtained when we use Crank-Nicolson481

timestepping. As before we assume that the owner is male, 50 years old when the contract is482

purchased, and that ω = $80. Other contract parameters are set to the values presented in Table 7.1.483

Results for the highest refinement level in Table 7.3 suggest that the no-arbitrage fee is accurate484

to about 2× 10−5.485

We also examined how the minimum deposit amount (ω) affects the fair insurance charge ρins486

obtained when solving equation (7.3). Table 7.4 presents the fair insurance charge for the GMDB487

clause with annual ratchet events when the minimum deposit ω ranges from $10 to $90. For488

comparison purposes, we also include the fair insurance charge for the GMDB clause when no489

withdrawals or contract lapsing are allowed. The results for both male and female owners are490

presented in Table 7.4. Other parameter values are specified in Table 7.1. In observing the results491

contained in Table 7.4, we see that the minimum deposit amount ω significantly impacts the fair492

insurance charge for the GMDB clause. Intuitively, as ω decreases, larger withdrawals can occur493

which is more detrimental to the issuing company and, as such, results in a higher insurance charge.494

The results in Table 7.4 show that the withdrawal feature is very valuable.495
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Minimal Deposit ω No withdrawal
Owner $90 $80 $60 $40 $20 $10 or lapsing
Male 0.0090 0.0092 0.0097 0.0106 0.0123 0.0137 0.0077

Female 0.0068 0.0069 0.0074 0.0081 0.0096 0.0108 0.0053

Table 7.4: Fair insurance charge (ρins) for contracts containing a GMDB clause with annual ratchet
events as a function of the minimal deposit amount (ω). Contract owners are assumed to be 50
years old at the time of purchase. The parameters in Table 7.1 are used in the pricing process.

Ratchet Interval
Owner 0.5 year 1 year 2 years 5 years 10 years
Male 0.0137 0.0123 0.0105 0.0080 0.0059

Female 0.0107 0.0095 0.0082 0.0062 0.0046

Table 7.5: Fair insurance charge (ρins) for a GMDB guarantee with different ratchet intervals
ranging from 0.5 to 10 years. The owner is assumed to be 50 years old at the time of purchase and
ω = $20. Other contract parameters used when solving equation (7.3) are presented in Table 7.1.

Table 7.4 also demonstrates the impact of the gender of the contract owner on the required496

insurance charge. Since female owners generally live longer than their male counterparts, a lower497

insurance fee is required. As shown in Table 7.4, this can be observed for different values of ω, as498

well as when the GMDB does not allow withdrawals or lapsing.499

In [33], the authors state that certain contracts with a GMDB clause include longer time500

intervals between ratchet dates such as 2 or 5 years. As such, numerical results for pricing GMDB501

contracts with ω = $20 for different ratchet intervals ranging from 6 months to 10 years are502

presented in Table 7.5. Note that the parameter values presented in Table 7.1 are used and that503

the owner is assumed to be 50 years of age when the contract is purchased. The results of Table 7.5504

demonstrate that a lower insurance charge is imposed by the issuer as the ratchet interval is505

increased. With fewer ratchet events during the contract lifetime, the death benefit exposure of the506

issuing company is generally reduced resulting in a lower insurance fee. This relation is observed for507

both male and female owners. Clearly, modifying the ratchet interval also significantly impacts the508

fair insurance charge associated with the GMDB clause. It would appear that both the withdrawal509

and ratchet features are very valuable when included in a GMDB contract.510

7.3 Numerical Results with Regime Switching511

We now consider results from numerical experiments where regime-switching is added to the pricing512

model, as described in Section 3. In accordance with the calibration carried out in [2], we assume513

that there are three economic regimes which we denote as e1, e2 and e3. In [2], the authors assume514

that the underlying is in one of three regimes of Brownian volatility and calibrate this model to an515

existing volatility smile. Therefore, we will determine the fair insurance charge ρins that satisfies:516

V (ρins;S = $100, B = $100, D = $100, E = e1, τ = 40 years) = 0. (7.5)

The data for all three states, e1, e2 and e3, is presented in Table 7.6 and is taken from [2]. Table 7.6517

also includes additional information about contract parameters and details on the grid construction518

used when solving equation (7.5) for different values of ω. We have verified that our choice for Bmax,519
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State Information - e1

σ1 - Volatility 0.0955
Jump sizes: J1→2 = 0.9095 ; J1→3 = 1.0279
Jump intensities: λ1→2 = 0.2405 ; λ1→3 = 3.3208

State Information - e2

σ2 - Volatility 0.0644
Jump sizes: J2→1 = 1.2502 ; J2→3 = 1.6512
Jump intensities: λ2→1 = 1.1279 ; λ2→3 = 0.0729

State Information - e3

σ3 - Volatility 0.0241
Jump sizes: J3→1 = 0.9693 ; J3→2 = 0.7732
Jump intensities: λ3→1 = 2.9882 ; λ3→2 = 0.2025

Contract Information
r - Interest rate 0.06
ρman - Management fees 0.015
Ratchet interval 1 year
Last Ratchet Date 30 years
T - Contract maturity 40 years

Grid Construction
D0 - Initial deposit $100
Smax - Grid parameter $3.6× 107

Bmax - Grid parameter $60000

Table 7.6: Parameter values used when pricing GMDB contracts with regime-switching. Jump
sizes and intensities taken from [2].

and consequently Smax, still provides a minimum of 5 digits of accuracy in the numerical results520

obtained. We set the small fixed cost to c = 1× 10−10 to ensure accuracy of at least 6 digits in the521

numerical results obtained.522

Table 7.7 holds the fair insurance fee for a GMDB guarantee with regime-switching assuming523

ω = $80 for different grid refinement levels. We further assume that the contract owner is a male524

of 50 years of age when the contract is purchased. Additional contract parameters are presented525

in Table 7.6 and constant timesteps are used with fully implicit timestepping. The initial timestep526

is ∆τ = 0.05 years on the coarsest grid. Due to the high dimensionality of the pricing problem527

considered, the coarsest grid in the D direction is limited to 11 nodes and results from only 2 refine-528

ment levels were obtained. We estimate that the results are correct to within 2× 10−4 when using529

a grid refinement of 2. While results from higher refinement levels would be necessary to establish530

a more definite convergence analysis, problem size and running time would be unmanageable. We531

remind the reader that the regime switching HJB problem is four dimensional. Note that typically,532

one obtains convergence estimates for nonlinear HJB equations which are of the form O(hρ) where533

h is the discretization parameter. Estimates of ρ vary from 1/27 to 1/2 depending on assumptions534

about regularity of the solution and the PDE coefficients. See [5] for an overview of recent work535

along these lines.536

Table 7.8 holds the fair insurance charge associated with the GMDB guarantee as a function of537

ω assuming the economy is in state e1. Based on previous comments, the results in Table 7.8 are538
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Fair Insurance Fee for GMDB Guarantee
with Regime-Switching

Refinement Nodes Insurance
Level S B D Fee (ρins)

0 119 36 11 0.006286
1 237 71 21 0.006085
2 473 141 41 0.005931

Table 7.7: Fair insurance fee (ρins) for a GMDB guarantee with regime-switching for different grid
refinement levels. The owner is assumed to be a male of 50 years old at the time of purchase
and ω = $80. Fully implicit timestepping is used and the initial timestep is ∆τ = 0.05 years on
the coarsest grid. Other contract parameters are presented in Table 7.1. Nodes - B indicates the
maximum number of nodes in the B direction (i.e. when D = 0).

Minimal Deposit ω No withdrawal
Owner $90 $80 $60 $40 $20 $10 or lapsing
Male 0.0058 0.0059 0.0063 0.0070 0.0082 0.0091 0.0049

Female 0.0044 0.0045 0.0049 0.0054 0.0065 0.0073 0.0034

Table 7.8: Fair insurance charge (ρins) for contracts containing a GMDB clause with annual ratchet
events as a function of the minimal deposit amount (ω) assuming the economy is in regime e1.
Contract owners are assumed to be 50 years old at the time of purchase. The parameters in
Table 7.6 are used in the pricing process.

obtained with a grid refinement level 2. Note that the owner is once again assumed to be 50 years539

of age when the contract is purchased. Other contract parameters used during the pricing process540

are presented in Table 7.6. For comparison purposes, the fair insurance charge associated with541

the GMDB guarantee when no withdrawal or lapsing is allowed is included in the last column of542

Table 7.8. As noted previously in Section 7.2, decreasing the minimum deposit amount ω increases543

the insurance fee charged by the issuing company. For example, setting ω = $10 when the contract544

owner is a man, requires a fee close to twice as large as that charged when no partial withdrawals545

are allowed. Notice that this remark applies equally to both male and female contract owners. In546

addition, the gender of the contract owner still affects the fair insurance charge for a given value547

of ω. Assuming ω = $40, the fair insurance charge for the GMDB guarantee when owned by a548

woman is about 25% less than what is charged for a male contract owner. Thus, even when more549

realistic assumptions are made regarding the state of the economy, we see that both the gender of550

the contract owner and the value of ω have a significant impact on the fair insurance fee for the551

GMDB guarantee.552

The results presented in Table 7.8 are significantly different from those included in previous work553

on the topic such as [33]. In [33], the authors consider a GMDB contract with continuous ratchet554

events, no partial withdrawals and a shorter maturity period, resulting in much lower insurance555

fees than those presented in Table 7.8. Thus, Table 7.8 clearly demonstrates that higher fees are556

required for GMDB contracts with a partial withdrawal feature in a regime-switching context.557
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8 Conclusion558

Increasingly popular in both the United States and the United Kingdom, variable annuity contracts559

include many different features. Focusing on contracts with a guaranteed minimum death benefit560

(GMDB) clause, we characterize the pricing problem as an impulse control problem. A pricing561

model based on partial differential equations was developed to determine the fair or no-arbitrage562

insurance charge for contracts with a GMDB clause. Regime-switching is also included in the563

pricing model due to the longer maturity of the contract considered. A numerical scheme was given564

which was shown to converge to the viscosity solution away from the ratchet dates. Based on results565

from numerical experiments, we have also shown that a much higher insurance charge is required566

when partial withdrawals are added to the GMDB guarantee. Previous work in the area [33] which567

ignores the possibility of partial withdrawals results in lower insurance fees. Inaccurate pricing and568

hedging of variable annuities has caused many insurance companies to take massive mark-to-market569

writedowns.570

The most costly aspect of the computation of the guarantee involves the linear search for finding571

the optimal withdrawal. Further work will focus on techniques for speeding up this computation.572

While we have shown that our procedure converges to the viscosity solution, we are not able to573

determine the rate of convergence. It is interesting to note that this popular contract results in a574

complex optimal control problem which puts us close to the boundaries of the computing resources575

which would typically be available in an insurance company.576

A Derivation of the GMDB Guarantee Equation577

We summarize the approach used in [42, 43] to derive the GMDB guarantee equation (2.5). Let S
be the amount in the investor’s account (a mutual fund), so that S follows the process

dS = (µ− ρtotal)S dt+ σS dZ , (A.1)

where µ is the drift under the real world measure. Recall that

ρtotal = ρman + ρins , (A.2)

where ρman are the management fees for the underlying mutual fund, and ρins are the fees allocated578

for funding the guarantee. More discussion of this typical fee splitting can be found in [43]. We579

suppose that the guarantee is offered on a mutual fund which tracks an index, so that it can be580

hedged without basis risk using index participation units. The index units Ŝ follow the process581

dŜ = µŜdt+ ŜσdZ. (A.3)

We further assume that it is not possible to short the mutual fund, so that the obvious arbitrage582

opportunity cannot be exploited.583

Now, consider the writer of the GMDB guarantee, with no-arbitrage value V (S,B,D, t). The584

writer sets up the hedging portfolio585

Π(S, Ŝ, t) = −V + xŜ, (A.4)

where x is the number of units of the index Ŝ.586
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Over the time interval t→ t+ dt, between withdrawal dates,587

dΠ =−
[(
Vt + (µ− ρtotal)SVS +

1
2
σ2S2VSS

)
dt+ σSVSdZ

]
+ x[µŜdt+ σŜdZ] +R(t)ρinsS dt−M(t)f dt , (A.5)

where the term R(t)ρinsS dt represents the GMDB fees collected from the investors remaining in588

the guarantee at time t, and the term M(t)f dt represents the death benefits paid out by the589

hedger. Let590

x =
S

Ŝ
VS , (A.6)

so that equation (A.5) becomes

dΠ = −
[(
Vt − ρtotalSVS +

1
2
σ2S2VSS

)
dt

]
+R(t)ρinsS dt−M(t)f dt . (A.7)

Let r be the risk free rate. Then setting dΠ = rΠ dt (since the portfolio is now riskless) gives591

Vt +
1
2
σ2S2VSS + (r − ρtotal)SVS − rV −R(t)ρinsS +M(t)f = 0 , (A.8)

which is equation (2.5).592

B Death Benefits for GMDB Problem593

In this section we give some details on determining the death benefit exposure for the issuer of594

a GMDB contract. We will assume that the economy state is constant for this section and that595

V = V (S,B,D, t) denotes the cost of the GMDB contract from the issuer’s point of view.596

When a GMDB contract is issued (t = 0), the death benefit is set to the initial deposit D0597

made by the policy owner, that is, B = D0 at t = 0. The death benefit can then be reset at each598

ratchet date to the maximum of the current investment account value or the current benefit level.599

Generally, ratchet events only occur during the accumulation phase of the contract and the last600

ratchet date is typically scheduled at the end of the policy year when the owner turns 80 years601

old [37]. If to denotes a rachet date and t−o and t+o are times just before and after to then standard602

no-arbitrage arguments give603

V (S,B+, D, t+o ) = V (S,B−, D, t−o ), (B.1)

where B+ = max(B−, S).604

Should the policy owner pass away prior to the expiry of the GMDB contract, the death benefit605

is exercised and the beneficiary receives the greater of the current benefit level or the current606

investment account value. Consequently, the issuing company is liable for any excess payment607

when the current death benefit is higher than the investment account value.608

When the holder of the contract makes a partial or full withdrawal (lapsing), a surrender charge,609

denoted as γ(t), is imposed. When the death benefit is exercised, the owner’s estate does not pay a610

surrender charge. However, the issuer may have to pay a surrender charge to the re-seller [37]. In611

this paper, we consider the value of the guarantee from the issuer’s perspective. To be concrete, we612
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can think of the issuer of the guarantee as a re-insurer, and the re-seller as an insurance company613

selling the guarantee to retail customers. We assume that the surrender charge is calculated as a614

percentage of the current deposit level D [37]. Generally, the surrender charge is highest at the615

start of the contract and decreases annually. After the initial ts years of the contract, the surrender616

charge disappears: γ(t) = 0 when t > ts years. Typically, ts = 7 years. Hence, the death benefit617

exposure of the issuer, denoted by f = f(S,B,D, t), is defined as:618

f(S,B,D, t) = max(B − S, 0) + γ(t)D. (B.2)

C Partial Withdrawal Features619

In this section we give the details involved in allowing a partial withdrawal feature to be included620

in a GMDB contract, and give an intuitive derivation of equation (2.8). For a more detailed621

description of impluse control problems in finance, we refer the reader to [31].622

The partial withdrawal feature enables the contract owner to withdraw any cash amount up to623

the current account value S. However, to keep the policy active, a minimal deposit amount must624

remain in the investment account. We denote the partial withdrawal amount as W ∈ [0, S − ω],625

where ω is the minimal deposit amount. For each partial withdrawal, a surrender charge, denoted626

by γ(t) and calculated as a percentage of W , is imposed. The surrender charge γ(t) is also applied627

when the owner chooses to lapse his policy. Recall that when an investor decides to lapse his policy,628

the investment account is liquidated and the GMDB policy cancelled. In this case, the surrender629

charge is a percentage of the investment account value S.630

While we determine the no-arbitrage insurance charge for the GMDB guarantee, for explanatory631

purposes, it is useful to first consider the effect of partial withdrawals on the entire GMDB contract632

(investment account plus guarantee) and determine the appropriate withdrawal constraint. The633

withdrawal constraint for the entire GMDB contract is then used as a tool to derive the withdrawal634

constraint for the GMDB guarantee.635

Let V = V(S,B,D, t) represent the value of the entire GMDB contract (investment account636

plus guarantee). Assuming optimal behavior and ignoring mortality effects for the moment, the637

policy owner will maximize his return and choose W such that:638

W = argmax
W ′∈[0,S−ω]

(
(1− γ(t))W ′ + V(S −W ′,max(B −W ′, 0),max(D −W ′, 0), t)

)
. (C.1)

Taking into consideration the option to lapse, the value of the total GMDB contract satisfies (after639

optimal withdrawal or lapsing):640

V = max
(

(1− γ(t))S, max
W∈[0,S−ω]

(
(1− γ(t))W + V(S −W,max(B −W, 0),max(D −W, 0), t)

))
.

(C.2)

While we have assumed in equation (C.2) that the contract owner will lapse whenever it is optimal641

to do so, alternate assumptions could be made whereby the contract owner would lapse at a pre-642

determined rate. See [42, 43] for more details on modeling investor lapsing.643

Our goal is to determine the value of the GMDB guarantee, so we need derive the equivalent644

withdrawal constraint from the issuer’s perspective. We are looking to value the GMDB guarantee645
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in an aggregate sense by assuming that contracts are sold to a given population. As such, the646

mortality/survival function defined in equation (2.6) must be taken into consideration when de-647

termining the withdrawal constraint. More precisely, we redefine V(S,B,D, t) as the value of the648

whole contract to the issuer which can be written as: V(S,B,D, t) = V (S,B,D, t) +R(t)S. Notice649

that only the investment account is affected by the survival probability since investor mortality is650

already included in the differential equation for V (S,B,D, t) presented as (2.5). Since only those651

owners that are alive can conduct a withdrawal or choose to lapse, the cash flows associated with652

both actions will also be scaled by the survival probability.653

Integrating our cash flow assumption into equation (C.2), we obtain654

V = max
(
R(t)(1− γ(t))S,

max
W∈[0,S−ω]

(
R(t)(1− γ(t))W + V(S −W,max(B −W, 0),max(D −W, 0), t)

))
= max

(
R(t)(1− γ(t))S, (C.3)

max
W∈[0,S−ω]

(
−R(t)γ(t)W + V (S −W,max(B −W, 0),max(D −W, 0), t) +R(t)S

))
,

which, since V (S,B,D, t) = V(S,B,D, t)−R(t)S, gives655

V = max
(
−R(t)γ(t)S, max

W∈[0,S−ω]

(
V (S −W,max(B −W, 0),max(D −W, 0), t)−R(t)γ(t)W

))
.

(C.4)
Thus, we can denote the withdrawal constraint by AV = AV (S,B,D, t) with:656

AV ≡ max
(
−R(t)γ(t)S, max

W∈[0,S−ω]

(
V (S −W,max(B −W, 0),max(D −W, 0), t)−R(t)γ(t)W

)
− c
)
,

(C.5)
where c > 0 is a small fixed cost added to the constraint to ensure that the impulse control problem657

is well-posed.658

Consequently, at all points in the solution domain, we have

V −AV ≥ 0 (C.6)

where equation (C.6) holds with equality if it is optimal to withdaw. Defining the differential659

operator L as660

LV =
1
2
σ2S2VSS + (r − ρtotal)SVS − rV (C.7)

then at all points in the soltion domain we have (from equation (2.5) )

Vτ − LV +R(τ)ρinsS −M(τ)f ≥ 0 (C.8)

where equality holds if it is not optimal to withdraw. Since it must be optimal to either withdraw661

or not to withdraw, we have that662

min
(
Vτ − LV +R(τ)ρinsS −M(τ)f, V −AV

)
= 0. (C.9)

at all points in the solution domain.663
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D Derivation of the Boundary Condition as S →∞664

To determine the boundary condition for equation (2.15) as S →∞, we make the common assump-665

tion that VSS → 0 [44], which implies:666

V ≈ H(B,D, τ)S + F (B,D, τ), (D.1)

where H(B,D, τ) and F (B,D, τ) are independent of S. We further assume that S is so large that667

H(B,D, τ)S � F (B,D, τ), which leads to:668

V ≈ H(B,D, τ)S. (D.2)

Equation (D.2) implies:669

VS ≈ H(B,D, τ), (D.3)

and hence, we can rewrite the differential equation in (2.15) as:670

Hτ (B,D, τ)S =(r − ρtotal)H(B,D, τ)S − rH(B,D, τ)S −R(τ)ρinsS +M(τ) max(B − S, 0)

+M(τ)γ(τ)D +
1
ε

max
(
A(H(B,D, τ)S)−H(B,D, τ)S, 0

)
, (D.4)

where671

A(H(B,D, τ)S) = (D.5)

max
(
−R(τ)γ(τ)S, max

W∈[0,S−ω]

(
H(max(B −W, 0),max(D −W, 0), τ)(S −W )−R(τ)γ(τ)W

)
− c
)
.

Since B � Smax and W ≤ D0 � Smax, we can simplify equation (D.4) as:672

Hτ (B,D, τ)S ≈ (D.6)

− ρtotalH(B,D, τ)S −R(τ)ρinsS +
1
ε

max
(
A(H(B,D, τ)S)−H(B,D, τ)S, 0

)
.

As a result, we obtain the following approximation to equation (D.4):673

Vτ = −ρtotalV −R(τ)ρinsS +
1
ε

max(AV − V, 0) ; S = Smax. (D.7)

A similar argument gives the boundary condition for large S when regime switching is used.674

E Discretization675

The regime-switching partial differential equation presented in (3.8) can be approximated by re-676

placing derivatives by finite difference approximations. Recall that the discrete version of equation677

(3.8) can be written as in equation (5.3) (assuming fully implicit timestepping).678

The choice of discretization for the derivative terms in equation (3.8) will determine the value679

of both αi,j,m and βi,j,m. For example, choosing the higher order central difference scheme leads to680
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if αi,j,m,central ≥ 0 and βi,j,m,central ≥ 0 then

αi,j,m = αi,j,m,central

βi,j,m = βi,j,m,central

else if βi,j,m,forward ≥ 0 then

αi,j,m = αi,j,m,forward

βi,j,m = βi,j,m,forward

else

αi,j,m = αi,j,m,backward

βi,j,m = βi,j,m,backward

end if

Algorithm E.1: Coefficient Discretization

the following values of αi,j,m and βi,j,m:681

αi,j,m,central =
(σmS

j
i )

2

(Sji − S
j
i−1)(Sji+1 − S

j
i−1)

−
Sji (r − ρtotal −

∑M
l=1; l 6=m λ

m→l(Jm→li,j − 1))

Sji+1 − S
j
i−1

,

βi,j,m,central =
(σmS

j
i )

2

(Sji+1 − S
j
i )(S

j
i+1 − S

j
i−1)

+
Sji (r − ρtotal −

∑M
l=1; l 6=m λ

m→l(Jm→li,j − 1))

Sji+1 − S
j
i−1

, (E.1)

where Jm→li,j = Jm→l(Sji ). However, to produce a positive coefficient method, it is preferable to682

choose other discretization techniques at the problem nodes such as forward or backward differences.683

Forward differences produces:684

αi,j,m,forward =
(σmS

j
i )

2

(Sji − S
j
i−1)(Sji+1 − S

j
i−1)

,

βi,j,m,forward =
(σmS

j
i )

2

(Sji+1 − S
j
i )(S

j
i+1 − S

j
i−1)

+
Sji (r − ρtotal −

∑M
l=1; l 6=m λ

m→l(Jm→li,j − 1))

Sji+1 − S
j
i

, (E.2)

while backward differences delivers:685

αi,j,m,backward =
(σmS

j
i )

2

(Sji − S
j
i−1)(Sji+1 − S

j
i−1)

−
Sji (r − ρtotal −

∑M
l=1; l 6=m λ

m→l(Jm→li,j − 1))

Sji+1 − S
j
i

,

βi,j,m,backward =
(σmS

j
i )

2

(Sji+1 − S
j
i )(S

j
i+1 − S

j
i−1)

. (E.3)

Algorithmically, the decision between a central or forward discretization at each node is made based686

on the criteria presented in Algorithm E.1. Note that Algorithm E.1 guarantees that both αi,j,m687

and βi,j,m are non-negative:688

αi,j,m ≥ 0 ; βi,j,m ≥ 0 for all i, j and m. (E.4)
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F Proofs of Stability and Consistency of Discretization689

In this section we give proofs of both stability and consistency of our discretization in order to690

complete our theoretical analysis of the previous section. We note that such proofs are usually691

loosely presented without any details. However the details are often subtle and in order to ensure692

correctness we give the complete proofs.693

F.1 Proof of Theorem 6.7694

In this subsection, we show that the discrete GMDB cost V n+1
i,j,k,m is bounded. Before proving695

Theorem 6.7, we prove some utility lemmas. We define the vector V n+1 as:696

V n+1 =


V n+1

1

V n+1
2
...

V n+1
M

 , (F.1)

where V n+1
m is defined in equation (5.12) and the κth entry of V n+1 is denoted as [V n+1]i,j,k,m

where:

κ = (i+ 1) + j(imax + 1) + k(imax + 1)(jmax + 1) + (m− 1)(imax + 1)(jmax + 1)(kmax + 1).

Let Pn+1 be defined as:697

[Pn+1Zn+1]i,j,k,m =

(
1 + ∆τ

(
αi,j,m + βi,j,m + r +

M∑
l=1
l 6=m

λm→l
))
Zn+1
i,j,k,m −∆ταi,j,mZn+1

i−1,j,k,m

−∆τβi,j,mZn+1
i+1,j,k,m −∆τ

M∑
l=1
l 6=m

λm→lH(Jm→l)iZn+1
j,k,l (F.2)

when i < imax and698

[Pn+1Zn+1]imax,j,k,m =

(
1 + ∆τ

(
ρtotal +

M∑
l=1
l 6=m

λm→lJm→limax

))
Zn+1
imax,j,k,m

−∆τ
M∑
l=1
l 6=m

λm→lJm→limax
Zn+1
imax,j,k,l

(F.3)

when i = imax. Also, let Qn+1(V n+1) be defined by:699

[Qn+1(V n+1)Zn+1]i,j,k,m =[Pn+1Zn+1]i,j,k,m +
∆τµn+1

i,j,k,m

ε
Zn+1
i,j,k,m

−
∆τµn+1

i,j,k,m

ε
(1− an+1

i,j,k,m)I(Wn+1
i,j,k,m)i,j,kZn+1

m ,

(F.4)
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valid for all i. Here, µn+1
i,j,k,m is defined in equation (5.6), an+1

i,j,k,m is defined in equation (5.15) and700

the interpolation operators H(Jm→l)i and I(Wn+1
i,j,k,m)i,j,k are defined in equations (5.9) and (5.13)701

respectively. The matrix Qn+1(V n+1) is the matrix of coefficients for all terms involving elements702

from V n+1 in the discretization (5.3). Note that Qn+1(V n+1) is a function of the solution since the703

interpolation operators, the µ and a values all depend on the solution.704

It is useful to note the following property of the coefficient matrices Pn+1 and Qn+1(V n+1).705

Lemma F.1 (M-matrix). The matrices Pn+1 and Qn+1(V n+1) as defined in equations (F.2),(F.3)706

and (F.4) are M-matrices for any V n+1.707

Proof. The diagonal entries in Pn+1 are positive while the off-diagonal entries are negative or equal708

to zero. In addition, the row sum of the entries in both matrices are strictly positive for all rows.709

The above are also true for the matrixQn+1(V n+1) for any V n+1. Thus both Pn+1 andQn+1(V n+1)710

are M-matrices.711

Remark F.2. We remark that an M-matrix has the important property that it is invertible with712

a positive inverse. In particular, for any vector Z, Pn+1Z ≥ 0 or Qn+1(V n+1)Z ≥ 0 implies that713

Z ≥ 0.714

Lemma F.3. The following are true.715

(a) Let [Zn+1]i,j,k,m = Cn+1
0 Bmax + Cn+1

1 Dmax (with Cn+1
0 , Cn+1

1 defined in (6.5)). Then:

Qn+1(V n+1)Zn+1 > Zn+1

for any V n+1.716

(b) Let [Zn+1]i,j,k,m = Sji . Then3:

Pn+1Zn+1 = (1 + ρtotal∆τ)Zn.

(c) Let Z solve the discrete equations (5.3). Then:

Qn+1(Zn+1)Zn+1 = Zn + ∆τRestn+1,

where for all i (since fimax,j,k = 0)

[Restn+1]i,j,k,m = Mn+1fi,j,k −Rn+1ρinsS
j
i −

µn+1
i,j,k,m

ε

[
an+1
i,j,k,mR

n+1γn+1Sji

+(1− an+1
i,j,k,m)(Rn+1γn+1Wn+1

i,j,k,m + c)
]

(F.5)

denotes the constant terms of the discretization.717

3Note that this is trivially true at Sj
0 = 0.
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(d) Let Z solve the discrete equations (5.3). Then:

Pn+1Zn+1 = Zn + ∆τRestn+1,

where for all i (since fimax,j,k = 0)

[Restn+1]i,j,k,m = Mn+1fi,j,k −Rn+1ρinsS
j
i +

µn+1
i,j,k,m

ε

[
−an+1

i,j,k,mR
n+1γn+1Sji (F.6)

+(1− an+1
i,j,k,m)(I(Wn+1

i,j,k,m)i,j,kZn+1
m −Rn+1γn+1Wn+1

i,j,k,m − c)−Z
n+1
i,j,k,m

]
.

Proof. Identity (a) follows by looking at the i, j, k,m components of the matrix form of P and Q.
For example, when i < imax we have

[Qn+1(V n+1)Zn+1]i,j,k,m = (1 + ∆τ(r + ai,j,k,m
µi,j,k,m
ε

))[Zn+1]i,j,k,m

> [Zn+1]i,j,k,m

with a similar inequality when i = imax. A similar argument holds for identity (b). Identities (c)718

and (d) follow directly from the definitions of Q and P and the discretization in (5.3).719

We now present the proof of Theorem 6.7.720

Proof. (of Theorem 6.7)721

Let Zn be the vector defined by [Zn]i,j,k,m = Sji +V n
i,j,k,m for all i, j, k,m. We will use induction to722

show that Zn ≥ 0 for all n.723

Notice that [Z0]i,j,k,m = Sji + V 0
i,j,k,m = Sji ≥ 0. Assume now that n > 0 and that Zn ≥ 0.

Then, from Lemma F.3(b)(d) we have:

[Pn+1Zn+1] = Zn + ∆τGn+1, (F.7)

with (since fi,j,k ≥ 0)

[Gn+1]i,j,k,m ≥ (ρtotal −Rn+1ρins)S
j
i +

µn+1
i,j,k,m

ε

[
−an+1

i,j,k,mR
n+1γn+1Sji

+(1− an+1
i,j,k,m)(I(Wn+1

i,j,k,m)i,j,kV n+1
m −Rn+1γn+1Wn+1

i,j,k,m − c)− V
n+1
i,j,k,m

]
.(F.8)

Note that ρtotal − Rn+1ρins ≥ 0. Furthermore, notice that µn+1
i,j,k,m = 1 only when (see equa-724

tion (5.6)):725

−an+1
i,j,k,mR

n+1γn+1Sji +(1−an+1
i,j,k,m)(I(Wn+1

i,j,k,m)i,j,kV n+1
m −Rn+1γn+1Wn+1

i,j,k,m−c)−V
n+1
i,j,k,m > 0 (F.9)

and µn+1
i,j,k,m = 0 otherwise. Hence, equation (F.8) implies that [Gn+1]i,j,k,m ≥ 0.726

Since Zn ≥ 0, we see that Pn+1Zn+1 ≥ 0 and, since Pn+1 is an M-matrix, Zn+1 ≥ 0. Thus, by727

induction Zn ≥ 0 for all n, proving the first inequality of (6.4).728
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Now let Zn be the vector defined by [Zn]i,j,k,m = Cn0Bmax + Cn1Dmax for all i, j, k,m. We will729

prove the second inequality of (6.4) by using induction to show that Zn − V n ≥ 0 for all n. Since730

(see equation (6.5)):731

[Z0 − V 0]i,j,k,m = ∆τM0 Bmax + ∆τM0γ0Dmax ≥ 0, (F.10)

the result is true for n = 0. Assume that n > 0 and that Zn − V n ≥ 0. From Lemma F.3(a) along732

with the definition of Cn0 and Cn1 (see equation (6.5)) we have:733

Qn+1(V n+1)Zn+1 > Zn+1 = Zn + ∆τ [Mn+1Bmax +Mn+1γn+1Dmax].

Hence, using Lemma F.3(c) gives:

Qn+1(V n+1)(Zn+1 − V n+1) > (Zn − V n) + ∆τ [Mn+1Bmax +Mn+1γn+1Dmax]−∆τRestn+1,

where the components of Restn+1 are given in equation (F.5). Let

G = [Mn+1Bmax +Mn+1γn+1Dmax]− Restn+1.

Then, for i < imax, and using:734

0 ≤ fn+1
i,j,k = max(Bk

j − S
j
i , 0) + γn+1Dk ≤ Bmax + γn+1Dmax , (F.11)

we have:

[G]i,j,k,m = Mn+1
(
Bmax + γn+1Dmax − fi,j,k

)
+Rn+1ρinsS

j
i

+
µn+1
i,j,k,m

ε

[
an+1
i,j,k,mR

n+1γn+1Sji + (1− an+1
i,j,k,m)(Rn+1γn+1Wn+1

i,j,k,m + c)
]

≥ Rn+1ρinsS
j
i

+
µn+1
i,j,k,m

ε

[
an+1
i,j,k,mR

n+1γn+1Sji + (1− an+1
i,j,k,m)(Rn+1γn+1Wn+1

i,j,k,m + c)
]

≥ 0, (F.12)

since there are only positive terms in the expression. This is also the case when i = imax. As735

before, Zn − V n ≥ 0 so that Qn+1(V n+1)(Zn+1 − V n+1) ≥ 0 and, since Qn+1(V n+1) is an M-736

matrix, Zn+1 − V n+1 ≥ 0. Hence, by induction, Zn − V n ≥ 0 for all n.737

Thus, we have shown that V n+1
i,j,k,m is bounded with:738

−Sji ≤ V
n+1
i,j,k,m ≤ C

n+1
0 Bmax + Cn+1

1 Dmax for all i, j, k,m, n. (F.13)

Note that the bound presented in equation (F.13) also holds immediately after each ratchet date739

τu+
o . Recall that the value of the GMDB guarantee is updated on each ratchet date τuo according740

to equation (4.8), which implies (for the continuous problem):741

V m(S,B,D, em, τu+
o ) =


V m(S,B,D, em, τu−o ) if S ≤ B,
V m(S, S,D, em, τu−o ) if B < S ≤ Bmax,

V m(S,B,D, em, τu−o ) if S > Bmax.

(F.14)

Equation (F.14) implies that the bound for V n+1
i,j,k,m presented in equation (F.13) remains applicable742

at times τu+
o .743

744
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Remark F.4 (Tighter Upper Bound). We note that it is possible to obtain the tighter bound745

−Sji ≤ V
n+1
i,j,k,m ≤ C

n+1
0 Bmax + Cn+1

1 Dk for all i, j, k,m, n. (F.15)

However, bound (6.4) is sufficient for our purposes.746

F.2 Proof of Theorem 6.13747

In this subsection, we show that the numerical scheme in equation (5.3) is consistent. Before748

proving Theorem 6.13, we prove an important lemma.749

Lemma F.5. For any smooth test function φ with bounded derivatives of all orders with respect to750

S and τ , with x = (Sji , B
k
j , Dk, em, τ

n+1), we have (see equation (6.13)):751

Ĝ
(
h, x, φn+1

i,j,k,m + ξ, φni,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)
− F (φ)n+1

i,j,k,m = O(h) + ξb(x), (F.16)

where b(x) is a bounded function of x with |b(x)| ≤ max(r, ρtotal).752

Proof. To prove Lemma F.5, we consider the truncation error for the differential operator L and753

the penalty term.754

Let755

[Lφ]n+1
i,j,k,m (F.17)

represent the continuous operator L at node (Sji , B
k
j , Dk, em, τ

n+1), while the discrete version of756

the operator is denoted by:757 [
Lhφ

]n+1

i,j,k,m
. (F.18)

Using Taylor series expansion, we have:758 [
Lh(φ+ ξ)

]n+1

i,j,k,m
−[Lφ]n+1

i,j,k,m = −rξ +O(∆Sjmax), (F.19)

when computing Hiφn+1
j,k,l using linear interpolation (see equation (5.9)).759

Similarly, we assume that:760

[Aφ]n+1
i,j,k,m (F.20)

represents the continuous withdrawal constraint evaluated at node (Sji , B
k
j , Dk, em, τ

n+1), while the761

discrete version of the withdrawal constraint is denoted as:762

[Ahφ]n+1
i,j,k,m. (F.21)

Recall that the discrete withdrawal constraint is determined by linear search as in Algorithm 5.1.763

The discretization error associated with the penalty term occurs when it is optimal for the764

owner to conduct a withdrawal, as opposed to lapsing his policy. Indeed, interpolation is required765

when calculating the penalty term when a withdrawal occurs, but not when the owner lapses (see766

equation (5.11)). Since the maximum of a linearly interpolated value is obtained at the nodes, the767

linear interpolation truncation error is O(h2) (noting Assumption 5.6). Taking the maximum of the768

linear interpolation function, as done in Algorithm 5.1, is also second order correct. Assuming two-769

dimensional linear interpolation is used when calculating the withdrawal constraint as described770
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in equation (5.13), the interpolation error will be O(∆Sjmax∆Bu
max). Therefore, we obtain (from771

equation (5.16)):772

[Ah(φ+ ξ)]n+1
i,j,k,m − [Aφ]n+1

i,j,k,m = ξ +O(∆Sjmax∆Bu
max) +O(h2) (F.22)

when it is optimal to withdraw and 0 when it is optimal to lapse.773

Recall from equation (6.6) that the discrete scheme G
(
h, x, V n+1

i,j,k,m, V
n
i,j,k,m, {V

n+1
a,p,u,l}

)
is denoted774

as follows on interior nodes when Sji < Smax:775

φn+1
i,j,k,m − φ

n
i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k −

1
ε

max
(

[Ahφ]n+1
i,j,k,m − φ

n+1
i,j,k,m, 0

)
= 0.

(F.23)
We re-formulate the penalized problem in equation (F.23) as:776

min

[
φn+1
i,j,k,m − φ

n
i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k −

1
ε

(
[Ahφ]n+1

i,j,k,m − φ
n+1
i,j,k,m

)
,

φn+1
i,j,k,m − φ

n
i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

]
= 0. (F.24)

Equation (F.24) implies that one of the following holds with equality:777

φn+1
i,j,k,m − φ

n
i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k −

1
ε

(
[Ahφ]n+1

i,j,k,m − φ
n+1
i,j,k,m

)
≥ 0,

(F.25)

φn+1
i,j,k,m − φ

n
i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k ≥ 0.

(F.26)

Since ε > 0, equation (F.25) is equivalent to:778

ε

(
φn+1
i,j,k,m − φ

n
i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)
+ φn+1

i,j,k,m − [Ahφ]n+1
i,j,k,m ≥ 0.

(F.27)
Similarly, equations (F.26) and (F.27) can be combined to obtain:779

min

(
ε

(
φn+1
i,j,k,m − φ

n
i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)
+ φn+1

i,j,k,m − [Ahφ]n+1
i,j,k,m ,

φn+1
i,j,k,m − φ

n
i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)
= 0, (F.28)

which corresponds to the definition of Ĝ(h, x, V n+1
i,j,k,m, V

n
i,j,k,m, {V

n+1
a,p,u,l}) in equation (6.13) for in-780

terior nodes. Applying the same technique for the boundary nodes, we can show the equivalence781

between the original scheme G(h, x, V n+1
imax,j,k,m

, V n
imax,j,k,m

, {V n+1
a,p,u,l}) in equation (6.7) and782

Ĝ(h, x, V n+1
imax,j,k,m

, V n
imax,j,k,m

, {V n+1
a,p,u,l}) in equation (6.14). This demonstration is omitted for brevity.783
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Using the result in equation (F.28) and the discretization error estimates in equations (F.19)784

and (F.22), we find for the interior nodes when Sji < Smax (noting that |max(x, y)−max(α, β)| ≤785

max(|x− α|, |y − β|) ):786 ∣∣∣∣Ĝ(h, x, φn+1
i,j,k,m + ξ, φni,j,k,m + ξ, {φn+1

a,p,u,l + ξ}
)
− Fin(φ)n+1

i,j,k,m

∣∣∣∣ (F.29)

≤ max

(∣∣∣∣(φn+1
i,j,k,m + ξ −Ah(φn+1

i,j,k,m + ξ)
)
−
[
φ−Aφ

]n+1

i,j,k,m

+ε
(
φn+1
i,j,k,m − φ

n
i,j,k,m

∆τ
− [Lh(φ+ ξ)]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)∣∣∣∣,∣∣∣∣(φn+1
i,j,k,m − φ

n
i,j,k,m

∆τ
− [Lh(φ+ ξ)]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)
−
[
φτ − Lφ+R(τ)ρinsS −M(τ)f

]n+1

i,j,k,m

∣∣∣∣
)

= max

(∣∣∣∣O(∆Sjmax∆Bu
max) +O(h2) + ε

(
φn+1
i,j,k,m − φ

n
i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i

−Mn+1fn+1
i,j,k − ξr

)∣∣∣∣, ∣∣∣∣O(∆τ) +O(∆Sjmax) + rξ

∣∣∣∣
)
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Similarly, for the boundary nodes when Sji = Smax, we have:787 ∣∣∣∣Ĝ(h, x, φn+1
imax,j,k,m

+ ξ, φnimax,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)
− Fbound(φ)n+1

imax,j,k,m

∣∣∣∣ (F.30)

≤ max

(∣∣∣∣(φn+1
i,j,k,m + ξ −Ah(φn+1

i,j,k,m + ξ)
)
−
[
φ−Aφ

]n+1

i,j,k,m
+ ε

(
φn+1
imax,j,k,m

− φnimax,j,k,m

∆τ

+ρtotal(φn+1
imax,j,k,m

+ ξ)−
M∑
l=1
l 6=m

λm→lJm→limax
(φn+1
imax,j,k,l

− φn+1
imax,j,k,m

) +Rn+1ρinsS
j
imax

)∣∣∣∣,
∣∣∣∣(φn+1

imax,j,k,m
− φnimax,j,k,m

∆τ
+ ρtotal(φn+1

imax,j,k,m
+ ξ)−

M∑
l=1
l 6=m

λm→lJm→limax
(φn+1
imax,j,k,l

− φn+1
imax,j,k,m

)

+Rn+1ρinsS
j
imax

)
−
[
φτ + ρtotalφ−

M∑
l=1
l 6=m

λm→lJm→l(S)
(
φ(S,B,D, el, τ)− φ

)
+R(τ)ρinsS

]n+1

imax,j,k,m

∣∣∣∣
)

= max
(∣∣∣∣O(∆Sjmax∆Bu

max) +O(h2) + ε

(
φn+1
imax,j,k,m

− φnimax,j,k,m

∆τ

+ρtotal(φn+1
imax,j,k,m

+ ξ)−
M∑
l=1
l 6=m

λm→lJm→limax
(φn+1
imax,j,k,l

− φn+1
imax,j,k,m

) +Rn+1ρinsS
j
imax

)∣∣∣∣,
∣∣∣∣O(∆τ) +O(∆Sjmax) + ρtotalξ

∣∣∣∣).
Using Assumption 6.6, we obtain:788

Ĝ
(
h, x, φn+1

i,j,k,m + ξ, φni,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)
= F (φ)n+1

i,j,k,m +O(h) + ξb(x), (F.31)

for both boundary and interior nodes, where b(x) is a bounded function with |b(x)| ≤ max(r, ρtotal).789

790

We now present the proof of Theorem 6.13.791

Proof. (of Theorem 6.13)792

We begin by proving that equation (6.16) holds. From the definition of lim sup, there exists se-793

quences hd, id, jd, kd, nd, ξd such that794

hd → 0, ξd → 0, xd = (Sjdid , B
kd
jd
, Dkd

, em, τ
nd+1)→ x̂ = (Ŝ, B̂, D̂, em, τ̂) as d→∞, (F.32)

and795

lim sup
d→∞

Ĝ
(
hd,xd, φ

nd+1
id,jd,kd,m

+ ξd, φ
nd
id,jd,kd,m

+ ξd, {φnd+1
ad,pd,ud,l

+ ξd}
)

= lim sup
ξ, h→0

x→x̂

Ĝ
(
h, x, φn+1

i,j,k,m + ξ, φni,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)
. (F.33)
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From our result in equation (F.5), we have:796

Ĝ
(
hd, xd, φ

nd+1
id,jd,kd,m

+ ξd, φ
nd
id,jd,kd,m

+ ξd, {φnd+1
ad,pd,ud,l

+ ξd}
)

= F (φ(xd)) +O(hd) + ξdb(xd), (F.34)

where F (φ(x)) is defined in equation (6.10) for interior and boundary nodes.797

Now consider a sequence of nodes xd as defined in equation (F.32) which may contain both798

interior (Sjdid < Smax) and boundary nodes (Sjdid = Smax). Combining equation (F.34) with equa-799

tion (F.33), we get:800

lim sup
ξ, h→0

x→x̂

Ĝ
(
h, x,φn+1

i,j,k,m + ξ, φni,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)
≤ lim sup

d→∞
F (φ(xd)) + lim sup

d→∞
[O(hd) + ξdb(xd)] ≤ F ∗(φ(x̂))

where the last inequality holds because of:801

lim sup
d→∞

[O(hd) + ξdb(xd)] = 0. (F.35)

Verifying equation (6.17) can be done in a similar fashion.802

Having shown that equations (6.16) and (6.17) hold, we conclude that the discrete equations in803

(5.3) are consistent according to Definition 6.11.804

G Comparison with Previous GMDB Numerical Results805

In [33], the authors present an analytical model to price GMDB contracts with different death806

benefit guarantees including return-of-premium, rising floor and ratchets. More specifically, the807

authors determine the fair insurance charge that equates the present value of the risk charges with808

the value of the death benefit guarantee. While mostly focusing on guarantees with a rising floor,809

basic numerical results for contracts with a continuous lookback or ratchet feature are included810

in [33]. To validate the GMDB pricing model presented in Section 2, we attempt to reproduce the811

numerical results presented in [33] when valuing a GMDB clause with ratchets.812

For consistency with the problem considered in [33], we modify the GMDB pricing problem813

presented in Section B to satisfy the following:814

• Since the authors of [33] focus on determining the value for ρins, the contract considered does815

not include any management fees. Consequently, we set ρman = 0.816

• The contract considered in [33] does not include the partial withdrawal or lapsing feature.817

Thus, we will solve the following pricing equation:818

Vτ =
1
2
σ2S2VSS + (r − ρins)SVS − rV −R(τ)ρinsS +M(τ) max(B − S, 0), (G.1)

without imposing an impulse control.819

• To reproduce the continuous ratchet assumption, we apply the update feature presented in820

equation (4.8) discretely at each timestep during the solution process. As ∆τ → 0, the value821

of the GMDB guarantee will converge to the contract value with continuous ratchets.822
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GMDB with Continuous Ratchet
Nodes Insurance Charge - ρins

Refinement Timesteps S B Male Female
0 2500 80 80 0.003960 0.002334
1 5000 159 159 0.004042 0.002383
2 10000 317 314 0.004086 0.002409
3 20000 633 633 0.004114 0.002426
4 40000 1265 1265 0.004133 0.002437

Value from [33] 0.00418 0.00246

Table G.1: Fair insurance charge ρins for a GMDB contract with discrete ratchet events when the
owner is assumed to be 50 years old when the contract is purchased. The contract assumptions
are chosen to approximate those in [33]. Crank-Nicolson timestepping with constant timesteps was
used. We assume σ = 0.20, r = 0.06, ρman = 0 and set the initial timestep is set to ∆τ = 0.01
years on the coarsest grid.

In [33], the authors assume that the contract terminates when the owner is 75 years old and consider823

a range of values for the age of the contract owner at the time of purchase (namely 30, 40, 50, 60824

and 65 years old). We will focus our analysis on the case most similar to the rest of the results in825

this paper and assume that the contract owner is 50 years old at the time of purchase; this implies826

that T = 25 years in our pricing model.827

To be consistent with [33], we set σ = 0.20 and r = 0.06. In addition, the mortality data is828

generated with a Gompertz mortality distribution using the parameters presented in [33] corre-829

sponding to the age of the contract owner when the contract is purchased. The parameters in [33]830

are obtained by fitting a Gompertz mortality distribution to the 1994 Group Annuity Mortality831

Table (Basic) over the contract lifetime. In our case, we approximate the continuous mortality832

function with a discrete mortality distribution generated with ∆τ = 6.25 × 10−4 years. Such a833

small ∆τ is chosen to avoid interpolation issues for higher refinement levels.834

Recall that we are looking to determine the fair insurance charge ρins that satisfies:835

V (ρins;S = $100, B = $100, D = $100, τ = T ) = 0. (G.2)

Newton iteration is used during the solution process and the tolerance is set to 1 × 10−6. The836

resulting insurance charges are presented in Table G.1.837

We see that the results obtained in Table G.1 are consistent with those presented in [33] but838

exhibit slow convergence. Keep in mind that the authors of [33] generate their results with ana-839

lytical formulas while we approximate the contract considered by using discrete ratchet events. In840

Table G.1, we are essentially valuing a discrete lookback option which is a difficult problem. As841

the ratchet interval is reduced, the value of a discrete lookback is known to converge very slowly842

to the corresponding continuous lookback value [3, 13, 29].843

Nonetheless, the numerical results in Table G.1 are certainly sufficient for practical purposes.844

Similar levels of accuracy were observed when comparing our numerical results to the analytical845

values in [33] for the remaining cases (i.e. when the owner is assumed to be 30, 40, 60 and 65 years846

old).847

40



References848

[1] A. L. Amadori. Quasi-variational inequalities with Dirichlet boundary conditions related to849

exit time problems for impulse control. SIAM Journal on Control and Optimization, 43(2):570–850

589, 2004.851

[2] E. Ayache, P. Henrotte, S. Nassar, and X. Wang. Can anyone solve the smile problem? Wilmott852

Magazine, pages 78–96, January 2004.853

[3] S. Babbs. Binomial valuation of lookback options. Journal of Economic Dynamics and Control,854

24:1499–1525, 2000.855

[4] G. Barles. Numerical Methods in Finance, chapter Convergence of Numerical Schemes for856

Degenerate Parabolic Equations Arising in Finance Theory, pages 1–21. Cambridge University857

Press, 1997.858

[5] G. Barles and E. Jakobsen. Error bounds for monotone approximation schemes for parabolic859

Hamilton-Jacobi-Bellman equations. Mathematics of Computation, 76:1861–1893, 2007.860

[6] G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully nonlinear861

equations. Asymptotic Analysis, 4:271–283, 1991.862

[7] D. Bauer, A. Kling, and J. Russ. A universal pricing framework for guaranteed minimum863

benefits in variable annuities. Working paper, Ulm University, 2006.864

[8] N. P. B. Bollen. Valuing options in regime-switching models. Journal of Derivatives, 6(1):38–865

49, 1998.866

[9] P. Boyle and T. Draviam. Pricing exotic options under regime switching. Insurance: Mathe-867

matics and Economics, 40(2):267–282, 2007.868

[10] G. Briere-Giroux, D. Czernicki, D. Maloof, and H. Mueller. Variable annuity products face869

tough decisions in the midst of the financial crisis. working paper, Towers Perrin, 2008.870

[11] J. Buffington and R. J. Elliott. American options with regime-switching. International Journal871

of Theoretical and Applied Finance, 5(5):497–514, 2002.872

[12] Z. Chen and P. A. Forsyth. A numerical scheme for the impulse control formulation for pricing873

variable annuities with a guaranteed minimum withdrawal benefit (GMWB). Working paper,874

University of Waterloo, Cheriton School of Computer Science, 2007.875

[13] T. Cheuk and T. Vorst. Currency lookback options and observation frequency: A binomial876

approach. Journal of International Money and Finance, 16(2):173–187, 1997.877

[14] S. Choi. Regime-switching univariate diffusion models of the short-term interest rate. Working878

paper, School of Economics, University of Adelaide, Australia, 2004.879

[15] T. F. Coleman, Y. Li, and M. Patron. Hedging guarantees in variable annuities (under both880

market and interest rate risks). Insurance: Mathematics and Economics, 38:215–228, 2006.881

41



[16] Collection of Life Tables - Recueil des tables de mortalité canadiennes - 1801–1996. CIED882
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