
A Fast Las Vegas Algorithm for Computing the Smith Normal Form of

a Polynomial Matrix

Arne Storjohann

and

George Labahn

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Submitted by Richard A. Brualdi

ABSTRACT

A Las Vegas probabilistic algorithm is presented that finds the Smith normal
form S ∈ Q[x]n×n of a nonsingular input matrix A ∈ ZZ [x]n×n. The algorithm
requires an expected number of O (̃n3d(d + n2 log ||A||)) bit operations (where
||A|| bounds the magnitude of all integer coefficients appearing in A and d bounds
the degrees of entries of A). In practice, the main cost of the computation is
obtaining a non-unimodular triangularization of a polynomial matrix of same
dimension and with similar size entries as the input matrix. We show how to
accomplish this in O (̃n5d(d + log ||A||) log ||A||) bit operations using standard
integer, polynomial and matrix arithmetic. These complexity results improve
significantly on previous algorithms in both a theoretical and practical sense.

1. INTRODUCTION

The Smith normal form is a diagonalization of a matrix over a principal
ideal domain. The concept originated with the work of Smith [17] in 1861
for the special case of integer matrices. Applications of the Smith normal
form include, for example, solving systems of Diophantine equations over
the domain of entries [4], integer programming [9], determining the canon-
ical decomposition of finitely generated abelian groups [8], determining the

LINEAR ALGEBRA AND ITS APPLICATIONS xxx:1–xxx (1993) 1

c© Elsevier Science Publishing Co., Inc., 1993

655 Avenue of the Americas, New York, NY 10010 0024- 3795/93/$6.00

2

similarity of two matrices and computing additional normal forms such as
Frobenius and Jordan normal forms [5, 12]. A close variant of the Smith
normal form, the Smith-MacMillan form for rational functions, plays an
important role in linear systems theory [10].

The Smith normal form is well known theoretically but can be difficult
to compute in practice because of the potential for rapid growth in the
size of intermediate expressions. In a computational setting, the domain
of matrix entries is typically the integers ZZ or the ring F[x] of univariate
polynomials with coefficients from a field. In this paper we consider the
problem of computing the Smith normal form of a square nonsingular ma-
trix over Q[x]. Computing normal forms for matrices over F[x] where F is
a field of characteristic zero (e.g. F = Q) poses a double challenge. The size
in bits of intermediate expressions — polynomials in Q[x] — will depend
not only on the polynomial degrees but also on the lengths of individual
rational number coefficients.

Formally, a matrix S is said to be the Smith normal form of a nonsin-
gular A ∈ F[x]n×n if there exist unimodular matrices U and V such that
UAV = S with S being diagonal, each diagonal entry monic, and where
si,i divides si+1,i+1 for 1 ≤ i ≤ n − 1. (An n × n matrix U is said to be
unimodular if U is invertible over the domain of entries; if U is over F[x],
then U is unimodular if and only if det(U) is a nonzero element of F.)
The Smith normal form S always exists and is unique. The unimodular
matrices U and V (called pre- and post-multipliers respectively) are not
unique. The diagonal entries si,i of S are called the invariant factors of
A. The invariant factors are also given by si,i = s∗i /s

∗
i−1 where s∗i is the

i-th determinantal divisor of A, that is, the gcd of the determinants of all
i × i minors of A (with s∗0 = 1). One can also triangularize rather than
diagonalize a polynomial matrix and obtain a related form — the Hermite
normal form. A matrix H is said to be the Hermite normal form of a
nonsingular A ∈ F[x]n×n if there exists a unimodular matrix U such that
UA = H with H upper triangular, each diagonal entry monic, and where
off-diagonal entries in each column have smaller degree than the diagonal
entry. Proofs for the existence and uniqueness of the Hermite and Smith
normal forms can be found in Newman [14, Chapter II] for matrices over
a general principal ideal domain

In our work we make a distinction between the problem of comput-
ing the Smith normal form S from that of computing the Smith normal
form S along with candidates for the pre- and post-multipliers U and V .
When working over the domain Q[x] the problem of computing the Smith
normal form with multipliers is fundamentally more difficult (computation-
ally) than only computing the Smith normal form. One can think of the
analogy of a related problem, that of solving a Diophantine equation: given

3

polynomials u(x) and v(x) in Q[x], solve

σ(x)u(x) + τ(x)v(x) = g(x)

for σ(x), τ(x) and g(x) = gcd(u(x), v(x)). There are a number of algorithms
that compute g(x) much more efficiently in the cases when σ(x), τ(x) are
not required (see, for example, [6, 15] for a detailed discussions of this
issue). Note that such a distinction is not true when computing the Hermite
normal form. Given a nonsingular input matrix A and its Hermite normal
form H, we can compute the matrix U by U ← HAadj where Aadj, the
adjoint of A, can be found using standard methods.

The main result of this paper is a fast sequential algorithm for com-
puting the Smith normal form of a square nonsingular matrix over Q[x].
The algorithm is probabilistic in the Las Vegas sense — an incorrect result
will never be returned but with small probability the algorithm may fail
and require repetition. The algorithm is significantly faster than existing
algorithms.

The majority of algorithms found in the literature for computing Smith
normal forms over Q[x] are based on first computing the Hermite normal
form of a matrix and as such solve the more difficult problem of Smith
normal form with multipliers (cf. [12, 13, 20]). Specifically, these algorithms
can be used to produce candidates for pre- and post-multipliers U and V
such that UAV = S is in Smith normal form within the same asymptotic
complexity as they require to produce S alone. One reason for producing
multipliers is to verify correctness. In particular, Kaltofen, Krishnamoorthy
and Saunders have given a Monte Carlo probabilistic algorithm in [11] that
computes the Smith normal form but does not produce pre- and post-
multipliers. The drawback of the KKS Monte Carlo algorithm is that it
may return an incorrect result which cannot be detected easily.

The only other algorithm that we are aware of that solves for the Smith
normal form without multipliers is also given by Kaltofen, Krishnamoorthy
and Saunders in [11]. Here, the authors give a proof that computing the
Smith normal form over Q[x] is in P, the class of polynomial time algo-
rithms. Their algorithm uses the fact, a consequence of Kannan [13], that
computing the Smith normal form over GF(p)[x] is in the computational
class P. Given a nonsingular A ∈ ZZ [x]n×n, the algorithm computes the
Smith normal form of A mod p for various primes p and uses Chinese re-
maindering to reconstruct the Smith normal form of A over Q[x]. This
approach is impractical because of the large number of image solutions
needed to guarantee correctness.

Our method is based on a similar preconditioning method as used by
Kaltofen, Krishnamoorthy and Saunders, followed by a fast non-unimodular
triangularization combined with a verification step. Our algorithm is straight-
forward to implement in a computer algebra system and practical in the

4

sense that the main cost of the computation is obtaining a non-unimodular
triangularization of a polynomial matrix of same dimension and with sim-
ilar size entries as the input matrix

The rest of this paper is organized as follows. In the next section we give
the details of non-unimodular matrix triangularization. Since obtaining
such a triangularization is the main cost in our algorithm, we show how
to accomplish this step in practice using a homomorphic image scheme to
avoid computation with large integers and polynomials. Section 3 gives
the probabilistic algorithm. Correctness is proved in Section 4 and the
complexity of the algorithm is analyzed in Section 5. The last section
summarizes our results and provides directions for future research.

2. NON-UNIMODULAR MATRIX TRIANGULARIZATION

Let R be a principal ideal domain. A key step in the algorithm of the
next section is to compute, for a given A ∈ Rn×n, a lower triangular matrix
F ∈ Rn×n such that the matrix T = FA is upper triangular with i-th
diagonal entry the determinant of the principal i-th minor of A for 1 ≤ i ≤
n. The purpose of this section is to give an explicit definition of the matrices
F and T and show how they can be computed efficiently over the domain
R = ZZ [x]. For our complexity analysis we assume standard polynomial
and integer arithmetic. Using standard arithmetic, the cost of multiplying
two degree d polynomials from F[x] is bounded by O(d2) field operations
from F; this also bounds the cost of evaluating a degree d polynomial at
d + 1 distinct points and of interpolating a degree d polynomial through
d+ 1 points. Similarly, two dte bit integers can be multiplied in O(t2) bit
operations; this also bounds the cost of computing either direction of the
isomorphism implied by the Chinese remainder theorem where t bounds
the total length in bits of the moduli.

First recall some basic definitions and facts from linear algebra. For a
matrix A ∈ Rn×n, the minor Mij of entry aij is defined to be the determi-
nant of the submatrix obtained by deleting the i-th row and j-th column
of A. The cofactor Cij is given by Cij = (−1)i+jMij .

Fact 2.1. Let A be an n × n matrix over R with adjoint Aadj. The
entries in Aadj are given by Aadj

ij = Cji for 1 ≤ i ≤ n and 1 ≤ j ≤ n. The
determinant of A can be written according to the j-th column expansion as

det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj .

Lemma 2.1. Let A ∈ Rn×n be nonsingular and let F ∈ Rn×n be the
lower triangular matrix with Fij equal to the cofactor of the element in the

5

j-th row, i-th column of the i-th principal minor of A for 1 ≤ j ≤ i ≤ n.
Then, the matrix T = FA will be upper triangular with Tij equal to the
determinant of the i × i minor of A formed from rows [1, 2, . . . , i] and
columns [1, 2, . . . , i− 1, j] for 1 ≤ i ≤ j ≤ n.

Proof. Follows from Fact 2.1 by noting that the entries of FA are the
claimed entries for T — which are determinants of minors of A — written
according according to their cofactor column expansion.

Given an A ∈ Rn×n, we write A1···i,1···j to denote the submatrix com-
prised of the first i rows and first j columns of A, FF(A) to denote the
matrix F of Lemma 2.1, and row(A, k) to denote the k-th row of A. For
2 ≤ k ≤ n, note that the first k entries in row(FF(A), k) are precisely those
in the last row of the adjoint of the principal k-th minor of A.

We now show how FF(A) can be computed in O(n3) ring operations us-
ing a simple variation of fraction-free Gaussian elimination. If fraction-free
Gaussian elimination is used to reduce an A ∈ Rn×n with rank n or n−1 to
upper echelon form, and row operations are recorded in a companion matrix
F , initially set to be the identity matrix, then row(F, n) = s row(Aadj, n)
where s is 1 if the number of row switches performed during the reduction
was even and −1 otherwise. (For a thorough discussion of fraction-free
Gaussian elimination, see [6] or the original articles by Bareiss [1, 2].) Sim-
ilarly, if fraction-free Gaussian elimination is used to zero out entries below
the diagonal in the first k−1 columns of A, and submatrix A1···k,1···k−1 has
rank k−1, then row(F, k) = s row(FF(A), k)). The key point here is that if
the rank of A1···k,1···k−1 is equal to k− 1, then the reduction up to column
k − 1 can be completed with row switches limited to the first k rows. If
the rank of A1···k,1···k−1 is less then k− 1, then this will be detected during
the reduction of the first k − 1 columns because a pivot row will have to
chosen with index larger than k. In the latter case, all entries in the last
row of the adjoint of A1···k,1···k — which are determinants of (i−1)×(i−1)
minors of A1···k,1···k−1 — will be zero. Algorithm 2.1 is a simple variation
of fraction-free Gaussian elimination which implements this idea.

Algorithm 2.1. Triangularize

Input: An n× n matrix over R.
Output: The matrices F = FF(A) and T = FA.

(1) [Initialize:]
d← 1;
s← 1;
p← 0;
B ←

[

A In

]

;
C ← the n× 2n zero matrix;

(2) [Triangularize:]

6

for k = 1 to n do
if p ≤ k then row(C, k)← s row(B, k);
for r = k to n while Trk = 0 do od;
if r > n then break;
if r > k then
switch rows k and r of B;
s← −s;
p← max(p, r);

for i = k + 1 to n do
row(B, i)← (Bkk row(B, i)−Bik row(B, k))/d;

d← Bkk;
(3) [Output:] C =

[

T F
]

;

Now consider the problem of computing F = FF(A) for an A ∈ F[x]n×n

that has degrees of entries bounded by d − 1. Entries of F and T are
determinants of minors of A (up to sign) which are polynomials bounded
in degree by nd. We need to assume that #F > nd so that we can choose a
set {x0, x1, . . . , xnd} of distinct evaluation points in F. Let A|x=xi

denote
the matrix obtained from A by evaluating each polynomial entry at x = xi.
The procedure can now be described as follows: (1) find the matrices A|x=i

for i = 0, . . . , nd at a cost of O(n2 · n · d2) field operations; (2) find F |x=i

and T |x=i for i = 0, . . . , nd at a cost of O(nd · n3) field operations; (3)
interpolate the n2 + n = O(n2) degree nd polynomial entries in matrices
F and T at a cost of O(n2(nd)2) field operations. This leads to a cost of
O(n4d2) field operations for computing FF(A) over F[x].

We can extend this homomorphic imaging scheme to compute FF(A)
for A ∈ F[x]n×n when F = Q. We start with an input matrix A ∈
ZZ [x]n×n with degrees bounded by d − 1. For p a prime, let Ap = A mod
p be the matrix in ZZ p[x]

n×n obtained from A by replacing each integer
coefficient with its image mod p. To compute F = FF(A) and T = FA
over ZZ [x], we find Fp and Tp = FpAp over ZZ p[x] for sufficiently many
primes p to allow recovery of the integer coefficient appearing in F and T
via the Chinese remainder algorithm. Let ||A|| denote the largest integer
coefficient appearing in A. Coefficients of entries of F and T will be integers
having magnitude less than β = (

√
nd||A||)n + 1; these have length about

log β = O (̃n(log d+ log ||A||)) bits. The following lemma from Giesbrecht
shows that we can choose all our primes to be l = 6 + log log β bits in
length.

Lemma 2.2. [7] Let x ≥ 3 and l = 6 + log log x. Then there exist at
least 2ddlog2(2x)e/(l − 1)e primes p such that 2l−1 < p < 2l.

It follows from this lemma that we can choose a list of s = 2dd(log 2β)e/(l−
1)e = Θ((log β)/l) distinct primes (pi)1≤i≤s that are bounded in length by l

7

bits and that satisfy
∏

1≤i≤s pi > β. The non-unimodular triangularization
algorithm can be described as follows: (1) Find the images (Api

)1≤i≤s; (2)
For 1 ≤ i ≤ s, compute (Fpi

, Tpi
) at a cost of O(s · n4d2 · l2) bit operations

using the homomorphic imaging scheme given earlier; (3) Apply Chinese
remaindering to recover the O(n3d) integer coefficients of F and T at a cost
of O(n3d · (log β)2) bit operations. Note that the complexity of step (1)
will be bounded by that of step (3). Combining these complexity results
we obtain the following.

Theorem 2.1. Let A ∈ ZZ [x]n×n with degrees bounded by d−1 be given.
The matrices F = FF(A) and T = FA can be found in in O (̃n5d(d +
log ||A||) log ||A||) bit operations using standard integer and polynomial arith-
metic.

3. AN ALGORITHM FOR SMITH NORMAL FORM OVER F[x]

In this section we give a fast Las Vegas probabilistic algorithm for com-
puting the Smith normal form of a nonsingular input matrix A ∈ F[x]n×n

for the case where pre- and post-multipliers are not also required. Since
the diagonal entries of S, the Smith normal form of A, are given by
si,i = s∗i /s

∗
i−1 where s∗i is the i-th determinantal divisor of A, it is enough

to compute the determinantal divisors of A. One possible method to find
s∗i is to compute the determinants of all i × i minors of A and set s∗i to
be their gcd. Unfortunately, the number of minors increases exponentially
with respect to the matrix dimension. The KKS Monte Carlo Smith Form
algorithm of [11] overcomes this problem by preconditioning the input ma-
trix using random unimodular pre- and post-multipliers with entries chosen
from a subset of the coefficient field. With high probability, each s∗i can
be determined by taking the gcd of the determinants of only two minors.
The drawback of the KKS Monte Carlo Smith Form algorithm is that an
incorrect result may be returned.

Our algorithm can be described as follows. Following [11] we first pre-
condition A with random pre- and post-multipliers to obtain a new matrix
A′ that has the same Smith normal form as A. Using the non-unimodular
matrix triangularization algorithm of the previous section, we compute a
lower triangular matrix F in F[x]n×n such that T = FA′ is upper trian-
gular with diagonal entry Ti,i being the determinant of the i-th principal
minor of A′. The algorithm then sets g∗i to be the gcd of (Tn,n)

2 and the
determinant of the i-th principal minor of A′. With high probability, g∗i
will equal s∗i , the i-th determinantal divisor of A. The remainder of the
algorithm performs O(n2) divisibility checks which all hold if and only if
all the g∗i are indeed the desired determinantal divisors.

8

To bound the probability of failure by a constant ε, where 0 < ε < 1, we
require that the coefficient field F has at least d6n3d/εe elements. Since our
main motivation is the case when the coefficient field F has characteristic
zero, for example F = Q, this will pose no restriction. In any case, if the
cardinality of F is too small we can work over an algebraic extension of F

having the required number of elements. Since the Smith normal form is
an entirely rational form, computing over an extension field of F will not
change the result.

In what follows, recall that s∗(A, i) denotes the i-th determinantal di-
visor of A, that is, the gcd of the determinants of all i × i minors of A.
Similarly, h∗(A, i) will denote the gcd of the determinants of all i×i minors
of the first i columns of A.

Algorithm 3.1. SmithForm

Input: A nonsingular matrix A ∈ F[x]n×n.
Output: [s∗1, s

∗
2, . . . , s

∗
n], the determinantal divisors of A.

Constant: An upper bound 0 < ε < 1 on the probability of failing.

(1) [Randomize:]
Let d − 1 bound the degrees of entries of A and let C be a subset of
F with cardinality d6n3d/εe.
UR ← a unit upper triangular matrix with off diagonal elements cho-
sen at random from C;
VR ← a unit lower triangular matrix with off diagonal elements cho-
sen at random from C;
A′ ← URAVR;

(2) [Triangularize:]
F ← FF(A′);
T ← FA′;

(3) [Find probable determinantal divisors of A:]

d∗ ← (Tn,n)
2;

for i = 1 to n do
g∗i ← an associate of gcd(d∗, Ti,i);

(4) [Check divisibility properties of g∗i ’s:]

g∗0 ← 1;
for i = 1 to n− 1 do

if g∗i
2 does not divide g∗i−1g

∗
i+1 then FAIL;

(5) [Ensure that g∗i = h∗(A′, i) for 1 ≤ i ≤ n:]

for i = 2 to n do
for j = 1 to i− 1 do
if g∗i−1 does not divide Fi,j then FAIL;

9

(6) [Ensure that g∗i = s∗(A′, i) for 1 ≤ i ≤ n:]

for i = 1 to n− 1 do
for j = i+ 1 to n do
if g∗i does not divides Ti,j then FAIL;

(7) [Output:]
[s∗1, s

∗
2, . . . , s

∗
n] with s∗i the monic associate of g

∗
i for 1 ≤ i ≤ n;

4. ALGORITHM CORRECTNESS

In this section we prove that the algorithm SmithForm is a correct Las
Vegas algorithm for computing a Smith normal form over F[x]. We will
prove this using a number of intermediate lemmas that hold for matrices
over general principal ideal domains. In what follows, R will denote a
principal ideal domain and we write a ' b to mean that a and b are
associates over R.

Our approach requires us to determine a matrix triangularization that
has the same diagonal entries as the Hermite normal form of an A ∈ Rn×n.
We note that the i-th diagonal entry hi = h(A, i) of the (unique) Hermite
normal form of A is given by hi = h∗i /h

∗
i−1 where h∗i = h∗(A, i) is the gcd

of the determinants of all i × i minors in the first i columns of A (with
h∗(A, 0) = 1).

Lemma 4.1. Let A and U in Rn×n be nonsingular with T = UA upper
triangular. The following statements are equivalent:

(1) U is unimodular;

(2) det(T) ' det(A);

(3) Ti,i ' h(A, i) for 1 ≤ i ≤ n.

Proof. It follows from the identity det(T) = det(U) det(A) that (1) and
(2) are equivalent. To see that (3) implies (2) note that

∏

1≤i≤n h(A, i) =
|detA|. Now assume that (1) holds. The matrix T can be reduced to a
matrix HT in Hermite normal form using unimodular row operations that
keep the diagonal entries in the same associate class (see, for example, [3,
proof of Corollary 2.3] or [14, proof of Theorem II.2]). In particular, there
exists a unimodular matrix UT such that UTT = HT . Since the Hermite
normal form of A is unique, HT must be the Hermite normal form of A
since HT = (UTU)A where (UTU) is unimodular. This shows that (1)
implies (3).

10

Lemma 4.2. Let T ∈ Rn×n be nonsingular and upper triangular with
i-th diagonal entry ti. If ti divides all off-diagonal entries of row i of T
for 1 ≤ i ≤ n, then there exists a unimodular matrix V ∈ Rn×n such that
TV = D where D is the diagonal matrix in Rn×n with i-th diagonal entry
ti for 1 ≤ i ≤ n.

Proof. The matrix D−1T will be unit upper triangular over R, so
V = (D−1T)−1 is unimodular over R with TV = TT−1D = D.

The divisibility properties of the invariant factors and determinantal
divisors provides a necessary (but not sufficient) condition for the correct-
ness of an algorithm that returns a list of candidates for the determinantal
divisors of an input matrix. This is made precise by the following lemma.

Lemma 4.3. For a principal ideal domainR, let g∗0 , g
∗
1 , . . . , g

∗
n be nonzero

elements from R with g∗0 = 1. Then, there exists a matrix in Rn×n having,
for 1 ≤ i ≤ n, the i-th determinantal divisor an associate of g∗i , if and only
if

g∗i
2 | g∗i−1g

∗
i+1, 1 ≤ i ≤ n− 1.

Proof. (If:) Assume that g∗i
2 | g∗i−1g

∗
i+1 for 1 ≤ i ≤ n − 1. First

we show that g∗i−1 | g∗i for i = 1, 2, . . . , n. For i = 1, g∗0 = 1 implies
g∗0 | g∗1 . By induction on i, assume g∗i−1 | g∗i for i = 1, . . . , k. Then

g∗k
2 | g∗k−1g

∗
k+1 ⇒ (g∗k/g

∗
k−1)g

∗
k | g∗k+1 ⇒ g∗k | g∗k+1. Next, let gi be the

monic associate of g∗i /g
∗
i−1 for 1 ≤ i ≤ n. Then, for 1 ≤ i ≤ n − 1,

g∗i
2 | g∗i−1g

∗
i+1 ⇒ g∗i /g

∗
i−1 | g∗i+1/g

∗
i ⇒ gi | gi+1. This shows that the n× n

diagonal matrix S with i-th diagonal entry gi is in Smith normal form.
Furthermore, S has i-th determinantal divisor an associate of g∗i .

(Only If:) See, for example, Newman [14, §16 of Chapter II].

Lemma 4.4. Let A, U (1) and U (2) be matrices in Rn×n with A non-
singular and let g∗0 , g

∗
1 , . . . , g

∗
n be entries of R. If

(1) T (1) = U (1)A and T (2) = U (2)A are upper triangular matrices;

(2) g∗0 ' 1 and g∗i ' gcd(T
(1)
i,i , T

(2)
i,i) for 1 ≤ i ≤ n;

(3) g∗n ' det(A);

(4) g∗i divides each entry in row i+1 of U (1) and U (2) for 1 ≤ i ≤ n− 1,

then g∗i ' h∗(A, i) for 1 ≤ i ≤ n.

Proof. Let A, U (1), U (2) be matrices and g∗0 , g
∗
1 , . . . , g

∗
n polynomials

that satisfy the conditions of the lemma. Condition (4) implies g∗i−1 |
gcd((U (1)A)i,i, (U

(2)A)i,i) = gcd(T
(1)
i,i , T

(2)
i,i) ' g∗i for 1 ≤ i ≤ n so g∗0 |

11

g∗1 | · · · | g∗n, where g∗n 6= 0 since A is nonsingular. This implies that
g∗i 6= 0 for all 1 ≤ i ≤ n. We show by construction that there exists a
matrix U ∈ Rn×n such that UA has i-th diagonal entry g∗i /g

∗
i−1. The

desired result will then follows by Lemma 4.1 and the fact the det(UA) =
∏n

i=1 g∗i /g
∗
i−1 = g∗n ' det(A).

Condition (2) implies that there exists a solution (ai, bi) to the diophan-
tine equation

aiT
(1)
i,i + biT

(2)
i,i = g∗i .

Let E(1) and E(2) be diagonal matrices in Rn×n such that for 1 ≤ i ≤ n,

(E
(1)
i,i , E

(2)
i,i) is such solution for (ai, bi). Let G ∈ Rn×n be diagonal with

Gi,i = g∗i−1 for 1 ≤ i ≤ n. Now consider the matrix

U = E(1)G−1U (1) + E(2)G−1U (2).

Condition (4) implies that U is over R (i.e. not just over the quotient field
of R), so that UA also has all entries from R. Also,

UA = (E(1)G−1U (1) + E(2)G−1U (2))A

= G−1(E(1)T (1) + E(2)T (2))A

= G−1







































g∗1 a1T
(1)
1,2 + b1T

(2)
1,2 a1T

(1)
1,3 + b1T

(2)
1,3 · · · a1T

(1)
1,n + b1T

(2)
1,n

0 g∗2 a2T
(1)
2,3 + b2T

(2)
2,3 · · · a2T

(1)
2,n + b2T

(2)
2,n

0 0
. . .

...

...

0 0 · · · 0 g∗n







































Thus UA is upper triangular with (UA)i,i = g∗i /g
∗
i−1.

We are now in a position to prove that algorithm SmithForm never
produces an incorrect list for the determinantal divisors of the input matrix.

Theorem 4.1. Given an input matrix A, algorithm SmithForm does
not return FAIL if and only if the (g∗i)1≤i≤n found in step (3) satisfy g∗i '
s∗(A, i) for 1 ≤ i ≤ n.

Proof. In what follows, take A′, F , T , d∗ and (g∗i)1≤i≤n to be the
quantities computed during one pass of algorithm SmithForm with input
A. The matrix A′ is unimodularly equivalent to A and thus has the same

12

Smith normal form and determinantal divisors as A. Thus, it is sufficient to
prove that FAIL is not returned if and only if g∗i ' s∗(A′, i) for 1 ≤ i ≤ n.

(If:) Assume that g∗i ' s∗(A′, i) for 1 ≤ i ≤ n. By Lemma 4.3, step (4)
will not produce a FAIL. By construction we have that the entries of F will
satisfy that Fi,j is an associate of an (i− 1)× (i− 1) minor of A′ for i > 1
and 1 ≤ j ≤ i. Similarly, Ti,j is an i × i minor of A′ for 1 ≤ i ≤ j ≤ n.
Since, by assumption, g∗i is the gcd of all i × i minors of A′, neither steps
(5) nor (6) will produce a FAIL.

(Only if:) Assume that the algorithm does not return FAIL. Set U (1) =
det(A′)(A′)adj and U (2) = F . Then, the success of step (5) ensures that the
matrices U (1), U (2), A′ and polynomials g∗1 , g

∗
2 , . . . , g

∗
n satisfy the conditions

of Lemma 4.4. In particular, the matrix T (1) = U (1)A′ will be the n ×
n diagonal matrix with diagonal entries equal to d∗ (which is equal to
det(A′)2), and the matrix T (2) = U (2)A′ will be the n×n upper triangular
matrix T . Thus there exists a unimodular matrix U in Rn×n such that

UA′ = (E(1)G−1U (1) + E(2)G−1U (2))A′

= G−1(E(1)T (1) + E(2)T (2))A′

= G−1

















g∗1 b1T1,2 b1T1,3 · · · b1T1,n

0 g∗2 b2T2,3 · · · b2T2,n

0 0
. . .

...
...
0 0 · · · 0 g∗n

















where E(1), E(2), G and the (bi)1≤i≤n are as in Lemma 4.4. Note that UA′

has i-th diagonal entry g∗i /g
∗
i−1. The success of step (6) implies that UA′

satisfies the conditions of Lemma 4.2. Therefore there exists a unimodular
matrix V such that UA′V is diagonal with i-th diagonal entry g∗i /g

∗
i−1 for

1 ≤ i ≤ n. Finally, the success of step (4) together with Lemma 4.3 gives
the desired result.

It remains to derive a bound on the probability that algorithm SmithForm

returns FAIL. It is worth noting that all the results of this section up un-
til this point have been proven for matrices over a general principal ideal
domain R. In particular, a modification of algorithm SmithForm that per-
formed all computations over the ring ZZ instead of F[x] would provide a
correct algorithm, in the sense of Theorem 4.1, for computing the determi-
nantal divisors of a square nonsingular integer input matrix. However, to
properly bound the probability of failure we require some results that are
specific to polynomial domains. The technique follows the same approach
used in [12], which shows that the probability of failure is equivalent to
the probability that a certain quantity is the root of a multivariate poly-
nomial. For this we make use of three lemmas, the first two from [12]. In

13

what follows, we write minor(A, i) to denote the i-th principal minor of A.

Lemma 4.5. [12, Lemma 3.5] Let f1, . . . , ft be polynomials in F[ρ, x],
ρ̄ is a list of new variables, with det fi ≤ e. Then for some ē ≤ 2e, there
exists an ē× ē determinant ∆ in F[ρ̄], whose entries are coefficients of fi,
such that for any evaluation ρ̄ → r̄ a list of corresponding field elements
that are not a root of ∆, gcd(f1(ρ̄), . . . , ft(ρ̄)) = (gcd(f1, . . . , ft))(ρ̄).

Lemma 4.6. [12, Lemma3.7] Let A be a matrix in F[x]n×m of rank r
and with the degrees of the entries bounded by d, and let i ∈ {1, . . . , r− 1}.
Then there is a polynomial πi in m(m− 1)/2 variables such that if

(1) VR in F[x]m×m is unit lower triangular,

(2) As is the submatrix of AR comprised of the first r columns.

then As has rank r, and s∗(A, i) = h∗(As, i), unless the m(m−1)/2 entries
below the diagonal in VR form a root of πi. The degree of πi is not more
than 2i2d+ i.

Lemma 4.7. Let A be a matrix in F[x]n×m of rank m and with the
degrees of the entries bounded by d, and let i ∈ {1, . . . ,m− 1}. Then there
is a polynomial γi in n(n− 1)/2 variables such that if

(1) UR ∈ F[x]n×n is unit upper triangular,

(2) d∗ is a polynomial with degree less than 2md and such that h∗(A, i)
divides d∗.

then h∗(A, i) = gcd(d∗,det(minor(URA, i)), unless the n(n − 1)/2 entries
above the diagonal in UR together with the 2md coefficients of d∗ form a
root of γi. The degree of γi is bounded by 4mdi.

Proof. First consider that case where the matrix UR contains indeter-
minants as entries, say (UR)i,j = ρi,j for j > i where ρ̄ = (ρi,j)1≤i≤n,j>i is
a list of indeterminants. From [12, Lemma 3.6], we have that the determi-
nant of the minor is given by det(minor(URA, i)) = h∗(A, i)p, where p is an
irreducible polynomial in F[x, ρ̄]\F[x] or is 1. Since d∗ is independent of the
indeterminants ρ̄, we must have h∗(A, i) = gcd(d∗,det(minor(URA, i))) as
required. An application of Lemma 4.5 yields the existence of a 4md×4md
determinant ∆, whose entries are coefficients of x of det(minor(URA, i)) and
d∗ such that for any evaluation ρ̄→ r̄, where r̄ is a list of corresponding field
elements that are not a root of ∆, gcd(d∗,det(minor(URA, i))) = h∗(A, i).
It remains to establish a degree bound for ∆. Coefficients of x of URA are
of degree 1 whence coefficients of x of det(minor(URA, i)) will have total

14

degrees bounded by i. This leads to a bound on the total degree of ∆ of
4mdi. To complete the proof we set γi = ∆.

Finally, we are in a position to show that our algorithm computes the
Smith form correctly with expected probability.

Theorem 4.2. Algorithm SmithForm is correct and fails with probabil-
ity less than ε. The expected cost of finding the Smith normal form of a
nonsingular input matrix A over F[x] is the cost of one pass of algorithm
SmithForm.

To show that the probability of failure is less than ε we show that
g∗i ' s∗i for 1 ≤ i ≤ n provided the entries of UR above the diagonal and
VR below the diagonal do not form the root of a certain polynomial π with
degree bounded by 6n3d. By a result of Schwartz [16], the probability of
this happening is bounded by deg(π)/#C, which by our choice of C is less
than ε.

The matrix AVR will be such that h∗(AVR, i) = s∗(A, i) for 1 ≤ i ≤ n
unless the entries of VR below the diagonal form a root of a polynomial
πS = π1π2 · · ·πn−1 where each πi, bounded in degree by 2i2d + i, is as
in Lemma 4.6. Similarly, gcd(det(minor(A′, i),det(A)2) = h∗(AVR, i) for
1 ≤ i ≤ n if the entries of UR above the diagonal do not form a root of a
polynomial πH = γ1γ2 · · · γn−1 where each γi, bounded in degree by 4ndi,
is as in Lemma 4.7. The polynomial πH will be bounded in degree by 4n3d
and πS by 2n3d. Let π = πSπH . Then π is bounded in degree by 6n3d.

The probability that k iterations will be required to return a non FAIL
result is εk−1(1− ε). The expected number of iterations required to return
a non FAIL result is given by

∑

1≤k≤∞ kεk−1(1 − ε), which is equal to
1/(1− ε), a constant.

5. ALGORITHM COMPLEXITY

Notice first that the entries of F and T found in step (2) are associates of
determinants of minors of A′. These have degrees bounded by nd, leading
to a bound of 2nd on degrees of all intermediate polynomials occurring
during the algorithm. Using the evaluation/interpolation scheme discussed
in Section 2, the matrices F and T can be found in O(n4d2) field operations
from F. This bounds the cost of the matrix multiplications in step (1), the
n gcd computations in step (3), and the remaining n multiplications and
n2 − 1 trial divisions in steps (4), (5) and (6), and leads leads to a bound
of O(n4d2) field operations for one pass of algorithm SmithForm.

Now consider the case when F = Q. We assume without loss of gener-
ality, and as done in [11] and [13], that the input matrix A has been pre-
conditioned to have all coefficients of polynomial entries integral. Although

15

we are implicitly computing over Q[x], beginning with input A ∈ ZZ [x]n×n

allows all intermediate computations in steps (1) through (6) to be accom-
plished over the simpler domain ZZ [x]. In practice, the dominant cost of
the algorithm will almost certainly be finding the triangularization T and
transition matrix F in step (2). The integer coefficients appearing in A′

will be only slightly larger than those of A. In particular, in step (1) we can
choose C = {0, . . . , d6n3d/εe} so that ||A′|| ≤ n ·d6n3d/εe·||A||. Asymptot-
ically, the length of integer coefficients in F = FF(A′) and T = FA′ will be
bounded by O (̃n(log d + log ||A||)) bits. By employing the homomorphic
imaging scheme developed in Section 2 we have the the following result
which follows directly from Theorem 2.1.

Theorem 5.1. The cost of a one pass of algorithm SmithForm with
input A ∈ ZZ [x]n×n is O (̃n5d(d + log ||A||) log ||A||) bit operations using
standard integer and polynomial arithmetic plus no more than O(n2) trial
divisions, multiplications and gcd computations involving polynomials that
are factors of entries in the matrices F and T found in step (2). Entries of
F and T will be polynomials with degrees bounded by nd and with integer
coefficients bounded in length by O (̃n(log d+ log ||A||)) bits.

Next, we derive an asymptotic complexity result for one pass of algo-
rithm SmithForm. Let M(t) be an upper bound on the number of bit opera-
tions required to multiply two dte bit integers. Using fast integer multiplica-
tion (the Schönhage-Strassen algorithm) we can take M(t) = t log t log log t.
There is a natural duality between the integers and univariate polynomials
with integer coefficients. The integer coefficients (represented in binary) of
a degree d− 1 polynomial f ∈ ZZ [x] having coefficients bounded in magni-
tude by 2k−1−1 (k ∈ ZZ) can be written as a binary lineup to obtain the dk
bit integer f |x=2k . This corresponds to the B-adic expansion of an integer;
choosing B a power of 2 allows the conversion to and from polynomial rep-
resentation to be accomplished in linear time. Thus, we can find F and T
in O(n3M(ndk)) bit operations by applying fraction-free Gaussian elimina-
tion to the n×n integer matrix A′|x=2k where k = d1+ log2(β+1)e. By a
result of Schönhage [15], the n gcd computations in step (3) require an ex-
pected number of O (̃n ·nd(nd+n log ||A||)) bit operations. The remaining
O(n2) trial divisions in steps (4), (5) and (6) and the O(n) multiplications
in step (3) will require at most O(n2M(nd · (nd+ n log nd||A||))) bit oper-
ations. Overall this yields O (̃n3d(d + n2 log ||A||)) bit operations for one
pass of algorithm SmithForm using fast integer arithmetic.

16

6. CONCLUSIONS

We have given a Las Vegas algorithm to compute the Smith normal
form of a nonsingular polynomial matrix A ∈ F[x]n×n where F is a field.
We have taken a new approach that completely avoids the usual technique
of diagonalizing the input matrix with a succession of unimodular row and
column operations — this has allowed us to derive very good bounds on
the size of intermediate expressions occurring during the algorithm for the
case F = Q. The algorithm is both fast and practical with the main
computation being the (non-unimodular) triangularization of a polynomial
matrix. The algorithm also works well for matrices over more general
polynomial domains, for example extensions of the form Q(α)[x] where the
algebraic number α has a monic minimal polynomial from ZZ [x].

A key step in our algorithm — first used in [11] — is to obtain a precon-
ditioning A′ of the input matrix A ∈ F[x]n×n. A drawback of this technique
is that preconditioned matrix A′ will be dense even if the input matrix A
is sparse. A possible solution to this problem is use sparse preconditioning
matrices although we have not investigated this approach.

More recently, though, we have discovered a sequential deterministic
version of our probabilistic Smith normal form algorithm that, as well as
giving a new complexity result, may be useful in the case of sparse in-
put. The deterministic version constructs a correct premultiplication of
the input matrix during the non-unimodular triangularization phase of the
algorithm. This will be presented in a future paper.

The algorithm we have presented for computing Smith normal forms
over F[x] works only for square nonsingular input matrices. In the future,
we will give a generalization that works for both singular and/or rectangular
input (see [18] for details). In particular, the generalization to nonsquare
matrices depends on a result presented in [19] where we give a fast Las
Vegas algorithm for reducing the problem of computing the Hermite normal
form of a rectangular polynomial matrix to that of computing the Hermite
normal form of a nearly square matrix with similar size entries.

The algorithm we have presented takes advantage of the fact that we
did not need to compute candidates for pre- and post-multipliers for the
Smith normal form. We also plan to present asymptotically fast algorithms
for computing Hermite normal forms over various domains. In particular,
the probabilistic algorithm given in [12] for computing the Smith normal
form (with multipliers) of a polynomial matrix has as its dominant cost
computing Hermite normal forms.

In the case of computing the Smith normal form with multipliers, the
multiplier matrices are highly non-unique. An remains an open problem
whether this computation can be done to produce “nice” multipliers, that

17

is, multipliers having small coefficients (when possible). For certain ap-
plications it is enough to know that one of the multiplier matrices can be
nice. For example, in order to determine if two integer matrices A,B are
similar over the rationals, one can compute the Smith normal form of the
characteristic polynomial matrices xI − A, xI − B. If these normal forms
are equal then the matrices are similar. In addition, if UA(x), VA(x) and
UB(x), VB(x) are the multiplier matrices for these Smith forms then a sim-
ilarity transform matrix T can be computed via T ← (VAV −1

B)|x=B and
will satisfy B = TAT−1 (see [5, Chapter VI]). For such an application it
is enough to require that the column multiplier matrix have coefficients as
small as possible.

REFERENCES

1 E. H. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian
elimination. Mathematics of Computation, 22(103):565–578, 1968.

2 E. H. Bareiss. Computational solution of matrix problems over an integral
domain. Phil. Trans. Roy. Soc. London, 10:68–104, 1972.

3 P. D. Domich, R. Kannan, and L. E. Trotter, Jr. Hermite normal form com-
putation using modulo determinant arithmetic. Mathematics of Operations

Research, 12(1):50–59, February 1987.

4 M. A. Frumkin. An application of modular arithmetic to the constuction
of algorithms for solving systems of linear equations. Soviet Math. Dok.,
17:1165–1168, 1976.

5 F. R. Gantmacher. Matrix Theory, volume 1. Chelsea Publishing Company,
1960.

6 Keith O. Geddes, S. R. Czapor, and George Labahn. Algorithms for Com-

puter Algebra. Kluwer, Boston, MA, 1992.

7 Mark Giesbrecht. Fast algorithms for rational forms of integer matrices. In
Proceedings of ISSAC’94, pages 305–311, Oxford, England, 1994.

8 B. Hartley and T. O. Hawkes. Rings, Modules, and Linear Algebra. Chapman
and Hall, 1970.

9 T. C. Hu. Integer Programming and Network Flows. Addison-Wesley, Read-
ing, MA, 1969.

10 Thomas Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, N.J.,
1980.

18

11 Erich Kaltofen, M. S. Krishnamoorthy, and B. David Saunders. Fast parallel
computation of Hermite and Smith forms of polynomial matrices. SIAM

Journal of Algebraic and Discrete Methods, 8:683–690, 1987.

12 Erich Kaltofen, M. S. Krishnamoorthy, and B. David Saunders. Parallel
algorithms for matrix normal forms. Linear Algebra and its Applications,
136:189–208, 1990.

13 R. Kannan. Polynomial-time algorithms for solving systems of linear equa-
tions over polynomials. Theoretical Computer Science, 39:69–88, 1985.

14 M. Newman. Integral Matrices. Academic Press, 1972.

15 A. Schönhage. Probabilistic computation of integer polynomial GCD’s. Jour-

nal of Algorithms, 9:365–371, 1988.

16 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. Journal of the ACM, 27:701–717, 1980.

17 H. J. S. Smith. On systems of linear indeterminate equations and congru-
ences. Phil. Trans. Roy. Soc. London, 151:293–326, 1861.

18 Arne Storjohann. Computation of Hermite and Smith normal forms of ma-
trices. Master’s thesis, Dept. of Computer Science, University of Waterloo,
1994.

19 Arne Storjohann and George Labahn. Preconditioning of rectangular polyno-
mial matrices for efficient Hermite normal form computation. In Proceedings

of ISSAC’95, pages 119–125, Montreal, Canada, 1995.

20 Gilles Villard. Computation of the Smith normal form of polynomial matri-
ces. In Proceedings of ISSAC’93, pages 208–217, Kiev, Ukraine, 1993.

