
Asymptotically Fast Computation of the

Hermite Normal Form of an Integer Matrix

Arne Storjohann and George Labahn

Department of Computer Science

University of Waterloo, Ontario, Canada, N2L 3G1

{astorjoh,glabahn}@daisy.uwaterloo.ca

January 15, 1996

Abstract

This paper presents a new algorithm for computing the Hermite nor-
mal form H of an A ∈ ZZ n×m of rank m together with a unimodular
pre-multiplier matrix U such that UA = H. Our algorithm requires
O (̃mθ−1nM(m log ||A||)) bit operations to produce both H and a can-
didate for U . Here, ||A|| = maxij |Aij |, M(t) bit operations are sufficient
to multiply two dte-bit integers, and θ is the exponent for matrix multipli-
cation over rings: two m×m matrices over a ring R can be multiplied in
O(mθ) ring operations from R. The previously fastest algorithm of Hafner
& McCurley requires O (̃m2nM(m log ||A||)) bit operations to produce H,
but does not produce a candidate for U . Previous methods require on the
order of O (̃n3M(m log ||A||)) bit operations to produce a candidate for U
— our algorithm improves on this significantly in both a theoretical and
practical sense.

1 Introduction

A fundamental notion for matrices over rings is left equivalence. Two n × m
matrices A and B over a principal ideal ring R are said to be left equivalent if
there exists an n×n unimodular matrix U that satisfies UA = B. (A unimodular
matrix has determinant a unit in R and hence is invertible.) Any integer matrix
A with full column rank can be transformed to an upper triangular matrix T
using only elementary row operations. The triangularization T can be made
unique by enforcing that diagonal entries be positive and off-diagonal entries
be non-negative and reduced in magnitude modulo the diagonal entry in each
column. In particular, any A ∈ ZZ

n×m with rank m is left equivalent to a unique
upper triangular matrix H. That is, there exists a unimodular matrix U (i.e.
det(U)± 1) such that

1

UA = H =

h1 h̄12 h̄13 h̄1m

h2 h̄23 · · · h̄2m

h3 h̄3m

. . .
...

hm

where hj is positive for 1 ≤ j ≤ m and h̄ij satisifes 0 ≤ h̄ij < hj for 1 ≤ i, j ≤ m.
The reduced triangularization H is called the Hermite normal form of A and the
unimodular U is called a pre-multiplier matrix. The Hermite normal form was
first proven to exist by Hermite [5, 1851] for the case of a square nonsingular
input matrix. The Hermite normal form is in fact a canonical form for left
equivalence over ZZ — it always exists and is unique (see, for example, Newman
[10, 1972]).

Hafner & McCurley [4, 1991] have given an algorithm that requires
O (̃m2nM(m log ||A||)) 1 bit operations to compute the Hermite normal form
of A. They have also shown how to apply fast matrix multiplication techniques
to the problem of triangularizing matrices over principal ideal rings. They show
how to apply their result to the case R = ZZ to get an asymptotically fast algo-
rithm for obtaining a unimodular triangularization of an integral input matrix.
This results in an algorithm that requires O (̃mθ−1nM(m log ||A||)) bit opera-
tions to produces an upper triangular T left equivalent to A. Here θ denotes
the number such that two m ×m matrices over a ring R can be multiplied in
O(mθ) ring operations from R. Using standard multiplication θ = 3, while the
best known algorithm of Coppersmith & Winograd [2, 1990] allows θ = 2.38.
However, Hafner & McCurley were unable to obtain an algorithm to compute
the complete Hermite normal form with the improved complexity.

For some applications the complete Hermite normal form of an input matrix
is not required; a general triangularization such as produced by Hafner & Mc-
Curleys algorithm may be sufficient. The Hermite normal form, however, has
some important advantages over a general triangularization. First, the Hermite
normal form is a canonical form for left equivalence. To determine whether a
second matrix B is left equivalent to A, it is sufficient to compare the Hermite
normal forms of A and B. This check for left equivalence is not possible using
a general (non unique) triangularization. Secondly, the space required to write

1To summarize results we use “soft-Oh” notation: for any f, g : <s 7→ <, f = O (̃g) if and
only if f = O(g · logc g) for some constant c > 0.

2

down the Hermite normal form H of A will be small compared to that of gen-
eral triangularization T . Consider the case of a square nonsingular input matrix
A ∈ ZZ

n×n. The total size of H (the sum of the bit lengths of the individual
entries of H) will be on the order of O (̃n2 log ||A||) bits, or about the same
space as required to write down the input matrix. The triangularization T re-
turned by Hafner & McCurleys algorithm will have entries bounded in length by
O (̃n log ||A||)) bits. This leads to a total size bound for T of O (̃n3 log ||A||) bits,
or about a factor n larger than H. Since A is nonsingular, there will be a unique
unimodular matrix U which satisfies UA = H and A = HU−1. Similarly, there
exists a unique unimodular P with PA = T and A = TP−1. Entries in U and
U−1 will be bounded in length by O (̃n log ||A||) bits and by O (̃log ||A||+log n)
bits respectively. Entries of P and P−1, on the other hand, are bounded in
length by O (̃n2 log ||A||) bits and O (̃n3 log ||A||) bits respectively.

In this paper we show how to use a fast matrix multiplication decomposition
for reducing off-diagonal entries of an upper triangular matrix T . Combining our
result with Hafner & McCurleys triangularization method gives an algorithm
for computing the Hermite normal form H of A in O (̃mθ−1nM(m log ||A||)) bit
operations.

In addition, we show how to recover a candidate for a unimodular pre-
multiplier matrix U which satisfies UA = H. Computing a pre-multiplier is
required in such applications as integer programming [6, 1969], solving linear
diophantine equations [8, 1989] and computing matrix greatest common divisors
[12, 1995]. In the case where A is square and nonsingular, U is unique and can be
recovered with no increase in asymptotic complexity by computing U ← HA−1

using standard methods. However, for the rectangular case where A is n ×m
with n > m, the pre-multiplier matrix U is not unique. Our algorithm recovers
both H and a candidate for an n×n unimodular U in O (̃mθ−1nM(m log ||A||))
bit operations. The previously fastest algorithm for Hermite normal form, which
works modulo the determinant of the input matrix to prevent expression swell,
has initially been presented for the case of square nonsingular input matrices
(see, for example, Domich, Kannan & Trotter [3, 1987] or Iliopolous [9, 1989]).
Hafner & McCurley [4, 1991] extend the mod determinant approach and give
an algorithm that requires O (̃m2nM(m log ||A||)) bit operations to produce H,
but they don’t show how to produce a candidate for U within this time. They
suggest the following scheme for producing a U . Permute the rows of A and
augment with the n−m identity matrix to get a new n×n matrix Ā which can
be written in block form as

Ā =

A1

A2 In−m

where A1 is nonsingular. Compute the Hermite normal form H̄ of Ā at a cost
of O (̃n3M(m log ||A||)) bit operations, and set U ← H̄Ā−1. The algorithm we

3

give in this paper improves this worst case complexity bound by a factor of
about O(n2/mθ−1) — a significant improvement for rectangular matrices even
assuming standard matrix multiplication. Moreover, the matrix U will produced
by our algorithm will be “nice”. By this we mean that the entries of U will be
bounded in length by O (̃m log ||A||) bits and U will be sparse, with on the order
of only O (̃nm) nonzero integer entries.

2 Preliminaries and Previous Results

Following Hafner & McCurley in [4, 1991], we will express our complexity results
in terms of a function B(t) that bounds the number of bit operations to solve
both the extended Euclidean problem with two dte bit integers and to apply
the Chinese remainder algorithm with moduli consisting of all primes less than
t. By Theorem 8.20 and 8.21 of Aho, Hopcroft & Ullman [1, 1974] we can take
B(t)¿ M(t) log(t) where M(t) is a monotonic upper bound on the number of bit
operations required to multiply two dte bit integers. The Schönhage & Strassen
[11, 1971] integer multiplication algorithm allows M(t)¿ t log t log log t hence

B(t)¿ t log2 t log log t.

In what follows, we write MM(n) = MMR(n) to mean the number of ring
operations required to multiply two n× n matrices over a ring R, where

MM(n)¿ nθ. (1)

It is well known that the product of the diagonal entries in the Hermite
normal form of an n×m matrix A with rank m is given by the gcd of all m×m
minors of A — in what follows we refer to this quantity as det(L(A)). We end
this section with a result of Hafner & McCurley [4, 1991] that will be required
in Section 3 and 4.

Lemma 1 (Hafner & McCurley ([4, 1991]) There exists a deterministic

algorithm that takes as input an n ×m rank m integral matrix A and positive

integer d that is a multiple det(L(A)), and produces as output an upper trian-

gular matrix T that is left equivalent to A. Entries in T will be bounded in

magnitude by d and the running time of the algorithm is O(mnB(log ||A||) +
mθ−1n log(2n/m)B(log d)) bit operations.

Hafner & McCurley also show also how to obtain a suitable multiple d of
det(L(A)) which satisfies d ≤ mm/2||A||m.

Theorem 2 (Hafner & McCurley [4, 1991]) There exists a deterministic

algorithm that takes as input an n×m rank m integral matrix A, and produces

as output an upper triangular matrix T that is left equivalent to A. Entries in
T will be bounded in magnitude by mm/2||A||m, and the running time of the

algorithm is O(mθ−1n log(2n/m)B(m logm||A||)) bit operations.

4

3 Asymptotically Fast Hermite Normal Form

In this section we give our asymptotically fast algorithm for computing the
Hermite normal form of an A ∈ ZZ

n×m. First we apply the triangularization
algorithm of Theorem 2 to transform A to an upper triangular T ∈ ZZ

m×m

having diagonal entries the same as those in the Hermite normal form of A.
Our approach is to consider T as a matrix over ZZ d, where d is a positive integer
multiple of det(T). In particular, let T̄ be the matrix obtained from T by
reducing each entry modulo d. In Subsection 3.1 we present an algorithm which
computes a unit upper triangular Ū ∈ ZZ

n×n
d which satisfies Ū T̄ = H mod d,

where H is in Hermite normal form over ZZ d, that is, has offdiagonal entries in
each column reduced modulo the diagonal entry in each column. The Hermite
normal form of T is simply H, considered now over ZZ rather than ZZ d. In
Subsection 3.2 we make this argument precise and give the complete Hermite
normal form algorithm.

3.1 Hermite Normal Form of a Triangular Matrix

In this subsection we work completely over the ring ZZ d. In particular, all
matrices will be over ZZ d, and equations should be taken to hold modulo d. For
brevity, we give our complexity results in terms of the number of operations
from ZZ d — a single operation from ZZ d has cost O(B(log d)) bit operations.

Let R(n) = Rd(n) be a bound on the number of operations from ZZ d required
to compute, for an upper triangular T ∈ ZZ

n×n
d with nonzero diagonal entries, a

unit upper triangular pre-multiplier U such that UT = H, with H in Hermite
normal form. Our result is the following.

Theorem 3 R(n)¿ nθ.

We prove Theorem 3 by reducing to a special case for which we require some
notation. For n even, let Tn be the set of n× n nonsingular upper triangular
matrices over ZZ d that can be written in block form as

[

I A
B

]

where A and B are (n/2)× (n/2), B is in Hermite normal form, and the empty
block is used to denote the zero matrix. Let R∗(n) = R∗d(n) be the number of
ring operations required to compute, for a T ∈ Tn, candidates for (n/2)× (n/2)
matrices Q and R over ZZ d such that

[

I −Q

I

][

I A

B

]

=

[

I R

B

]

with the matrix on the right hand side in Hermite normal form.

5

Lemma 4 R∗(n)¿ nθ.

Proof By embedding the input matrix into the block matrix diag(Ip, T, Ip) ∈
Tn+2p, with p a nonnegative integer less than n/2, we can assume without loss
of generality that n is power of 2. We show how to reduce the problem to four
subproblems of half the size which can be combined using matrix multiplication.
We claim that

R∗(n) ≤ 4R∗(n/2) +MM(n)

≤ 4R∗(n/2) + cnθ (2)

for some absolute constant c. The second line in this inequality follows from
(1). To prove (2), we start with a T ∈ Tn, which, using a block decomposition,
we can write as

T =

I A1 A3

I A2 A4

B1 B2

B3

where all blocks are of size (n/4) × (n/4). At a cost of 2R∗(n/2), compute
(n/4)× (n/4) matrices Q1, R1, Q2 and R2 such that

[

I −Q1

I

][

I A1

B1

]

=

[

I R1

B1

]

and
[

I −Q2

I

][

I A2

B1

]

=

[

I R2

B1

]

with the matrices on the right hand side in Hermite normal form. At a cost of
MM(n), compute the matrix product

I R1 A′3
I R2 A′4

B1 B2

B3

=

I −Q1

I −Q2

I

I

I A1 A3

I A2 A4

B1 B2

B3

.

The last stage is now similar to the first. At a cost of 2R∗(n/2), compute
(n/4)× (n/4) matrices Q3, R3, Q4 and R4 such that

[

I −Q3

I

][

I A′3
B1

]

=

[

I R3

B1

]

6

and
[

I −Q4

I

][

I A′4
B1

]

=

[

I R4

B1

]

with the matrices on the right hand side in Hermite normal form. We now
have

I −Q1 −Q3

I −Q2 −Q4

I

I

I A1 A3

I A2 A4

B1 B2

B3

=

I R1 R3

I R2 R4

B1 B2

B3

with the premultiplier matrix on the left unit upper triangular and the matrix
on the right hand side in Hermite normal form. This shows that

R∗(n) ≤ 4R∗(n/2) +MM(n)

which verifies (2). Iterate (2) to obtain

R∗(n) ≤ 4R∗(n/2) + cnθ

= 16R∗(n/4) + cnθ + 4c(n/2)θ

...

= 4(log2 n)−1R∗(2) + c

(log2 n)−2
∑

i=0

(
4

2θ
)i

¿ n2R∗(2) + nθ.

The Lemma now follows since the cost of R∗(2) is O(1) operations from ZZ d.
We now return to the proof of Theorem 3. By embedding an n×n upper tri-

angular nonsingular input matrix T into the block diagonal matrix diag(Ip, T),
with p a nonnegative integer bounded by n, we can assume without loss of
generality that n is a power of two. We claim that

R(n) ≤ 2R(n/2) +MM(n) +R∗(n)

≤ 2R(n/2) + cnθ (3)

for some absolute constant c. The second line of the inequality follows from (1)
and Lemma 4. To prove (3), we start with an n×n nonsingular upper triangular
matrix T , which, using a block decomposition, we can write as

T =

[

B1 A2

B2

]

.

7

At a cost of 2R(n/2), compute (n/2)× (n/2) matrices U1, H1, U2 and H2 such
that U1B1 = H1 and U2B2 = H2 with H1 and H2 in Hermite normal form and
U1 and U2 unit upper triangular. At a cost of MM(n), compute the matrix
product

[

H1 A′2
H2

]

=

[

U1

U2

] [

B1 A2

B2

]

.

At a cost of R∗(n), compute (n/2)× (n/2) matrices Q and R such that

[

I Q
I

] [

I A′2
H2

]

=

[

I R2

H2

]

.

We now have
[

U1 −Q
U2

] [

B1 A2

B2

]

=

[

H1 R2

H2

]

with the premultiplier matrix on the left unit upper triangular and the matrix
on the right hand side in Hermite normal form. This shows that

R(n) ≤ 2R(n/2) +MM(n) +R∗(n)

which verifies (3).
Iterate (3) to obtain

R(n) ≤ 2R(n/2) + cnθ

= 4R(n/4) + cnθ(1 + 2(1/2)θ)

...

= 2(log2 n)−1R(2) + cnθ

(log2 n)−1
∑

i=0

(2/2θ)i

¿ n2R(2) + nθ.

The result now follows since the cost of R(2) is O(1) operations from ZZ d.

3.2 The Hermite Normal Form Algorithm

Theorem 5 There exists a deterministic algorithm that takes as input an

n × m rank m integral matrix A, and produces as output the Hermite

normal form of A. The running time of the algorithm is bounded by

O(mθ−1n log(2n/m)B(m logm||A||)) bit operations.

Proof Use the algorithm of Theorem 2 to produce an upper triangular T left
equivalent to A. As an intermediate step, the algorithm of Theorem 2 computes
a positive integer multiple d′ of det(L(A)) with d′ ≤ mm/2||A||m. Let T̄ be the
matrix obtained from A by reducing entries modulo d, where d = 2d′, and com-
pute the Hermite normal form H of T̄ over ZZ d using the algorithm of Theorem

8

3. So far, the running time is seen to be bounded by O(mθ−1nB(m logm||A||))
bit operations. The following lemma shows that the Hermite normal form of T ,
and hence A, is also H, considered now over ZZ rather than ZZ d.

Lemma 6 Let Ū , T and H be m ×m integral matrices with Ū unit upper tri-

angular, T upper triangular with positive diagonal entries and H in Hermite

normal form. If

ŪT = H mod d, (4)

where d is a positive integer multiple of 2 det(T), then H is the Hermite normal

form of T .

Proof Since the Hermite normal form is a canonical form for left equivalence,
we will be finished if we show their exists a U ∈ ZZ

m×m which is unimodular and
satisfies UT = H. It follows from (4) that the matrix ŪT − H has all entries
divisible by d. Set U ← Ū − (1/d)(ŪT −H)(2T adj). Then U is integral and

UT = (Ū − (1/d)(ŪT −H)(2T adj))T

= ŪT − (ŪT −H)(2/d)T adjT

= ŪT − (ŪT −H)

= H.

Since Ū is unit upper triangular and d = 2det(T) is strictly larger than each
diagonal entry of T , the matrix H = ŪT mod d will have the same diagonal
entries as T . In particular, this means that det(H) = det(T) and it follows from
the identity UT = H that U is unimodular.

4 Asymptotically Fast Pre-multiplier

In this section we consider the problem of computing, for an n × m rank m
integral input matrix A, an n × n unimodular pre-multiplier matrix U that
satisfies UA = H. Our approach is based on an algorithm given by Hafner &
McCurley [4, 1991] for triangularizing matrices over rings. Combining one of
their results, essentially the algorithm of Theorem 2, with the result of Section
3 leads directly to an algorithm that computes an n× n matrix Û that satisfies

ÛA = H mod d (5)

for some positive integer multiple d of det(L(A)). The cost of producing Û
will be bounded by O (̃mθ−1nB(m logm||A||)) bit operations. Note that this
complexity result is almost linear in n even though the output includes the
n × n matrix Û . It turns out the the matrix Û produced is sparse, with only
O(nm log(2n/m)) nonzero entries. Unfortunately, equation (5) will not hold
over ZZ , nor will det(Û) = ±1.

9

The result of this section is a modification of Hafner & McCurley’s trian-
gularization algorithm that produces a candidate for an n × n integral matrix
U that satisfies both UA = H and det(U) = ±1. The algorithm also requires
only O (̃mθ−1nB(m logm||A||)) bit operations. Moreover, U will have entries
bounded in length by O(log(2n/m)m logm||A||) bits. The major portion of our
work will go into ensuring that the size of intermediate integers occuring during
the construction of U do not become too large.

Our algorithm has two steps which we present separately in Subsection 4.1
and 4.2. In Subsecton 4.1 we present a fast preconditioning step which ensures
that certain m ×m minors of the input matrix are nonsingular — we require
this to properly bound the size of intermediate integers during the remainder of
the algorithm. In Subsection 4.2 we present our algorithm for a special type of
rectangular input matrix that can be decomposed using a block decomposition
into m×m Hermite normal form matrices. Finally, we combine these results in
Subsection 4.3 and present the general algorithm.

Before continuing, we present some simple results which will be required later
on. The following result establishes some useful bounds on the magnitudes of
entries occuring in matrices which arise during intermediate computations.

Lemma 7 Let U ,A and H be n×n nonsingular integral matrices which satisfy

UA = H where H is in Hermite normal form. If d = |det(A)|, then

‖Hadj‖ ≤ d.

If B is any other n× n integral matrix, then

‖HB‖ ≤ d‖B‖.

Lemma 8 There exists a deterministic algorithm that takes as input a 2m×m
matrix

A =

[

H1

H2

]

,

where both H1 and H2 are m×m of rank m and in Hermite normal form, and

produces as output the Hermite normal form H of A together with a unimodular

matrix U such that UA = H. If d bounds both det(H1) and det(H2) then

||U || ≤ d2. The cost of the algorithm is O(mθB(log d)) bit operations.

Proof Compute the Hermite normal form H̄ of

Ā =

[

H1

H2 Im

]

.

By Lemma 1 the cost of this is O(mθB(log d)) bit operations. We will compute
U as U ← H̄Ā−1. First we establish the bound on ||U ||. Let d1 = det(H1) and

10

d2 = det(H2), then

‖U‖ =
∥

∥H̄Ā−1
∥

∥

≤ d1

∥

∥Āadj(1/d1)
∥

∥ (6)

≤
∥

∥Āadj
∥

∥

=

∥

∥

∥

∥

∥

[

Hadj
1

−H2H
adj
1 d1I

]∥

∥

∥

∥

∥

≤ max(‖Hadj
1 ‖, ‖H2H

adj
1 ‖, d1)

≤ max(d1, d2d1, d1) (7)

≤ d2.

where lines (6) and (7) follow from Lemma 7. The matrix U can now be com-
puted in O(mθB(m logm||A||)) bit operations using a standard homomorphic
imaging scheme.

4.1 A Preconditioning Algorithm

Let A be an n×m rank m integral input matrix. We can write A using a block
decomposition as

A1

A2

...
Al

B

(8)

where each Ai is m×m, l = bn/mc, and B is t×m with t = n−lm. The purpose
of this section is to give a fast algorithm for transforming A to an equivalent
matrix, but where Ai is nonsingular for 1 ≤ i ≤ l. Our result is the following.

Lemma 9 There exists a deterministic algorithm that takes as input an n×m
rank m integral matrix A, and returns as output an n × n permutation matrix

P together with a unimodular matrix

R =

Im
R2 Im
R3 Im
...

. . .

Rl Im
O It

11

where l = bn/mc, t = n− lm, each Ri is m×m, and the matrix

RPA =

Ā1

Ā2

...

Āl

B

has each m × m block Āi nonsingular for 1 ≤ i ≤ l. The matrix R will

satisfy ‖R‖ = O(m logm‖A‖), and the running time of the algorithm is

O(mθ−1nB(m logm||A||)) bit operations.

Proof Compute a number z such that b =
∏p prime

p≤z p > mm/2‖A‖m. By
Hadamard’s bound every minor of A is has magnitude less than b. For each
prime p ≤ z = O(m logm||A||), compute the rank of (A mod p), and let p be
the first prime for which A has rank m over ZZ p. This can be accomplished in
O(mθ−1nB(b)) bit operations using an algorithm of Ibarra, Moran and Hui [7,
1982]. The algorithm of Ibarra et al. [7, 1982] also returns a maximal set of lin-
early independent rows over ZZ p, and this gives the permutation matrix P such
that PA can be written as in (8) with A1 nonsingular over ZZ and ZZ p. Fix some
j with 2 ≤ j ≤ l. Our goal is to compute a matrix Rj such that Āj = Aj+RjA1

is nonsingular. Note that if (Āj mod p) is nonsingular over ZZ p, then Āj will
be nonsingular over ZZ . Our approach is to find an Rj with entries between 0
and p− 1 such that (Āj mod p) is nonsingular over ZZ p. Since A1 is nonsingular
over ZZ p, (Āj mod p) will be nonsingular over ZZ p if and only (ĀjA

−1
1 mod p)

is nonsingular over ZZ p. Working mod p, decompose (AjA
−1
1 mod p) as the

sum of a unit upper triangular matrix Uj and lower triangular matrix Lj . Set
Rj = (−Lj mod p). Then entries in Rj are between 0 and p− 1 and

ĀjA
−1
1 ≡ (AjA

−1
1 +Rj) mod p

≡ ((Uj + Lj))− Lj) mod p

≡ Uj mod p

whence (ĀjA
−1
1 mod p) is nonsingular over ZZ p. The cost of computing

(AjA
−1
1 mod p) for 2 ≤ j ≤ l is bounded by O(mθ−1nB(log p)) bit operatons.

4.2 A Special Case of the Algorithm

In this section we develop our algorithm to compute pre-multiplier matrices for
a special class of input matrices. Fix some positive integer paramaters m and
d, and let Tl = Tl[m, d] be the set of all lm×m rank m integral matrices which

12

can be written using a block decomposition as

A1

A2

...
Al

(9)

where each m ×m block Ai is either the zero matrix or is nonsingular and in
Hermite normal form, and where d is a positive multiple of det(Ai) for 1 ≤
i ≤ l. Let H(l) = H[m, d](l) denote a function which bounds the number of
bit operations required to compute, for a given input matrix A ∈ Tl[m, d], a
unimodular matrix U such that UA = H, the Hermite normal form of A. Our
result is the following.

Theorem 10 H[m, d](l)¿ l log(2l)mθB(log(2l) logmd).

Our proof of Theorem 10 has two parts. First, we prove the existence of
a deterministic algorithm that constructs a candidate for U that will both be
sparse and have small entries. For the second part, we analyse the complexity
of the algorithm.

We need to define some notation. A pm×qm matrix X can be written using
a block decomposition as

X̄11 X̄12 · · · X̄1q

X̄21 X̄22

...
. . .

X̄p1 X̄pq

(10)

where each block is m ×m. We denote the submatrix X̄ij by block(X, i, j) =
blockm(X, i, j). For 1 ≤ i ≤ p, we also define L(X, i) = Lm(X, i) by

L(X, i) := {j : 1 ≤ j ≤ q, block(X, i, j) is not the zero matrix}.

The quantity
∑p

i=1 |L(X, i)| indicates the degree of sparsity of the matrix X,
that is, the number of nonzero m×m blocks in the decomposition (10).

Lemma 11 There exists a deterministic algorithm that takes as input an 2km×
m integral matrix A ∈ T2k [m, d], and produces as output:

• the Hermite normal form H of A,

• a unimodular pre-multilier U such that UA = H,

• the lists L(U, i) for 1 ≤ i ≤ 2k.

13

If the last tm rows of A are zero, then U can be written as diag(Ū , Itm). Fur-

thermore,
∑2k

i=1 |L(U, i)| ≤ 2k(k + 1), and if d is a positive integer multiple of

det(Ai) for 1 ≤ i ≤ 2k, then ||U || ≤ (md2)k.

Proof We prove the existence of an algorithm which satisfies the requirements
of Lemma 11 by induction on k. For the initial case k = 0, set U ← Im, H ← A

and L1 ← {1}. The bounds on
∑2k

i=1 |Li| and ||U || are trivially satsified. Assume
the lemma holds for k = N . To prove the lemma holds for k = N + 1, let A be
a 2N+1m×m input matrix in T2N+1 . Write A in block form as

[

Â1

Â2

]

where Â1 and Â2 are 2Nm × m and in T2N . By induction, there exists a de-
terminisitic algorithm that computes 2Nm× 2Nm unimodular U1 and U2 such
that

[

U1

U2

] [

Â1

Â2

]

=

H1

O
...
O
H2

O
...
O

where H1 and H2 are m ×m and in Hermite normal form with determinants
bounded by d. We also get the lists L(U1, i) and L(U2, i) for 1 ≤ i ≤ 2N .
Compute a 2m× 2m unimodular matrix

[

P Q
R S

]

,

with each block m×m, and that satisfies

[

P Q
R S

] [

H1

H2

]

=

[

H
O

]

(11)

where H is m×m and in Hermite normal form.

Remark 1: By Lemma 8, the cost of producing P ,Q,R and S is
bounded by O(mθB(log d)) bit operations.

14

Embed P ,Q,R and S into the 2N+1m× 2N+1m identity matrix and compute U
as

U =

P Q
I

. . .

I
R S

I
. . .

I

[

U1

U2

]

(12)

so that U is unimodular and satisfies

UA =

H
O
...
O

.

By the induction hypothesis, ‖U1‖, ‖U2‖ ≤ (md2)N , and by Lemma 7, entries
in P,Q,R and S are bounded by d2. It follows that ‖U‖ ≤ m · d2 · (md2)N =
(md2)N+1 as required.

Remark 2: The matrix multiplication in (12) requires 2N multipli-
cations of pairs of 2m× 2m blocks. Since ‖U‖ ≤ (md2)N+1, entries
in U are bounded in length by log ‖U‖ = O(N logmd) bits — this
bounds as well the length of entries in the matrices P,Q,R, S and
U1, U2. This leads to a bound of O(2NMM(m)B(N logmd)) bit op-
erations to accomplish the multiplication in (12).

For convenience, define b = 2N . By (12), we have L(U, i) = L(U1, i) for 2 ≤ i ≤ b.
Similarly, for 2 ≤ i ≤ b, we can obtain L(U, b+ i) from the list L(U2, i) by adding
2N to each entry. The lists L(U, 1) and L(U, b+1) can be computed by examining
each of the blocks block(U, 1, j) and block(U, b+ 1, j) for 1 ≤ j ≤ 2N+1.

Remark 3: The cost of examining each of the blocks block(U, 1, j)
and block(U, b + 1, j) for 1 ≤ j ≤ 2b is bounded by O(bm log d) bit
operations, and this bounds the total cost of computing L(U, i) for
1 ≤ i ≤ 2b.

It remains to bound the quantity
∑2b

i=1 |L(U, i)|. It follows from the construction
of U in (12) that both |L(U, 1)| and |L(U, b + 1)| are bounded by |L(U1, 1)| +
|L(U2, 1)|. We get

2b
∑

i=1

|L(U, i)| = |L(U, 1)|+ |L(U, b+ 1)|+

b
∑

i=2

(|L(U, i)|+ |L(U, b+ i)|)

15

= 2(|L(U1, 1)|+ |L(U2, 1)|) +

b
∑

i=2

(|L(U1, i)|+ |L(U2, i)|)

≤ |L(U1, 1)|+ |L(U2, 1)|+

b
∑

i=1

(|L(U1, i)|+ |L(U2, i)|)

≤ 2N + 2N + 22N (N + 1)

= 2N+1 + 2N+1(N + 1)

= 2N+1(N + 2)

as required.
We now return to the proof of Theorem 10. We claim that for H(l) =

H[m, d](l) we have

H(l) ≤ 2H(l/2) + clmθ
B(log2(2l) logmd) (13)

for some absolute constant c. Let A be in Tl with Hermite normal form H.
By augmenting A with at most (l − 1)m rows of zeros, we may assume that
l = 2N+1 for some N ∈ ZZ . Rewrite (13) with l = 2N+1 to get

H(2N+1) ≤ 2H(2N) + c2N+1mθ
B((N + 2)) logmd) (14)

The algorithm presented in Lemma 11 reduces the problem of computing a
unimodular U with UA in Hermite normal form to two subproblems in T2N

and some combining steps. Thus, to prove (14), it is sufficient to show that
the cost of the combining steps is bounded by O(2N+1mθB((N + 2) logmd) bit
operations — but this follows from Remarks 1,2 and 3. Finally, iterate (14) to
get

H(2N+1) ≤ 2H(2N) + c2N+1mθ
B((N + 2) logmd)

= 4H(2N−1) + cmθ(2N+1
B((N + 2) logmd) + 2 · 2NB((N + 1) logmd))

...

≤ 2N+1H(0) + cmθ
B((N + 2) logmd)

N+2
∑

i=0

2i2N+2−i

¿ 2NNmθ
B(N logmd)

and we have our result since l = 2N+1.

4.3 The Premultiplier Algorithm

Theorem 12 There exists a deterministic algorithm that takes as input an

n × m rank m integral matrix A, and produces as output the Hermite nor-

mal form H of A together with a unimodular pre-multiplier matrix U that

satisfies UA = H. The running time of the algorithm is bounded by

O(mθ−1n log(2n/m)B(log(2n/m)m logm‖A‖)) bit operations.

16

Proof The algorithm has four steps. First, use the algorithm developed in Sub-
section 4.1 to compute an n×n permutation matrix P and an n×n unimodular
matrix

R =

Im
R1 Im
R2 Im
...

. . .

Rl Im
O It

such that

Ā = RPA =

Ā1

Ā2

...
Āl

B

where each m × m submatrix Āi is nonsingular, l = bn/mc, and B is
t × m where t = n − lm. By Lemma 9, the cost of this will bounded by
O(mθ−1nB(m logm‖A‖)) bit operations. Secondly, compute a (m + t) × m
unimodular matrix Ul such that

Ul

[

Āl

B It

]

=

[

Hl

O

]

with Hl m × m and in Hermite normal form. Thirdly, compute matrices
U1, U2, . . . , Ul−1, each m×m and unimodular, and satisfying

U1

U2

. . .

Ul−1

Ul

Ā =

H1

H2

...
Hl

O

with each Hi an m × m matrix in Hermite normal form for 1 ≤ i ≤
l. By Theorem 2, the cost of computing Ui and Hi for 1 ≤ i ≤ l is
bounded by O(lmθB(m logm‖Ā‖) bit operations. Compute the quantity d =
lcm(det(H1),det(H2), . . . ,det(Hl)). By Hadamards inequality on determinants,
we will have log d = O(m logm‖Ā‖). Fourthly, use the algorithm described in
Subsection 4.2 to compute an lm× lm unimodular S satisfying

S

H1

H2

...
Hl

=

[

H
O

]

17

where H is m×m and in Hermite normal form. By Theorem (10), the cost of
this will beO(mθ−1n log(2n/m)B(log(2n/m)m logm‖Ā‖)) bit operations, which
bounds the total cost up until this point. Finally, set

U =

[

S
It

]

U1

U2

. . .

Ul−1

Ul

RP (15)

so that U is unimodular with UA the Hermite normal form of A.
It remains to establish a bound on the cost of the matrix multiplications in

(15). By Lemma 11, we have 2
∑k

i=1 |Lm(S, i)| ≤ 2((2n/m) log(4n/m)), which,
because of the special structure of R and the second matrix in the product (15),
bounds the number of pairs of m×m matrix blocks which need to be multiplied.
By the bounds established on the magnitudes of entries in S, U1, U2, . . . , Ul, we
have

log ‖U‖ = O(log(2n/m)m logm‖Ā‖),

leading to a cost for the multiplications in equation (15)
of O(mθ−1n log(2n/m)B(log(2n/m)m logm‖Ā‖)) bit operations. By Lemma
9, the entries in R will be bounded in magnitude by cm logm||A|| bits for some
absolute constant c. This leads to the bound ‖Ā‖ ≤ cm2‖A‖ logm‖A‖. The
result now follows by noting that m logm‖Ā‖ = O(m logm‖A‖).

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[2] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9:251–280, 1990.

[3] P. D. Domich, R. Kannan, and L. E. Trotter, Jr. Hermite normal form com-
putation using modulo determinant arithmetic. Mathematics of Operations

Research, 12(1):50–59, Feb. 1987.

[4] J. L. Hafner and K. S. McCurley. Asymptotically fast triangularization of
matrices over rings. SIAM Journal of Computing, 20(6):1068–1083, Dec.
1991.

[5] C. Hermite. Sur l’introduction des variables continues dans la théorie des
nombres. J. Reine Angew. Math., 41:191–216, 1851.

[6] T. C. Hu. Integer Programming and Network Flows. Addison-Wesley,
Reading, MA, 1969.

18

[7] O. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix
decomposition algorithm and applications. SIAM Journal of Computing,
3:45–56, 1982.

[8] C. S. Iliopoulos. Worst-case complexity bounds on algorithms for comput-
ing the canonical structure of infinite abelian groups and solving systems of
linear diophantine equations. SIAM Journal of Computing, 18(4):670–678,
Aug. 1989.

[9] C. S. Iliopoulos. Worst-case complexity bounds on algorithms for comput-
ing the canonical structure of finite abelian groups and the Hermite and
Smith normal forms of an integer matrix. SIAM Journal of Computing,
18(4):658–669, Aug. 1989.

[10] M. Newman. Integral Matrices. Academic Press, 1972.

[11] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen.
Computing, pages 281–292, 1971.

[12] A. Storjohann and G. Labahn. Preconditioning of rectangular polynomial
matrices for efficient Hermite normal form computation. In Proceedings of

ISSAC’95, pages 119–125, Montreal, Canada, 1995.

19

