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Abstract. A semi-Lagrangian method is presented to price continuously observed £xed strike Asian options.
At each timestep a set of one dimensional partial integro differential equations (PIDEs) is solved and the solution of
each PIDE is updated using semi-Lagrangian timestepping. Crank-Nicolson and second order backward differencing
timestepping schemes are studied. Monotonicity and stability results are derived. With low volatility values, it is
observed that the non-smoothness at the strike in the payoff affects the convergence rate; sub-quadratic convergence
rate is observed.
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1. Introduction. An Asian option gives the holder a payoff that depends on the average
price of the underlying asset over a speci£ed period of time (12). Asian-style derivatives have
a wide variety of applications in equity, energy, interest rate, and insurance markets. These
options tend to be less expensive than vanilla options (since the volatility of the average price
is less than the price itself) and average prices over a period of time are far more dif£cult
to manipulate for illiquid commodities. For example, airline companies are certainly more
interested in buying oil based on its average price instead of its spot price. For a historical
review of Asian options we refer the reader to (11).

The price of an Asian option at any time is a function of both the underlying asset at that
time and the average of the underlying prices up to that time. As such these options are con-
sidered path-dependent. In practice, Asian option contracts typically specify that the average
is monitored discretely. A typical situation would be to base the average on the daily closing
price. If daily averaging is used, then for typical market parameters, for options with expiry
times more than three months, we can consider these options as being continuously moni-
tored, for all practical purposes. In addition, if we need to price long term Asian options (for
example greater than one year), then using timesteps of one day (which would be required in
a discrete observation model (52)) would clearly be computationally wasteful. Consequently,
in this paper we focus on continuously observed Asian options. For details on numerical
methods for discretely observed Asian options, we refer the reader to (18; 17; 52; 25)

In this paper we are interested in the pricing of Asian options with various general payoff
conditions (for example, American style, asset dependent barriers or volatility). When the
underlying asset follows a standard brownian motion stochastic process then the price of an
Asian option can be determined by solving a two dimensional PDE. In some special cases
(e.g. constant volatility, no barrier features, and a ¤oating strike contract) this problem can
be reduced to a one-dimensional PDE (4). In addition, for either ¤oating or £xed strike, but
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not American style or asset dependent features (e.g. volatility a function of asset price), a
one dimensional PDE can also be derived (46). However, in the general case which we are
interested in, the two dimensional PDE cannot be reduced to one dimension.

The two dimensional PDE that appears in our general case of the Asian option pricing
problem has no diffusion in one of the coordinate directions and as such is well known to be
dif£cult to solve numerically. In (51; 50), a ¤ux limiter was used to retain accuracy while
preventing oscillations. In (32), the £rst order hyperbolic term was discretized using a £rst
order upwind type method, resulting in at most £rst order accuracy. A related approach
based on a combination of a WENO discretization and grid stretching was used for Asian
options in (37). In (38), a semi-Lagrangian method was used to discretize the hyperbolic
term in the average direction. Semi-Lagrangian schemes were £rst introduced by (21) and
(40) for atmospheric and weather numerical predictions. These are time marching schemes
that integrate convection-diffusion equations by tracing backward in time the position of the
¤ow. These schemes are used to reduce numerical problems raised by convection dominated
equations. In principle, provided an appropriate time discretization is used, and a high enough
order of interpolation is used to recover values at the feet of the characteristic curves (23; 1;
10), then this method is capable of greater than £rst order convergence as the grid and timestep
size is reduced.

In this paper, we will explore the use of a semi-Lagrangian method for pricing Asian
options. The semi-Lagrangian method has many advantages in our case. For example we
are able to easily solve the pricing problem in the more general context of a jump diffusion
stochastic processes, and contracts with American early exercise features. Jump diffusion
models were introduced in the option valuation context in (33). They are important because
of the increasing empirical evidence that the usual assumption of geometric Brownian motion
should be augmented by discontinuous jump processes (22).

We make no assumptions regarding the contract or the form of the deterministic volatility
function. We remark that although we focus exclusively on Asian options in this paper, similar
PDEs (no diffusion in one of the space-like directions) occur in certain interest rate models
(44) and employee reload options with various constraints (9). Hence the methods developed
here will be applicable to these cases as well.

The main results in this paper are

• We demonstrate that a semi-Lagrangian method can be used to price continuously
observed American Asian options under jump diffusion processes. The implemen-
tation suggested here reduces this problem to solving a decoupled set of one di-
mensional nonlinear discrete partial integro differential equations (PIDEs) at each
timestep. This makes implementation of this method very straightforward in a soft-
ware library which is capable of pricing discretely observed path dependent options
(52). In the general case, a numerical method must be used to integrate the character-
istic equation in a semi-Lagrangian method. However, in the case of Asian options,
the characteristic equation can be solved analytically, which makes implementation
very straightforward.

• We show that in the fully implicit case, the semi-Lagrangian method is algebraically
identical to a standard numerical method for pricing discretely observed Asian op-
tions, if the observation interval is equal to the discrete timestep. Since lattice meth-
ods (47) can be regarded as explicit £nite difference methods it follows that the usual
binomial forest method for Asian options (28) can also be regarded as an explicit
semi-Lagrangian method.

• Since the discretized problem at each timestep reduces to a set of decoupled one
dimensional PIDEs, we can make use of the techniques developed in (24; 19; 20) to
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prove certain properties of the discrete scheme, including convergence of the itera-
tive method used to solve the implicit discrete equations. In the fully implicit case, it
is straightforward to prove l∞ stability and monotonicity, which are important prop-
erties of discrete schemes for option pricing (5; 41; 15; 13).

In addition to the above contributions, we also include experimental computations which
indicate that, even if second order timestepping methods are used, observed convergence as
the mesh and timestep is re£ned occurs at a sub-second order rate. The problem can be traced
to the non-smoothness of the payoff function.

2. Mathematical Model. In this section we give the mathematical model for options
with jump diffusion processes. We do this for both European and American options. If the
underlying asset follows a jump diffusion process, the usual portfolio hedging arguments
cannot be used. As such, we will also present a brief discussion of various strategies for
hedging jump risk.

Let S represent the underlying stock price. We restrict attention in the following to £nite
activity processes, that is, we assume that the probability density of a jump occurring with
a given jump size, in some interval [t, t + dt] is always £nite (14). The potential stock paths
followed by the stock can be modeled by a stochastic differential equation given by

dS
S

= (ξ−κλ)dt +σdZ +(η−1)dq , (2.1)

where

ξ is the drift rate,

dq is the independent Poisson process =

{
0 with probability 1−λdt
1 with probability λdt,

λ is the mean arrival time of the Poisson process,

η−1 is an impulse function producing a jump from S to Sη,

σ is the volatility,

dZ is an increment of the standard Gauss-Wiener process,

κ is E[η−1],where E[·] is the expectation operator.

When the average is monitored continuously (7; 47; 25), the arithmetic average A is
de£ned as

A =

∫ t
0 S(u)du

t
with dA =

(S−A)

t
dt. (2.2)

2.1. The PIDE for Asian Options. Using standard arguments (7), the value of an option
depending on S (2.1) and A (2.2) and assuming no jumps (that is, λ = 0) is given by

Vt +
1
2

σ2S2VSS +
(S−A)

t
VA + rSVS− rV = 0, (2.3)

where r is the continuously compounded risk free interest rate. Since we are solving backward
in time from the expiration time t = T to the present time t = 0, equation (2.3) becomes

Vτ =
1
2

σ2S2VSS +
(S−A)

T − τ
VA + rSVS− rV, (2.4)

where τ = T − t. It is important to note that equation (2.4) has no diffusion term in the A
direction and this is the source of many numerical dif£culties (51).
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Extending equation (2.4) to the case of jumps gives

Vτ =
(S−A)

T − τ
VA +

1
2

σ2S2VSS +(r−λκ)SVS− rV +

(
λ

∫ ∞

0
V (Sη)g(η)dη−λV

)
, (2.5)

where

g(η) is the probability density function of the jump amplitude η,

thus for all η : g(η)≥ 0 and
∫ ∞

0
g(η)dη = 1. (2.6)

As a speci£c example, if

g(η) =
e

(
− (log(η)−µ)2

2γ2

)

√
2πγη

, (2.7)

the probability density function suggested by (33; 45), then its expectation is given by E[η] =
exp(µ + γ2/2). This means that the expected relative change in the stock price is given by
κ = E[η−1] = exp(µ+ γ2/2)−1.

For brevity, the details of the derivation of equation (2.5) have been omitted (see (3; 33;
47)). In general, it is not possible to construct a hedging portfolio which eliminates jump risk.
However, by adding options to the hedging portfolio, a hedging strategy can be constructed
which minimizes jump risk (3). If equation (2.5) is calibrated to market prices, then the
parameters so obtained should be regarded as risk-adjusted (31), not historical.

If we de£ne

H V ≡Vτ−
[
(S−A)

T − τ
VA +

σ2S2

2
VSS +(r−λκ)SVS− (r +λ)V +λ

∫ ∞

0
V (Sη)g(η)dη

]

(2.8)

and if V ∗(S,A) is the payoff, then the American option pricing problem can be stated as (39)

min(H V ;V −V ∗) = 0 . (2.9)

2.2. Boundary Conditions for our PIDE. In order to completely specify our problem
we still need to give boundary conditions for our American Asian option pricing PIDE. For
the terminal boundary conditions, a number of common payoffs for pricing different types of
Asian securities can be used. Typical examples include

• £xed strike call: V (S,A,τ = 0) = max(A−K,0.0),
• £xed strike put: V (S,A,τ = 0) = max(K−A,0.0).

Although the original domain is 0 ≤ S < ∞, 0 ≤ A < ∞, for computational purposes we
make the typical assumption of using a £nite computational domain [0,Smax]× [0,Amax], with
Amax = Smax. A discussion of the errors involved in using a £nite computational domain (the
localization error) for the speci£c case of option pricing PIDEs is discussed in (16). How-
ever, as pointed out in (16; 13), unlike the usual option pricing PDE case, it is necessary to
approximate the solution outside the computational domain S > Smax in order that the integral
in equation (2.5) is well de£ned. The results in (16) suggest that the error in misspeci£cation
of the boundary condition at S = Smax (for values of S of practical interest) can be made arbi-
trarily small by making Smax (and hence Amax = Smax) suf£ciently large. This will be veri£ed
in some numerical tests in Section 8.

In the case of Asian options without jumps (equation (2.4)), Meyer (34) provides an ex-
tensive discussion of the boundary conditions. Using the results in (36), Meyer concludes
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that no boundary conditions are required at S = 0,A = 0,A = Amax. Intuitively, this is be-
cause the PDE degenerates on the boundary in such a way that either the PDE becomes an
ODE, or the resulting degenerate parabolic PDE has a normal hyperbolic term with outgoing
characteristics. Note that rigorous arguments justifying this result can be deduced from (36).

We now turn our attention to the complete PIDE with a non-zero jump term (2.5). We
note that the jump integral term contains no A dependence and so consequently, we can simply
solve the PIDE along the boundaries A = Amax,A = 0 as in the no-jump case. In this case, the
boundary condition for the PIDE is simply the continuous limit of A→ 0,A→ Amax, from
points interior to the computational domain.

Taking the limit of the PIDE (2.5) as S→ 0, we obtain

lim
S→0

H V = Vτ−
[ −A

T − τ
VA− rV

]
. (2.10)

Note that the above limit is obtained by formally interchanging the limit and the integral in
equation (2.5). Equation (2.10) is, of course, the same limit as in the PDE (no jump) case,
since the integral terms disappear as S → 0. Again, in this case, the boundary condition
is simply the continuous limit of the PIDE as S → 0. We will develop consistent, stable
and monotone discrete schemes which do not require any data outside the computational
domain at S = 0, and hence satisfaction of the boundary condition as S = 0 is ensured (see
the discussion of viscosity solutions in subsection 2.3).

For the boundary condition as S→ ∞ we need to deal with two major issues. The £rst
problem is that there is no obvious Dirichlet type condition which can be imposed for S
large. The second issue concerns the fact that on any £nite domain [0,Smax], the integral term
appears to require information from outside the computational domain.

If we make the common assumption that VSS→ 0 as S→ ∞ (27), then this implies that

V ' f (A,τ)S +g(A,τ) (2.11)

as S→ ∞ which then means that equation (2.8) becomes

H V 'Vτ−
(

S−A
T − τ

VA + rSVS− rV

)
; S→ ∞. (2.12)

For AÀ K and S→ ∞, we can approximate the solution to H V = 0 by a linear function in A
and S

V ' H1(τ)A+H2(τ)S +H3(τ) (2.13)

so that

V ' D1

T
e−rτ(T − τ)A+

[
D1

rT
(1− e−rτ)+D2

]
S +D3e−rτ (2.14)

where D1,D2,D3 are independent of (S,A,τ) and are determined by the payoff. For example,
for a £xed strike call, D1 = 1,D2 = 0,D3 =−K. Assuming (2.14) holds for S→∞, ∀A (which
is clearly an approximation for A small) we obtain

VS '
[

D1

rT
(1− e−rτ)+D2

]
; S→ ∞ . (2.15)

Substituting equation (2.15) into equation (2.12) gives

H V ≡Vτ−
(

(S−A)

T − τ
VA +χ(S,τ)− rV

)
; S→ ∞ , (2.16)
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where

χ(S,τ) =

[
D1

rT
(1− e−rτ)+D2

]
rS . (2.17)

For the payoffs mentioned earlier, we have that χ(τ,S) = (1−e−rτ)
T S for a £xed strike call and

χ(τ,S) = 0 for a £xed strike put.
The use of approximation (2.15) is discussed in (35), where it is mentioned that estimate

(2.15) is in fact an upper bound for VS. It must be admitted that use of equation (2.14) for
all A as S→ ∞ is not rigorously justi£ed. However, we note that other authors (32) simply
specify that the boundary condition at S = Smax is set to the payoff. In (32), the size of
the computational domain is increased as the grid size is reduced, so that the effect of poor
speci£cation of the boundary condition becomes negligible. However, as discussed in (35),
the boundary condition (2.16) is at least qualitatively correct.

In view of the above, we impose the boundary conditions as S→∞ in the following man-
ner. We assume that Smax is suf£ciently large so that the solution can be well approximated
by a linear function of S in the region [Smax− δ,Smax]. Provided that we choose δ carefully
(see (20)), the integral term in the PIDE (2.8) in [0,Smax− δ] has suf£cient data for accurate
computation. In the region [0,Smax− δ]× [0,Amax], the operator H is de£ned as in equation
(2.8). In the region [Smax−δ,Smax]× [0,Amax], we assume that V is linear in S, so that in this
region the operator H V reduces to the PDE

H V = Vτ−
[

σ2S2

2
VSS +

(
S−A
T − τ

)
VA + rSVS− rV

]
for S ∈ [Smax−δ,Smax] . (2.18)

Although we have assumed that VSS = 0 in [Smax − δ,Smax], we leave the VSS term in the
operator (2.18) so that numerical solution is straightforward.

At S = Smax, based on equation (2.16), we de£ne H V as

H V ≡Vτ−
(

S−A
T − τ

VA +χ(S,τ)− rV

)
. (2.19)

The above arguments can be used to justify formally solving the PIDE in the region
[0,Smax]× [0,Amax], with the requirement that λ = 0 for S ∈ [Smax− δ,Smax]. We then have
a well de£ned problem in [0,Smax]× [0,Amax], which does not require data outside the com-
putational domain. Note that in [Smax − δ,Smax], only a few nodes are required, since the
solution is assumed to be linear. Hence this method of handling the dif£culties as S→ ∞ is
not computationally expensive (at least as far as the PIDE solve is concerned).

2.3. Viscosity Solutions. In general, there may be no smooth solutions to equation (2.9).
In what follows it will be understood that we are seeking weak viscosity solutions. A detailed
discussion concerning existence and uniqueness of viscosity solutions to equation (2.9), can
be found in (39; 2), for European and American options under jump diffusion. In addition,
suf£cient conditions to ensure convergence of a discrete numerical scheme to the viscosity
solution in the PDE case, is given in (6; 5). Finally, an extension of the results in (6; 5)
to the case of option pricing problems with integro differential equations (jump diffusions)
is given in (13) for nonlinear, multidimensional, degenerate problems and in (15) for linear
problems. By exploiting the equivalence of Binomial Trees and explicit £nite difference
methods, viscosity solution methods are used to prove converge of a lattice method for Asian
options in (29).
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3. Semi-Lagrangian Discretization. Typically when pricing continuously observed
arithmetic average Asian option, the two dimensional problem (2.4) must be solved. In (51),
the authors use a £nite volume approach combined with ¤ux limiters to solve equation (2.4).
This requires solution of a set of nonlinear discretized algebraic equations at each timestep.
When the convection terms become very large, (note that the convection term in the A direc-
tion in equation (2.5) becomes in£nite as τ→ T ), ¤ux-limiters revert to a £rst order upwind
scheme which affects the accuracy of the solution (1). A related approach was used for
Asian options in (37). In this paper we solve equation (2.4) using a semi-Lagrangian scheme.
This idea was also suggested for American Asian options (without jumps but with stochastic
volatility) in (38). In this section we explore different discretization methods for the partial
differential equation using the semi-Lagrangian approach.

Before proceeding any further, let us introduce the following de£nitions. We use an
unequally spaced grid in S coordinates for the PDE discretization [S0, . . . ,SM], and similarly
use an unequally spaced grid in the A direction [A0, . . .AM]. Let

V n
i, j = V (Si,A j,τn) (3.1)

denote the solution at asset price node Si for the average A j and time level n. Let C be the
differential operator represented by

CV =
1
2

σ2S2VSS +(r−λκ)SVS− (r−λ)V, (3.2)

and

BV = λ
∫ ∞

0
V (Sη)g(η)dη . (3.3)

Equation (2.5) can then be rewritten as

Vτ +
(A−S)

T − τ
VA = CV +BV. (3.4)

In order to impose the American early exercise constraint we will use a penalty method
(19; 24; 49). Brie¤y, this replaces equation 2.9 by a non-linear PIDE

Vτ +
(A−S)

T − τ
VA = CV +BV +q(V ). (3.5)

where the penalty term is

q(V ) = ρmax(V ∗−V,0). (3.6)

The positive penalty parameter ρ is selected suf£ciently large so that either V ≥V ∗ or

|V −V ∗|
V ∗

< ε ; ε¿ 1 ; when V < V ∗,V ∗ > 0 (3.7)

After discretizing the PDE with the non-linear penalty term, it is straightforward to select a
suitably normalized discrete penalty parameter ρ′, so that ε in equation (3.7) is less than a
user speci£ed tolerance. We refer the reader to (24) for more details about this method.

We use standard £nite difference methods to discretize the operator CV (41) (see Ap-
pendix A). If we impose boundary condition (2.16), and use forward and backward differ-
encing as appropriate, it is easy to see that the discrete form of I−CV is an M-matrix (see
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Section 5.2). As discussed in (41), for typical values of σ,r, upwind differencing of the VS

term in equation (3.5) is required only rarely, and usually remote from regions of interest,
so that in practice this does not impact solution quality. Requiring the discrete form of CV
to be an M-matrix has interesting theoretical properties. In the following, we denote the
discrete form of CV at S = Si,A = A j,τ = τn by (CV )n

i, j. As described in (20; 19) the inte-
gral (BV )i, j can be ef£ciently computed by transforming to equally spaced logS coordinates,
approximating the integral using a Trapezoidal rule, using an FFT, and then transforming
back to S coordinates. Special care is taken to avoid problems with wrap around (20). If
linear interpolation is used to transform from equally spaced logS coordinates to unequally
spaced S coordinates (and vice versa), this introduces a second order error consistent with the
discretization of the PDE terms (20). Effectively, we are approximating BV by

(BV )i, j ' λ∑
k

bikVk j = λB ·V j

with 0≤ bik ≤ 1 and ∑
k

bik ≤ 1. (3.8)

Note that conditions (2.10) and (2.18) imply that we must also have

bik = 0 for i = 1 and i = M; ∀k . (3.9)

The dense matrix multiply B ·V j can be evaluated ef£ciently using an FFT. For details, see
(20; 19).

The Lagrangian derivative along a trajectory A = A(S,τ), for S £xed, is

DV
Dτ

=
∂V
∂τ

+
∂V
∂A

dA
dτ

. (3.10)

Along the trajectory

dA
dτ

=
A−S
T − τ

(3.11)

equation (3.5) can be written as

DV
Dτ

= CV +BV +q(V ). (3.12)

Let A = A(Si,A j,τn+1,τ) along a trajectory satisfying equation (3.11), which passes through
the discrete grid point (Si,A j) at τ = τn+1 for Si being held constant. Let An

j(i,n+1) be the
departure point of this trajectory at τ = τn. Note that An

j(i,n+1) will not necessarily coincide
with a grid point A j. Rather An

j(i,n+1) is determined by solving

dA
dτ

=
A−Si

T − τ
where A = A j for τ = τn+1 , (3.13)

from τ = τn+1 to τ = τn, that is,

An
j(i,n+1) = A j + lim

τ∗→(τn+1)

∫ τn

τ∗

A−Si

T − τ
dτ. (3.14)

The limit in equation (3.14) is used to avoid problems at τ = T , where ODE (3.13) becomes
unde£ned.
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Let V n
i, j(i,n+1) = V (Si,An

j(i,n+1),τ
n) denote the value of the option price at the departure

point of the trajectory. Then discretizing equation (3.12) along the characteristic trajectory
for different timestepping schemes gives, in the case of fully implicit timestepping:

V n+1
i, j −V n

i, j(i,n+1)

∆τ
= (CV )n+1

i, j +(BV )n+1
i, j +q(V n+1

i, j ) , (3.15)

and for Crank-Nicolson timestepping (CN),

V n+1
i, j −V n

i, j(i,n+1)

∆τ
=

1
2

(
(CV )n+1

i, j +(BV )n+1
i, j

)

+
1
2

(
(CVi, j(i,n+1))

n +(BV )n
i, j(i,n+1)

)
+q(V n+1

i, j ), (3.16)

and for second order backward differencing (BDF) (8)

1
2V n+1

i, j −2V n
i, j(i,n+1) +

1
2V n−1

i, j(i,n+1)

∆τ
= (CV )n+1

i, j +(BV )n+1
i, j +q(V n+1

i, j ) . (3.17)

For ease of exposition, we have written equation (3.17) for constant timesteps. This is trivially
generalized to non-constant timesteps (8).

Unlike traditional applications of the semi-Lagrangian approach where the characteristic
curve must be estimated numerically, for Asian options the solution along the characteristic
curve can be determined exactly. Regarding S as a constant, and solving equation (3.11) gives

A = Si +
D

T − τ
, (3.18)

where D is a constant independent of A (but a function of Si). At τ = τn+1, A = A j, so that

At time τn : An
j(i,n+1) = A j +

(Si−A j)(τn+1− τn)

T − τn ,

At time τn−1 : An−1
j(i,n+1) = A j +

(Si−A j)(τn+1− τn−1)

T − τn−1 , (3.19)

where T ≥ τn+1 > τn > τn−1. Note that for the last step when τn+1 = T , equation (3.19)
simpli£es to An

j(i,n+1) = An−1
j(i,n+1) = Si, which is the correct limiting behaviour of equation

(3.14). The various quantities (·)n
i, j(i,n+1) in equations (3.15-3.17) are determined by interpo-

lation along lines of constant S = Si. Assuming that the S derivatives and the integral term are
discretized using second order accurate methods, then it follows from (10; 23) that at least
quadratic interpolation should be used for (·)n

i, j(i,n+1) in order to retain global second order
convergence.

4. Semi-Lagrangian Timestepping and Discrete Observations. Asian options which
are continuously observed are typically considered to be the limit of discretely observed Asian
options as the observation interval tends to zero (18; 45). A similar statement can also be
made about the discretization of the continuous problem given in the previous section. In
this section we compare these two discrete problems. We show that if the discrete sampling
period is equal to the discrete PIDE timestep, then a fully implicit, discretely sampled model
is algebraically identical to a fully implicit semi-Lagrangian discretization of a continuously
observed model. In the following, we ignore the effect of the boundary condition (2.16).
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Consider the discrete average computed at the discrete forward observation times t ` = `∆t

Â(t`) =
1
`

`

∑
p=1

S(t p)

= Â(t`−1)+
S(t`)− Â(t`−1)

`
. (4.1)

Note that we are careful to distinguish the average computed at forward times as a function
of t, from the average computed at backwards times as a function of τ, that is, A(τ) = Â(t)
where τ = T − t. Similarly, we can de£ne the value of an Asian option as a function of
(S, Â, t) as V̂ (S, Â, t), where, in terms of V (S,A,τ) we have the identity V (S,A(T−t),T−t) =
V̂ (S, Â(t), t) .

When using a PIDE method to price a discretely observed Asian option, we consider that
V̂ = V̂ (S, Â, t), and regard (S, Â) as independent variables. Suppose we have N observation
dates, at the times ∆t,2∆t, ...,N∆t with N∆t = T . Let Â` = Â(t`). Then at the `-th observation
date we must have, by no arbitrage (47),

V̂ (S, Â`+1, t(`+1)+) = V̂ (S, Â`, t(`+1)−) (4.2)

where t(`+1)+, t(`+1)− are the instants just after and just before the observation date t`+1. In
equation (4.2) Â`+1 = Â` + S−Â`

`+1 and is regarded as constant for t`+1 < t < t`+2.

Let Ak = A(τk) and set k = N− `, so that k counts backwards. Since τk = k∆τ we have
that t` = T−τk, t`+1 = T−τk−1 and as well, t(`+1)+ = T −τ(k−1)− and t(`+1)− = T −τ(k−1)+.
Writing the no-arbitrage condition (4.2) in terms of the variables τ,A(τ) rather than t, Â(t)
then gives

V (S,Ak+1,τk+) = V (S,Ak,τk−) where Ak = Ak+1 +
S−Ak+1

N− k
. (4.3)

As before we regard Ak+1 as £xed during τk < τ < τk+1.
Consider the case of a discretely observed European Asian option. In this case we solve

Vτ = CV +BV +q(V ) (4.4)

on the domain [0,Smax]× [0,Amax], with the no-arbitrage conditions (4.3) imposed at obser-
vation times. Away from observation dates, if we discretize equation (4.4) in the A direction,
then equation (4.4) represents a set of one dimensional PIDEs, which communicate only
through no-arbitrage conditions (18).

From the no-arbitrage condition (4.3) we have that a fully implicit discretization of equa-
tion (4.4) gives

V (Si,A
k+1
j ,τ(k+1)−)−V (Si,A

k+1
j ,τk+)

∆τ
= (CV )k+1

i, j +(BV )k+1
i, j +q(V k+1

i, j ) . (4.5)

Note that this is a set of independent one dimensional PDEs (there are no A derivatives in
equation (4.5), Ak+1

j appears only as a parameter). Using the no-arbitrage condition (4.3) in
equation (4.5) gives

V (Si,A
k+1
j ,τ(k+1)−)−V (Si,Ak

j(i,k+1),τ
k−)

∆τ
= (CV )k+1

i, j +(BV )k+1
i, j +q(V k+1

i, j ) (4.6)
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where

Ak
j(i,k+1) = Ak+1

j +
(S−Ak+1

j )∆τ
T − τk , (4.7)

which we recognize from equation (3.15) and equation (3.19) as being algebraically identical
to a semi-Lagrangian, fully implicit discretization.

Note that in order for this result to hold, we must have discrete observations at t =
∆t,2∆t, ...,N∆t, that is, no observation at t = 0. Of course, in the limit as ∆t → 0, adding an
extra observation at t = 0 will be the same to O(∆t) as the semi-Lagrangian solution.

REMARK 4.1. As discussed in (25), it is straightforward to show that the common lattice
methods used to price Asian options (28) are simply explicit £nite difference methods for
discretely observed models of Asian options. In many lattice applications, the observation
interval is set to the lattice timestep, hence the continuously observed price is computed in
the limit of vanishing timestep. A straightforward extension of the results above can be used
to show that these lattice methods are simply explicit semi-Lagrangian methods. In this case,
it is also easy to derive the conditions on the order of interpolation and the spacing on the
lattice in the average direction to ensure optimal convergence. We note that, as discussed in
(25), this is a point of confusion in the £nance literature, and has led to schemes which are
not, in fact, convergent (25; 7). A convergence proof using viscosity solution ideas for lattice
methods (for Asian options) is given in (29), but only for the case where the lattice contains
all possible average values.

5. Monotonicity and Stability of the Discrete Equations. As shown in (41), in the
case of nonlinear option pricing problems, seemingly reasonable discretization schemes can
converge to an incorrect (i.e. non-viscosity) solution. Convergence to the viscosity solution
is guaranteed if the discretization is consistent, monotone and l∞ stable (5; 13; 15). Usually,
consistency follows if any reasonable discretization method is used, although in the case of
jump-diffusion, the non-locality of the integral term requires care in showing consistency
(13; 15). l∞ stability is usually a consequence of monotonicity. Consequently, the most
interesting requirement is monotonicity.

In the following, we will investigate the monotonicity and stability properties of the
discrete equations. We will use a de£nition of monotonicity which is somewhat stricter than
is usually the case in £nancial applications (5), but more in line with the de£nition used in
computational ¤uid dynamics (CFD) (30). It appears to us that the CFD de£nition is a more
useful aid to the design of suitable discrete schemes. In Appendix B, we will show that CFD
de£nition of monotonicity can be deduced from the usual de£nition of monotonicity in the
viscosity solution literature, as long as the discretization is consistent.

We remind the reader that use of semi-Lagrangian timestepping decouples the discrete
equations at each timestep, resulting in a set of one dimensional discrete PIDEs. Hence we
can use our techniques in (24; 41; 19; 20) to prove the desired properties of the discretized
equations.

5.1. Preliminaries. De£ne the matrices B and C such that

λ
[
B ·V n

j

]
i
= (BV )n

i, j + truncation error (5.1)
[
C ·V n

j

]
i
= (CV )n

i, j + truncation error (5.2)

where V n
j is the vector of discrete solution values

[
V n

j

]
i
=V (A j,Si,τn) for £xed A j. A detailed

description of B is given in (20; 19). For our purposes, we note that B has the properties given
by equation (3.8). A detailed description of matrix C is given in Appendix A.
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To avoid algebraic complication, we will describe the discrete equations and the method
used to solve the algebraic equations, only for the fully implicit and Crank-Nicolson timestep-
ping methods. The reader should have no dif£culty generalizing the results to the BDF case.

Let Φn+1 be the Lagrange interpolation operator such that

(Φn+1 ·V n)i, j = V (Si,A
n
j(i,n+1),τ

n)+ interpolation error (5.3)

where Φn+1 is a linear operator for any order (linear, quadratic) of interpolation. We also let
V ∗ be the vector of payoffs obtained upon exercise and P be the diagonal matrix given by

P(V n+1
j )ii =

{
Large if V n+1

i, j < V ∗i, j

0 otherwise.
(5.4)

Then the matrix form of the discrete equations for the penalized method is given by

[I− (1−θ)∆τC +P(V n+1
j )]V n+1

j = [Φn+1[I +θ∆τC]V n] j +(1−θ)λ∆τBV n+1
j

+[Φn+1θλ∆τBV n] j +
[
P(V n+1

j )
]

V ∗j +∆τFn+1
j (5.5)

for j = 1, ..,M. Here θ = 0 is fully implicit, and θ = 1/2 is Crank-Nicolson timestepping.
The term Fn+1

j is used to approximate the boundary condition at S = Smax, as discussed in
subsection 2.2. Note that Bi,l = 0 for Si ∈ [Smax− δ,Smax], as discussed in subsection 2.2.
Condition (2.16) is enforced at i = M by adjusting CM,l as discussed in Appendix A, and
letting

[
Fn+1

j

]
i
=

{
0 , i 6= M

(1−θ)χ(Smax,τn+1)+θχ(Smax,τn) , i = M
(5.6)

where χ(S,τ) is discussed in subsection 2.2.
We note here that the penalty formulation of the American option pricing problem re-

duces problem (2.9) to the nonlinear PIDE (3.5), and hence the results in (13) apply. Brie¤y,
if the numerical scheme is consistent, l∞ stable, and monotone, then convergence to the vis-
cosity solution is guaranteed. In order to obtain a monotone scheme, we can use at most
linear interpolation in equation (5.3).

The choice of interpolation scheme is discussed in (25) and (23). Speci£cally, if the
interpolation error does not get damped out, the global interpolation error after N timesteps

is O
(

((∆S)max)q

∆τ

)
, where q = 2 for linear interpolation, q = 3 for quadratic interpolation and

(∆S)max = maxi(Si+1− Si). Assuming second order in space and time truncation errors, the
global discretization error for a semi-Lagrangian method applied to a pure hyperbolic prob-
lem is (23; 10)

global discretization error = O

[
((∆S)max)

q

∆τ
+((∆S)max)

2 +(∆τ)2
]

, (5.7)

If we assume (∆S)max = const.h and ∆τ = const.h, then equation (5.7) reduces to

global discretization error = O
[
min((hq−1,h2)

]
(5.8)

As discussed in (10), estimate (5.8) is valid only for smooth solutions.
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5.2. Monotonicity and Stability. The highest order interpolation method Φ which will
result in a monotone scheme is linear interpolation. Equation (5.8) suggests that if linear
interpolation is used (q = 2), we can obtain no more than £rst order convergence. With this
in mind, in the following analysis, we will consider only a fully implicit timestepping, and a
linear interpolant Φ (as in equation (5.3)). We will, however, carry out numerical experiments
with Crank-Nicolson and BDF timestepping, and higher order interpolants. The fully implicit
version of equation (5.5) is

[I−∆τC−λ∆τB+P(V n+1
j )]V n+1

j = [Φn+1V n] j +P(V n+1
j )V ∗j +∆τFn+1

j (5.9)

for j = 1, ...,M
As discussed in (5; 13), consistency, stability, and monotonicity are suf£cient conditions

for a numerical scheme to ensure convergence to the viscosity solution. In view of the impor-
tance of discretizations which are stable and monotone, both from a theoretical and practical
point of view, it is useful to gather together a set of results for the implicit discretization
schemes.

LEMMA 5.1 (Properties of Matrix C). The matrix C in equation (5.9) has the properties

∑
k

Cik =−(r +λ) ; i = 2, ...,M−1

=−r ; i = 1 and i = M

Cik ≥ 0 ; i 6= k ; i = 1, ...,M . (5.10)

Proof. This follows directly from the discussion in Appendix A.
Set

Q = I−∆τC−λ∆τB. (5.11)

LEMMA 5.2 (M-matrix property of Q). The matrix Q is an M matrix.
Proof. From equations (3.8-3.9) we have that −B has non-positive offdiagonal ele-

ments. From Lemma 5.1, we have that −C− λB has non-positive offdiagonal elements.
From Lemma 5.1, and properties (3.8-3.9), we have that

∑
k

[−C−λB]ik ≥ 0 ; i = 1, ...,M, (5.12)

and hence Q is an M matrix.
We can write the discrete equations at each node (Si,A j) as

gi, j(V
n+1
i, j ,{V n+1

k, j }i,{V n}) =−[QV n+1
j ]i +[Φn+1V n]i, j +

[
P(V n+1

j )
]

ii
(V ∗i, j−V n+1

i, j )+∆τFn+1
i, j

= 0 (5.13)

where {V n+1
k, j }i is to be interpreted as the set of values V n+1

k, j ,k 6= i. k = 1, ...,M, and {V n} is
the set V n

k,`,k = 1, ..,M;` = 1, ...,M.
DEFINITION 5.3 (Monotone Discretizations). A discretization of the form (5.13) is

monotone if

gi, j(V
n+1
i, j ,{V n+1

k, j +ρn+1
k, j }i,{V n

k,` +ρn
k,`})≥ gi, j(V

n+1
i, j ,{V n+1

k, j }i,{V n}) ∀i, j; ∀k 6= i

∀ρn
k,` ≥ 0, ∀ρn+1

k, j ≥ 0, (5.14)

gi, j(V
n+1
i, j +ρn+1

i, j ,{V n+1
k, j }i,{V n}) < gi, j(V

n+1
i, j ,{V n+1

k, j }i,{V n}) ∀i, j; ∀k 6= i

∀ρn+1
i, j > 0 (5.15)
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REMARK 5.1. The above de£nition of monotonicity includes the condition (5.15). In the
viscosity solution literature (5), only condition (5.14) is used to de£ne monotonicity. However,
in the conservation law literature (30; 26) monotonicity is usually de£ned including condition
(5.15). In Appendix B, we show that consistency (for Hamilton-Jacobi-Bellman PDEs) and
condition (5.14) implies condition (5.15). However, we believe that it is more useful to include
condition (5.15), in a de£nition of monotonicity. This allows for a simple interpretation of the
meaning of monotonicity, without reference to any other conditions, which is a useful aid in
designing discrete schemes.

THEOREM 5.4 (Monotonicity of the Discretization). The fully implicit discretization
(5.13) is unconditionally monotone.

Proof. We rewrite equation (5.13) as

gi, j =−[QV n+1
j ]i +[Φn+1V n]i, j +

[
P(V n+1

j )
]

ii
(V ∗i, j−V n+1

i, j )+∆τFn+1
i, j (5.16)

and examine each term in equation (5.16). From Lemma 5.2, matrix Q is an M matrix,
hence −[QV n+1

j ]i is a strictly decreasing function of V n+1
i, j , and a non-decreasing function of

{V n+1
k, j }i. Since Φn+1 is a linear interpolant operator, [Φn+1V n]i, j is a non-decreasing function

of {V n}. Finally we see that the term
[
P(V n+1

j )
]

ii
(V ∗i, j−V n+1

i, j ) is a non-increasing function

of V n+1
i, j . Hence the discretization is monotone from De£nition 5.3.
THEOREM 5.5 (Stability of the Fully Implicit Scheme). The fully implicit method satis-

£es

‖V n+1‖∞ ≤max(‖V n‖∞,‖V ∗‖∞)+∆τχmax (5.17)

where χ(Smax,τ) is de£ned in subsection 2.2, and

χmax = max
0≤τ≤T

|χ(Smax,τ)| . (5.18)

In particular,

‖V n+1‖∞ ≤ ‖V ∗‖∞ +T χmax , (5.19)

where (n+1)∆τ≤ T .
Proof. Writing out equation (5.9) in component form gives (see Appendix A)

V n+1
i, j (1+(αi +βi + r +λ)∆τ)−αi∆τV n+1

i−1, j−βi∆τV n+1
i+1, j−λ∆τ∑

k

bikV
n+1
k, j +Pii(V

n+1
j )V n+1

i, j

= ∑
k,l

wi, j
k,lV

n
k,l +Pii(V

n+1
j )V ∗i, j +∆τFn+1

i, j , (5.20)

where wi, j
k,l are linear interpolation weights satisfying

0≤ wi, j
k,l ≤ 1 and ∑

k,l

wi, j
k,l = 1 . (5.21)

In addition, we recall that B has properties (3.8)

0≤ bik ≤ 1 and ∑
k

bik ≤ 1 , (5.22)
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while from Appendix A we have that

αi ≥ 0 and βi ≥ 0 . (5.23)

Let m be an index such that

|V n+1
m, j |= ‖V n+1

j ‖∞. (5.24)

Then equations (5.20-5.23) imply that

‖V n+1
j ‖∞

(
1+ r∆τ+P(V n+1

j )mm

)
≤ ‖V n‖∞ +P(V n+1

j )mm‖V ∗‖∞ +∆τχmax (5.25)

and so

‖V n+1
j ‖∞ ≤max(‖V n‖∞,‖V ∗‖∞)

1+P(V n+1
j )mm

1+ r∆τ+P(V n+1
j )mm

+
∆τχmax

1+ r∆τ+P(V n+1
j )mm

≤max(‖V n‖∞,‖V ∗‖∞)+∆τχmax . (5.26)

Hence

‖V n+1‖∞ ≤max(‖V n‖∞,‖V ∗‖∞)+∆τχmax. (5.27)

Therefore, by induction we have

‖V n+1‖∞ ≤max(‖V n−i‖∞,‖V ∗‖∞)+(i+1)∆τχmax (5.28)

for all i. Equation (5.19) follows from setting i = n in equation (5.28).
REMARK 5.2 (Extension to nonlinear models). It is completely straightforward to in-

clude a transaction cost or uncertain volatility model in the basic option pricing PIDE (42),
which makes the PIDE nonlinear (even in the European case). For example, using the meth-
ods in (42), it is a simple exercise to extend the above stability and monotonicity results to the
case of an American Asian option, with jumps and transaction costs.

5.3. Properties of a Semi-implicit Discretization. Suppose we alter the discretization
(5.9) so that the jump integral term is evaluated explicitly. Then

[I−∆τC +P(V n+1
j )]V n+1

j = λ∆τBV n
j +[Φn+1V n] j +P(V n+1

j )V ∗j +∆τFn+1
j (5.29)

for j = 1, ...,M. The previous methods can also be applied to determine stability and mono-
tonicity properties of this second discretization.

THEOREM 5.6 (Stability and Monotonicity of Explicit Evaluation of the Jump Term).
The discretization (5.29) is unconditionally stable and monotone.

Proof. Set R = [I−∆τC]. Then we can rewrite equation (5.29) as

gi, j =−[RV n+1
j ]i +[Φn+1V n]i, j +

[
P(V n+1

j )
]

ii
(V ∗i, j−V n+1

i, j )+∆τFn+1
i, j +[∆τλBV n]i, j (5.30)

From Lemma 5.1 and the properties of matrix B (equation (3.8)), and following along the
lines used to prove Theorem 5.4, it is straightforward to see that De£nition 5.3 holds uncon-
ditionally for equation (5.30). Using a similar maximum analysis as in the proof of Theorem
5.5, we obtain unconditional stability.

REMARK 5.3. Scheme (5.29) is very simple to implement, and retains unconditional
monotonicity and stability. This method appears to have been completely overlooked. How-
ever, this scheme is only £rst order correct in time.
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6. Additional Properties of the Discrete Equations. In this section we investigate how
well our discrete approximation (3.5) preserves important properties of our original problem
(2.9). We focus on two important properties : how well does the discrete penalty method sat-
isfy the inequality constraints in problem (2.9) and does the discretization preserve arbitrage
inequalities (15).

6.1. Error in the Penalty Formulation. In our original problem (2.9) we need to solve
min(H V ;V −V ∗) = 0. In particular, we require that

(V −V ∗)≥ 0. (6.1)

In discrete terms this becomes

(V n+1
i, j −V ∗i, j)≥ 0 . (6.2)

However, the penalty formulation (5.5) will result in V n+1
i, j < V ∗i, j at nodes in the exercise

region. In this subsection we show that at these nodes we have V n+1
i, j = V ∗i, j − ε, where

0 < ε ¿ 1. In particular, we have the following bound on the error in the penalty term.
LEMMA 6.1 (Error generated by the penalty formulation). Assume that V ∗ satis£es a

Lipschitz condition and suppose that

∆τ
∆Smin

< const. as ∆τ,∆Smin→ 0 (6.3)

where ∆Smin = mini(Si+1−Si). Then

V n+1
i, j −V ∗i, j ≥−

C1

Large
(6.4)

where C1 is a positive constant independent of ∆S,∆τ.
Proof. Let k be an index such that

(V ∗k, j−V n+1
k, j ) = max

i
(V ∗i, j−Vi, j) . (6.5)

Since the matrix Q de£ned by (5.11) is an M matrix from Lemma 5.2, it follows from equation
(6.5) that

[
Q(V ∗j −V n+1

j )
]

k
≥ 0 , (6.6)

and hence
[
QV ∗j

]
k
≥
[
QV n+1

j

]
k

. (6.7)

From equation (5.16) we have that for all j

QV n+1
j = [ΦV n] j +P(V n+1

j )(V ∗j −V n+1
j )+∆τFn+1

j . (6.8)

In particular, row k of equation (6.8) is
[
QV n+1

j

]
k
=
[
[ΦV n] j

]
k
+
[
P(V n+1

j )(V ∗j −V n+1
j )

]
k

+∆τFn+1
k, j . (6.9)

Since
[
P(V n+1

j )(V ∗j −V n+1
j )

]
k
= ‖P(V n+1

j )(V ∗j −V n+1
j )‖∞ (6.10)
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then equation (6.9) gives (using equation (6.7))

‖P(V n+1
j )(V ∗j −V n+1

j )‖∞ ≤ ‖V n‖∞ +‖QV ∗‖∞ +∆τχmax . (6.11)

From Theorem 5.5, and equation (6.11) we have

‖P(V n+1
j )(V ∗j −V n+1

j )‖∞ ≤C2 +‖QV ∗‖∞, (6.12)

where C2 = ‖V ∗‖∞ + T χmax, with (n + 1)∆τ ≤ T . Assuming that V ∗ satis£es a Lipschitz
condition, then

‖QV ∗‖∞ ≤C3
∆τ

∆Smin
(6.13)

which follows from Lemma 5.2 and Appendix A. Assuming ∆τ/∆Smin is bounded, we have

(V n+1
i, j −V ∗i, j)≥−

C1

Large
(6.14)

with C1 = C2 + C3∆τ
∆Smin

> 0.
REMARK 6.1 (Signi£cance of Lemma 6.1). Lemma 6.1 shows that the error induced by

approximating problem (2.9) by the penalized system (3.6) can be made arbitrarily small by
making the quantity Large (equation (5.4)) suf£ciently large, provided the grid size is reduced
such that ∆τ/∆Smin is bounded. In practice, this condition is not restrictive, since it does not
make any sense to drive the spatial grid error to zero, leaving a £nite timestepping error.
Of course, when using £nite precision arithmetic, our ability to distinguish (numerically)
(V n+1

i, j −V ∗i, j) from zero is limited due to roundoff. As discussed in (24), this is not a problem
of practical concern, since roundoff causes dif£culty only when seeking to enforce condition
(6.2) to unrealistic levels of accuracy.

THEOREM 6.2 (Discrete Comparison Principle). The fully implicit discretization (5.9)
satis£es a discrete comparison principle, that is, if V n > W n and V n+1,W n+1 satisfy equation
(5.9), then V n+1 > W n+1.

Proof. Suppose V n > W n. Write equation (5.9) for V,W

QV n+1
j = [Φn+1V n] j +

[
P(V n+1

j )
]
(V ∗j −V n+1

j )+∆τFn+1
j

QW n+1
j = [Φn+1W n] j +

[
P(W n+1

j )
]
(V ∗j −W n+1

j )+∆τFn+1
j (6.15)

Some manipulation of equation (6.15) results in

Q(V j−W j)
n+1 =−P(W n+1

j )(V j−W j)
n+1 +(P(V n+1

j )−P(W n+1
j )(V ∗j −V n+1

j )

+[Φn+1(V n−W n)] j (6.16)

or
[
Q+P(W n+1

j )
]
(V j−W j)

n+1 = (P(V n+1
j )−P(W n+1

j )(V ∗j −V n+1
j )+ [Φn+1(V n−W n)] j

(6.17)
Since Q is an M matrix we have that [Q+P(W n+1

j )] is also an M matrix. From equation (5.4),
we have that

(P(V n+1
j )−P(W n+1

j )(V ∗j −V n+1
j )≥ 0 (6.18)
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If linear interpolation is used, then (V n−W n) > 0 implies that [Φn+1(V n−W n)] j > 0. Fi-
nally, since [Q + P(W n+1

j )] is an M matrix, its inverse satis£es [Q + P(W n+1
j )]−1 ≥ 0, and

diag([Q + P(W n+1
j )]−1) > 0, and hence (V j−W j)

n+1 > 0.
REMARK 6.2. As discussed in (15), Lemma 6.2 has the £nancial interpretation that

the discrete option prices satisfy arbitrage inequalities, that is, the inequality of payoffs is
preserved in the inequalities of option prices.

7. Iterative Solution of the Discretized Equations. In order to solve equation (5.5),
we use the following iteration scheme

Iteration

For j = 1,2, . . .

Let (V n+1
j )0 = (V n

j )

Let V̂ j
k
= (V n+1

j )k

Let P̂k = P((V n+1
j )k)

For k = 0,1,2, . . . until convergence

Solve
[
I− (1−θ)C + P̂k

]
V̂ j

k+1

=
[
Φn+1 [I +θC]V n]

j + P̂kV ∗j +∆τFn+1
j

+(1−θ)λ∆τBV̂ j
k
+θλ∆τ

[
Φn+1BV n]

j

If max
i

|V̂ k+1
i, j −V̂ k

i, j|
max(1, |V̂ k+1

i, j |)
< tol then break

EndFor

EndFor

(7.1)

For clarity, we have given algorithm 7.1 only for Crank-Nicolson and fully implicit
timestepping. However, it is trivial to generalize this method to BDF timestepping. Note
that each iteration of algorithm (7.1) requires a tridiagonal factor and solve, and a forward

and back FFT (to evaluate B · V̂ j
k
).

The following Theorem indicates that iteration scheme (7.1) is globally convergent.
THEOREM 7.1 (Convergence of Iteration). Let matrices C,B and P̂ be given by (5.2),

(5.1) and (5.4), respectively. Assume that matrix I− (1−θ)C is an M-matrix (which follows
from Lemma 5.1), and that B has properties (3.8). Then iteration (7.1) is globally convergent
to the unique solution of equation (5.5) for any initial iterate V̂ 0.

Proof. Note that the algebraic equations (5.5) are decoupled for each line of constant
A j. Hence the issue of convergence of scheme (7.1) reduces to the convergence of each set
of equations for constant j. But for constant j, this iteration is equivalent to solution of the
discrete penalized equations for one dimensional American options with jump diffusion as
described in (19). Hence the result follows directly from Theorem 4.2 in (19).

8. Computational Details and Numerical Results. This section presents numerical
results for various options and payoffs, including vanilla European call/put and American op-
tions. We will use an unequally spaced grid in the A,S directions, on the domain [0,Smax]×
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[0,Amax], with Amax = Smax. We remind the reader that δ is selected so that in [Smax−δ,Smax]
we have that λ = 0, and we thus have suf£cient data for accurate computation of the jump
integral term in [0,Smax]. The method used to determine δ is discussed in (20). Probabilistic
arguments can be used to determine an appropriate value for Smax (45), so that a linear ap-
proximation to V is justi£ed in [Smax− δ,Smax]. We use Smax = 50K, where K is the strike.
We describe below some tests which were carried out to verify that the effect of imposing
boundary conditions at S = 50K results in insigni£cant error. The convergence tolerance in
iteration (7.1) was tol = 10−6. As suggested in (24), we choose Large = 1/tol. If Crank-
Nicolson or BDF timestepping is used, then quadratic interpolation is used in equation (5.3).
If fully implicit timestepping is employed, then linear interpolation is used in equation (5.3).

Given an A grid discretization, the discrete PIDEs (3.15-3.16) become decoupled. At
each timestep, we have a set of independent one dimensional discrete PIDEs to solve. This
property makes solution of the continuously observed Asian option straightforward to imple-
ment, given an existing library which supports pricing of path dependent options.

As pointed out in equation (5.8), it is necessary to use at least a quadratic Lagrange
interpolation scheme to £nd the solution at the foot of the characteristic curve, if we hope to
obtain quadratic convergence. This will, however, result in a scheme which is not monotone.

The convergence ratio R is de£ned in the following way. For each test, as we double
the number of grid points in both S and A directions, we cut the timesteps (∆τ) in half. Let
∆τ = maxn(τn+1− τn), (∆A)max = max j(A j+1−A j). Note that we are allowing here for the
possibility of using variable timestep sizes (to be explained later), although most of our tests
will simply use a constant timestep size. If we then carry out a convergence study, letting
h→ 0, where ∆Smax = Const. h, (∆A)max = Const. h, and ∆τ = Const. h. then we can assume
that the error in the solution (at a given node) is

Vapprox(h) = Vexact +Const. hξ.

The convergence ratio is then de£ned as

R =
Vapprox(h/2)−Vapprox(h)

Vapprox(h/4)−Vapprox(h/2)
. (8.1)

In the case of quadratic convergence (ξ = 2), then R = 4, while for linear convergence (ξ = 1),
R = 2.

Table 8.1 Value of a continuously observed £xed strike European Asian call option (no
jumps) with constant timesteps. The input parameters are σ = .1, r = .1, T = .25, λ = 0
and K = 100. We compare the results given using the Ve³ce³r (46) one dimensional model, and
the semi-Lagrangian method presented here. Crank-Nicolson timestepping was used.

semi-Lagrangian Ve³ce³r 1-D PDE (46)

Size of No. of S = 100 Size of No. of S = 100
S and A grids timesteps Value R S grids timesteps Value R

51 25 1.857193 n.a. 51 25 1.839863 n.a.
101 50 1.853254 n.a. 101 50 1.848642 n.a
201 100 1.852120 3.475 201 100 1.850851 3.974
401 200 1.851781 3.338 401 200 1.851407 3.979
801 400 1.851660 2.815 801 400 1.851546 3.987
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Table 8.2 Value of a continuously observed £xed strike Asian call option (no jumps) at S =
K = 100, constant Crank-Nicolson timestepping. The input parameters are σ = .1, λ = 0,
r = .1, T = .25, K = 100. Convergence ratios (8.1) are presented for different timestepping
schemes. The right boundary of the space discretization [0,Smax] domain is truncated at
different values.

Smax = 5×K Smax = 50×K
Timesteps S,A grid nodes Value S,A grid nodes Value

25 51 1.857193 54 1.857193
50 101 1.853254 109 1.853254

100 201 1.852120 217 1.852120
200 401 1.851781 433 1.851781
400 801 1.851660 865 1.851660

Table 8.1 shows results for a low volatility case, European Asian option (no jumps), using
the semi-Lagrangian approach. In this special case, the two dimensional PDE can be reduced
to one dimension (46), which we will refer to as the Ve³ce³r PDE (46) in the following. Results
obtained by solving the Ve³ce³r PDE numerically are also given in Table 8.1.

In Table 8.1, we can see that the convergence ratio R for the semi-Lagrangian method
is not quadratic (R 6= 4), while for the Ve³ce³r PDE (46) quadratic convergence is found. As
discussed in (46), the Ve³ce³r PDE is not convection dominated, hence it is straightforward
to obtain accurate numerical solutions. We remind the reader that this clever reduction to
one dimension cannot be used for American options. The discontinuity present in the payoff
greatly affects the convergence of the semi-Lagrangian method, since there is very little dif-
fusion in the A direction, and the non-smoothness in the payoff is not smoothed out during
the solution phase. Since we need to use quadratic interpolation in the A direction in order to
determine the values of the solution at the feet of the characteristic curves, the interpolation
may be affected by the non-smooth payoff, and may lower the observed rate of convergence.

In order to test the effect of the boundary condition (2.16) at S = Smax, we show results
using two different values of Smax in Table 8.2. This table would seem to indicate that there is
a negligible error for options of this maturity incurred setting Smax = 50K, and all subsequent
results will be reported imposing condition (2.16) at Smax = 50K.

Figures 8.1 and 8.2 graphically present the solution V and the £rst derivative of the
solution with respect to the stock price VS when Crank-Nicolson is used. The plots are all
smooth and do not exhibit any oscillations. While not shown here, VSS also did not show any
oscillations.

We now explore numerical convergence for pricing Asian options for large values of
volatility σ. Table 8.3 presents our results. As expected quadratic convergence is recovered.
In this case, a suf£cient amount of diffusion in the S direction appears to compensate for zero
diffusion in the A direction.

8.1. An In Depth Study of the Convergence Ratio. The results of the previous section
indicated that the semi-Lagrangian approach, coupled with Crank-Nicolson timestepping,
results in quadratic convergence, for large volatilities. However, for small volatility values,
quadratic convergence was not recovered. The goal of this subsection is to explore in detail
different numerical techniques that could improve the convergence rate.

Table 8.4 contains the convergence rate results for different timestepping schemes for
small volatility (σ = .1 and r = .1). For implicit timestepping linear convergence is recovered
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FIG. 8.1: Value of a European £xed
strike Asian put using Crank-Nicolson
with constant timestepping (∆τ = .01).
51 grid points are used both in the A
and S direction. The input parameters
are σ = .1, r = .1, T = .25, K = 100,
and λ = 0.
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FIG. 8.2: First derivative (VS) value
of a European £xed strike Asian put
using Crank-Nicolson with constant
timestepping (∆τ = .01). 51 grid points
are used both in the A and S direc-
tion. The input parameters are σ = .1,
r = .1, T = .25, K = 100 and λ = 0.

Table 8.3 Value of a continuously observed £xed strike Asian call (no jumps) option with
constant timesteps at S = k. The input parameters are σ = .5, r = .05, T = .25, λ = 0 and K =
100. We compare the results given using the Ve³ce³r 1-D PDE (46), and the semi-Lagrangian
method presented here. Crank-Nicolson timestepping was used.

semi-Lagrangian Ve³ce³r 1-D PDE (46)

Size of No. of S = 100 Size of No. of S = 100
S and A grids timesteps Value R S grids timesteps Value R

51 25 6.010203 n.a. 51 25 6.009821 n.a.
101 50 6.015092 n.a. 101 50 6.014848 n.a
201 100 6.016344 3.905 201 100 6.016251 3.582
401 200 6.016651 4.085 401 200 6.016619 3.816
801 400 6.016723 4.219 801 400 6.016713 3.915

(R = 2), as expected. However for higher order timestepping schemes such as Crank-Nicolson
and second order backward differencing, quadratic convergence is not found (see Table 8.4).
These results are not surprising since the combination of small volatility with the non-smooth
payoff, means that quadratic interpolation in the A direction is not O((∆A)3

max), for small τ.
To try to remedy this problem, the initial payoff function is smoothed out. A classic

method for handling discontinuities involves averaging the initial data. Speci£cally, values at
each point are replaced with an average value over nearby space. Mathematically, we set

PAYOFFsmoothed(Si,A j) =
∫ K+ ∆A

2

K− ∆A
2

PAYOFF(Si,A)dA. (8.2)
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Table 8.4 Value of a continuously observed £xed strike Asian call option (no jumps) at the
strike, constant timesteps. The input parameters are σ = .1, r = .1, T = .25, λ = 0, K = 100.
Convergence ratios (8.1) are presented for different timestepping schemes: implicit, Crank-
Nicolson and second order BDF.

Implicit timestepping CN timestepping BDF timestepping
Size of No. of S = 100 S = 100 S = 100

S and A grids timesteps Value R Value R Value R
51 25 1.911865 n.a. 1.857193 n.a 1.86096 n.a.
101 50 1.880801 n.a. 1.853254 n.a 1.854310 n.a.
201 100 1.865907 2.086 1.852120 3.475 1.852416 3.513
401 200 1.858681 2.061 1.851781 3.338 1.851868 3.453
801 400 1.855112 2.025 1.851660 2.815 1.851686 3.014

For a complete description of various smoothing methods the readers are referred to (42).

Table 8.5 Value of a continuously observed £xed strike call Asian call option (no jumps) at
the strike with constant timesteps. The initial payoff is smoothed using the average scheme
described by equation (8.2) The input parameters are σ = .1, r = .1, T = .25, λ = 0, and
K = 100. Convergence ratios (8.1) are presented for different timestepping schemes: Crank-
Nicolson and second order BDF.

CN timestepping BDF timestepping
Size of No. of S = 100 S = 100

S and A grids timesteps Value R Value R
51 25 1.870322 n.a. 1.874276 n.a.

101 50 1.856377 n.a. 1.857462 n.a.
201 100 1.852873 3.981 1.853179 3.925
401 200 1.851963 3.849 1.852053 3.803
801 400 1.851704 3.513 1.851731 3.497

Table 8.5 contains the convergence rate results. From a convergence point of view, the
ratios have improved in comparison with the convergence ratio without smoothing (see Table
8.4). However, quadratic convergence is still not obtained. From a theoretical point of view,
all the convergence analysis for semi-Lagrangian scheme is based on the smooth properties
of the solution (10; 23). If the solution is smooth then quadratic convergence is recovered.
However, if the solution is non-smooth, then we can expect some reduction in the convergence
rate.

To con£rm our intuition that the non-smooth payoff is in fact the reason why quadratic
convergence is not recovered, we create an arti£cial payoff that has the property of being
quadratically smooth over the entire domain, e.g. PAYOFF(A,K) = [max(0,A−K)]2 . In this
case quadratic convergence is recovered for both Crank-Nicolson and second order backward
differencing. Table 8.6 shows detailed convergence results for Crank-Nicolson timestepping.

Several other approaches were considered in an effort to improve convergence. We tried
to use Rannacher timestepping (43); two or more implicit timesteps are taken before revert-
ing to a higher order timestepping scheme such as Crank-Nicolson for example. Numerical
experiments indicated that this did not improve the convergence rate. A convergence rate of
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Table 8.6 Value of a continuously observed Asian call option (no jumps) at the strike with
constant timesteps. The input parameters are ∆τ = .01, σ = .1, r = .1, T = .25, λ = 0 and
K = 1. Convergence ratios (8.1) are presented for the Crank-Nicolson timestepping scheme.

Call option (PAYOFF(A,K) = [max(0,A−K)]2 )
Size of No. of S = 1

S and A grids timesteps Value R
51 25 0.025749 n.a.

101 50 0.025622 n.a.
201 100 0.025591 4.131
401 200 0.025584 4.093
801 400 0.025582 4.054

approximately 3.5 is found in this case. Adaptive timestepping was also considered (24) but
this technique did not improve the convergence rate.

8.2. Exotic Asian Options. It is not generally possible to achieve second order con-
vergence for American options using constant timesteps. In (24) it was demonstrated that in
order to achieve second order convergence, it is necessary to use variable timestepping for
American options. However, some initial tests showed that due to the large convective term
in the A direction, near τ = T , the timestep selector suggested in (24) required very small
timesteps near τ = T . Consequently, we will show results in the following using constant
timesteps.

Table 8.7 presents the input parameters. The mean of the jump distribution is denoted
by µ and the jump distribution standard deviation is denoted by γ (see equation (2.7)). These
parameters are roughly the same as those estimated by (3) using European call options on the
S&P 500 stock index in April of 1999.

Table 8.7 Input data used to value American £xed strike Asian options under the lognormal
jump diffusion process (2.7). These parameters are approximately the same as those reported
in (3) using European call options on the S&P 500 stock index in April of 1999.

Parameter values
σ 0.15 λ 0.10
r 0.05 T 0.25
γ 0.45 K 100.00
µ -0.90 σimplied 0.1886

To ensure consistent comparison between American Asian options with jumps and Amer-
ican Asian options without jumps, we proceed as follows:

1. Given the parameters in Table 8.7, we compute the analytical solution Vjump at the
strike K of a vanilla put option, under jump diffusion.

2. Use a constant volatility Black-Scholes model with no jump to determine the implied
volatility σimplied which matches the jump diffusion value Vjump at the strike K.

3. Price the American Asian option with jumps using the parameters in Table 8.7.
4. Price the American Asian option with no jumps but with the implied volatility

σimplied estimated in Step 2.
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Table 8.8 Value of a continuously observed £xed strike put American Asian option (under
jump diffusion) with constant timestepping. Crank-Nicolson timestepping is used. The input
parameters are de£ned in Table 8.7. This table presents convergence rates with and without
jumps. Iterations refers to the total (over all timesteps) of the maximum number of iterations
required for any value of j (see algorithm 7.1) at each timestep.

No jump Jumps
Size of No. of No. of (S = 100) No. of (S = 100)

S and A grids timesteps iterations Value R iterations Value R
51 25 77 2.220443 n.a. 99 2.044636 n.a.

101 50 160 2.195726 n.a. 167 2.018530 n.a
201 100 319 2.188555 3.447 340 2.012220 4.138
401 200 692 2.186717 3.903 716 2.010691 4.126
801 400 1397 2.186243 3.874 1609 2.010281 3.728
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FIG. 8.3: Comparison between the value of an American Asian £xed strike put option and
the value of an American Asian £xed strike put option when the underlying stock follows the
jump diffusion process described by (33). The input parameters are de£ned in Table 8.7.

Table 8.8 compares the value of an American Asian £xed strike put option with the value
of an American Asian £xed strike put option when the underlying stock follows the jump
diffusion process described by (33). Second order backward timestepping is used and the
initial payoff is smoothed out using equation (8.2). We observe that quadratic convergence is
not recovered, the convergence ratios are ≈ 3.5. It is interesting to note that, at the strike, the
price of an American Asian £xed strike put option with jumps is 9% cheaper than the price of
the same option without jumps, while at S = 1.05K, the jump diffusion price is considerably
higher than the no-jump price, as can be seen in Figure 8.3.

REMARK 8.1 (Alternative Boundary Condition). A simpler method of imposing bound-
ary condition (2.16), is to simply set VSS = 0, and then discretize the VS term using one sided
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£nite differences. As discussed in (48), this destroys the M matrix property of the discretized
equations I−∆τC−λ∆τB. Most of the theoretical results in this paper require that this M
matrix property hold, hence if we impose the boundary condition in this manner, these re-
sults cannot be proven to hold in this case. Nevertheless, we repeated all the computations
reported above using this method of enforcing the boundary condition as S→ ∞. There was
no change in the computed solution (at the strike) to eight digits.

9. Conclusion. In this paper we have put forward four primary contributions. First we
have demonstrated that a semi-Lagrangian method can be used to price continuously observed
American Asian options under jump diffusion processes. The implementation suggested here
reduces this problem to solving a decoupled set of one dimensional discrete partial integro
differential equations (PIDEs) at each timestep.

A second contribution is that since the discretized problem at each timestep reduces to
a set of decoupled one dimensional PIDEs, we can make use of previous techniques devel-
oped by the authors to prove certain important properties of the discrete scheme, including
convergence of the iterative method used to solve the implicit discrete equations.

In addition, we have included experimental computations which indicate that, even if
second order timestepping methods are used, observed convergence as the mesh and timestep
is re£ned occurs at a sub-second order rate. The problem can be traced to the non-smoothness
of the payoff function.

Finally, we have also shown that in the fully implicit case, the semi-Lagrangian method
for continuously observed Asian options is algebraically identical to a standard numerical
method for pricing discretely observed Asian options, when the observation interval is equal
to the discrete timestep.

Appendices

Appendix A. Discretization of the PDE.
In this appendix, we give the details of the discretization of the term (CV )i, j in equation

(3.15).
Using £nite differences, the matrix (5.2) is

(C ·V )i =−V n+1
i (αi +βi + r +λ)+βiV

n+1
i+1 +αiV

n+1
i−1 ; i = 2, ...,M−1 (A.1)

where αi,βi depend on the type of approximations used for the derivatives and second deriva-
tives. For i = 1, we impose condition (2.10) by setting α1 = β1 = λ = 0, and for the row
i = M, condition (2.16) is imposed by setting αM = βM = λ = 0. There are a number of
different discretizations of the derivative terms leading to various choices for αi and βi.

Discretizing the £rst derivative term of equation (3.2) with central differences leads to

αi,central =
σ2

i S2
i

(Si−Si−1)(Si+1−Si−1)
− (r−λκ)Si

Si+1−Si−1

βi,central =
σ2

i S2
i

(Si+1−Si)(Si+1−Si−1)
+

(r−λκ)Si

Si+1−Si−1
. (A.2)

However if αi,central or βi,central is negative, oscillations may appear in the solution. The
oscillations can be avoided by using forward or backward differences at the problem nodes,
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leading to (forward difference)

αi,forward =
σ2

i S2
i

(Si−Si−1)(Si+1−Si−1)

βi,forward =
σ2

i S2
i

(Si+1−Si)(Si+1−Si−1)
+

(r−λκ)Si

Si+1−Si
, (A.3)

or, (backward difference)

αi,backward =
σ2

i S2
i

(Si−Si−1)(Si+1−Si−1)
− (r−λκ)Si

Si+1−Si

βi,backward =
σ2

i S2
i

(Si+1−Si)(Si+1−Si−1)
. (A.4)

Algorithmically, we decide between a central or forward discretization at each node for
equation (A.1) as follows:

Discretization

If [αi,central ≥ 0 and βi,central ≥ 0] then

αi = αi,central

βi = βi,central

ElseIf
[
βi,forward ≥ 0

]
then

αi = αi,forward

βi = βi,forward

Else

αi = αi,backward

βi = βi,backward

EndIf

(A.5)

Note that the test condition (A.5) guarantees that αi and βi are non-negative. For typical
values of σ,r and grid spacing, forward differencing is rarely required for single factor op-
tions. In practice, since this occurs at only a small number of nodes remote from the region of
interest, the limited use of a low order scheme does not result in poor convergence as the mesh
is re£ned. For situations where the low order method causes excessive numerical diffusion, a
¤ux limiter can be used (50). As we have seen, requiring that all α i and βi are non-negative
has important theoretical rami£cations.

Appendix B. Practical Monotonicity.
In this appendix, we will give a rationale for de£ning monotonicity using both conditions

(5.14) and (5.15).
Writing out equation (3.12) gives

−DV
Dτ

+
σ2S2

2
VSS +(r−λκ)SVS− rV +ρmax(V ∗−V,0)+ JV = 0 (B.1)
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with JV = λ
∫ ∞

0 {V (Sη)−V (S)}g(η) dη , or

G(V,
DV
Dτ

,VS,VSS,JV ) =−DV
Dτ

+
σ2S2

2
VSS +(r−λκ)SVS− rV

+ρmax(V ∗−V,0)+ JV = 0 . (B.2)

Let ζ > 0 be a constant, independent of (S,A,τ), then from equation (B.2) we have

G(V +ζ,
D(V +ζ)

Dτ
,(V +ζ)S,(V +ζ)SS,J (V +ζ))

= G(V,
DV
Dτ

,VS,VSS,JV )− rζ−ρ [max(V ∗−V,0)−max(V ∗−V −ζ,0)]

< G(V,
DV
Dτ

,VS,VSS,JV ) if ζ,r > 0 . (B.3)

Recall our notation for the discretized form of equation (5.13). At each node (Si,A j),τ =
τn+1, the discrete form of G is

[
G(V,

DV
Dτ

,VS,VSS,JV )

]n+1

i, j
= gi, j(V

n+1
i, j ,{V n+1

k, j }i,{V n}) = 0 . (B.4)

If gi, j is a consistent discretization of equation (B.2) then we must have (ζ = constant > 0)

gi, j(V
n+1
i, j +ζ,{V n+1

k, j +ζ}i,{V n +ζ}) < gi, j(V
n+1
i, j ,{V n+1

k, j }i,{V n}) . (B.5)

Assuming that condition (5.14) holds (which is the usual monotonicity condition in the
viscosity solution literature), then it follows that

gi, j(V
n+1
i, j +ζ,{V n+1

k, j }i,{V n})≤ gi, j(V
n+1
i, j +ζ,{V n+1

k, j +ζ}i,{V n +ζ}) . (B.6)

Hence, equations (B.5-B.6) imply that

gi, j(V
n+1
i, j +ζ,{V n+1

k, j }i,{V n}) < gi, j(V
n+1
i, j ,{V n+1

k, j }i,{V n}) , (B.7)

which is condition (5.15).
In summary, condition (5.14) and consistency of the discretization implies condition

(5.15). However, as a stand-alone condition, equations (5.14-5.15) are more appealing, in that
these conditions have a simple physical interpretation. This de£nition of monotonicity is also
consistent with the de£nition of monotonicity in the CFD (Computational Fluid Dynamics)
literature.

To see this, consider the case where gi j in equation (5.13) is differentiable. Then we can
restate De£nition 5.3 as

∂gi, j

∂V n+1
i, j

< 0

∂gi, j

∂y
≥ 0 ; y ∈ {V n+1

k, j }i

∂gi, j

∂z
≥ 0 ; z ∈ {V n} (B.8)

If gi j satis£es conditions (B.8), then we have immediately that

∂V n+1
i, j

∂y
≥ 0 ; y ∈ {V n+1

k, j }

∂V n+1
i, j

∂z
≥ 0 ; z ∈ {V n}. (B.9)
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In other words. a positive perturbation of any of {V n+1
k, j }i, {V n

k,l} results in a non-negative

perturbation of V n+1
i, j . This has the intuitive interpretation in terms of ¤uid or heat ¤ows, that

is, discrete heat diffusion should always ¤ow from high temperature nodes to low temperature
nodes. Hence De£nition (5.3) is commonly used (30; 26).

Another advantage of the de£nitions (5.14-5.15) which may not be obvious from con-
dition (5.14) and consistency, is that a consequence of conditions (5.14-5.15) is a simple
suf£cient test for l∞ stability. Let

(V n
min)i, j ≤V n

i, j≤ (V n
max)i, j (B.10)

(these bounds need not be tight) and set

max
i, j

(V n
max)i, j = V n

max and min
i, j

(V n
min)i, j = V n

min . (B.11)

Then if gi, j satis£es conditions (5.14-5.15) we have that

gi, j((V
n
max)i, j,V

n+1
max ,V n

max) = 0 and gi, j((V
n
min)i, j,V

n+1
min ,V n

min) = 0 . (B.12)

Equation (B.12) holds for all (i, j), and so in particular, equation (B.12) holds for (p,q) where
V n+1

max = (V n+1
max )p,q. Hence V n+1

max satis£es

gp,q(V
n+1
max ,V n+1

max ,V n
max) = 0 . (B.13)

Similarly, at node (r,s), where V n+1
min = (V n+1

min )r,s, V n+1
min satis£es

gr,s(V
n+1
min ,V n+1

min ,V n
min) = 0 . (B.14)

Hence by examining equations (B.13-B.14) for all p,q and for all r,s, we can obtain worst
case error bounds for V n+1

max ,V n+1
min in terms of V n

max,V
n
min. Equations (B.13-B.14) are usually

easy to solve by inspection, since most terms will be zero for a consistent discretization.
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