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Abstract. This paper considers the problem of effective algorithms for some problems having structured co-
efficient matrices. Examples of such problems include rational approximation and rational interpolation. The
corresponding coefficient matrices include Hankel, Toeplitz and Vandermonde-like matrices. Effective implies
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The paper includes two algorithms for the computation of rational interpolants which are both effective
in symbolic environments. The algorithms use arithmetic that is free of fractions but at the same time control
the growth of coefficients during intermediate computations. One algorithm is a look–around procedure which
computes along a path of closest normal points to an offdiagonal path while the second computes along an arbitrary
path using a look–ahead strategy. Along an antidiagonal path the look–ahead recurrence is closely related to the
Subresultant PRS algorithm for polynomial GCD computation. Both algorithms are an order of magnitude faster
than alternative methods which are effective in symbolic environments.
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1. Introduction

Mathematical algorithms are often described in terms of general algebraic domains having certain
well defined mathematical structures, for example an integral domain or a field. Efficiency is
typically determined by a count of arithmetic operations and answers are correct because all
arithmetic is exact. However when it comes to the implementation of mathematical algorithms
a number of new issues appear. In floating point environments the arithmetic domain ceases to
have the same rules as the algebraic environment on which they are based. Arithmetic operations
have errors which result in incorrect rather than correct answers. In symbolic environments
encountered when implementing in computer algebra systems such as Maple and Mathematica
it is usually not enough to have a general ring or field specified as a domain. Rather, implemen-
tations typically need to deal with specific computable domains such as the integers, rational
numbers, algebraic extensions of rationals, or polynomial domains such as ID [a1, . . . , an] where
ID is computable. In these cases answers are correct since the arithmetic is exact, but the
algorithms are not necessarily efficient since the basic assumption that all arithmetic operations
have a constant cost is no longer valid.

The differences between general mathematical computation and algorithms for implementa-
tion in specific environments can be illustrated by some simple remarks. In the case of rational
approximation, for example, there are exact algorithms which compute a Padé approximant
of type (n, n) in superfast complexity of O(n log2 n) operations [15]. However, the fastest
known numerically stable algorithms which include an error analysis have so far only reached a
complexity of O(n2) operations. In the case of exact environments one can simply point out that
when Padé approximants were implemented in Maple in the middle 1980’s the algorithm used
was Gaussian elimination — this even though a large number of fast and superfast methods were
available at that time. The reason that Gaussian elimination was preferred was that it was the
only method at the time which could deal efficiently with the growth of coefficients encountered
in exact arithmetic environments [25].

In this paper we study how some mathematical algorithms have been extended to con-
sider numeric and symbolic computing environments. The particular problems of interest are
problems of computing rational approximants and rational interpolants of scalar power series,
problems that are defined by linear systems having structured coefficient matrices. We compute
the coefficients of the polynomial numerators and denominators over a monomial basis. Other
forms of such computations, such as a such as computing the coefficients of a continued frac-
tion representing these approximants and interpolants, or, equivalently, the coefficients in some
recurrence connecting three consecutive terms of these objects are not considered here.

This paper should be viewed as a review/tutorial of existing work in both numeric and
symbolic environments combined with a presentation of original results in the case of symbolic
environments. The review/tutorial covers some recent methods in both numeric and symbolic
environments along with details for some well known methods. These details serve to illustrate
some of the modifications needed for effective computation in either environments. We point
out that one of the big differences between mathematical, numeric or symbolic answers is the
form of normalization used in the final results. The original work presented in this paper centers
on algorithms for the exact computation of rational interpolants. The first algorithm computes,
in an efficient fraction-free way, a basis of all rational interpolants of a given type along an
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offdiagonal path of computation. This method is a modification of a specialization of the fraction-
free algorithms found in [9]. The second method follows the ideas of [6] and uses a look–ahead
strategy to compute a given rational interpolant along an arbitrary path of computation. Along
an antidiagonal path the look–ahead recurrence is closely related to the well known Subresultant
PRS algorithm for polynomial GCD computation.

All the problems considered in this paper have a common theme, that of using an associated
linear algebraic formulation of the given problems along with techniques for taking advantage
of the special structure of the coefficient matrices of these linear systems. In the case of rational
approximation or greatest common divisors (one of the topics illustrated for exact computation)
the coefficient matrix is either a Hankel, Toeplitz or Sylvester matrix. In the case of rational
interpolation, the corresponding linear system has a Vandermonde or paired Vandermonde form.
These are all special cases of striped Krylov matrices defined using linear functionals having an
associated special rule as given in [9]. Determining fraction-free methods for the case of this
general striped Krylov matrix has already been done in [9], while we expect that the look–ahead
algorithm for arbitrary paths of computation presented in this paper can also be extended to a
more general setting.

The paper is organized as follows. Section 2 considers the problem of numerical computation
of rational approximants and interpolants. The section is divided into two subsections, with
Section 2.1 giving a review of recent numerical methods and Section 2.2 giving some added details
of the workings of a particular numerical method, the Cabay–Meleshko algorithm for computing
a Padé approximant. Section 3 considers computation in exact arithmetic environments. It
gives a review of current work and illustrates methods for reducing coefficient growth in the
case of solving linear systems and in the case of Euclidean-like GCD computations. Section
4 considers the problem of exact computation of a particular problem, that of determining a
rational interpolant. The methods presented are new. Two algorithms are presented, one which
finds all rational interpolants of a given type along a specific offdiagonal path of computation
and the other determines solutions to the rational interpolation problem along arbitrary paths
of computation. The first approach is interesting because it makes use of well known recurrences
used in a non-typical way. The second approach is a look–ahead method which uses modified
Schur complements. Both methods reduce coefficient growth with a minimum of cost. The final
section includes a discussion of further work and areas of research.

2. Numeric Computation

In the case where a rational approximation or interpolation problem has a domain of coefficients
that is inexact, there are a number of important problems and issues, the primary one being the
inability to determine when a numerical quantity is zero. In such cases there are a number of
approaches that can be used. In the case of rational approximation or interpolation problems, a
typical approach is to use information from an associated linear system of equations, for example
the condition number of the system or a collection of subsystems. Techniques include simple
heuristics such as not solving ill–conditioned subproblems. Look–ahead methods jump over ill–
conditioned subproblems but encounter the problem of determining when a given problem is
in fact ill–conditioned. In the case of numerical computation of rational problems one also
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encounters the question of providing a formal analysis of a particular method using either a
forward or backward error analysis. In many cases an error analysis is only sketched.

2.1. Historical Notes

In this subsection we give a brief discussion of some of the modern approaches used for computing
rational approximants and interpolants in numerical domains. The discussion is by no means
exhaustive, with the purpose only being to give an idea of some of the more modern approaches
used to handle this difficult domain.

In 1993, Cabay and Meleshko [19] presented a look–ahead algorithm for the computation
of numerical Padé approximants along with a complete forward error analysis. The algorithm,
described in the following subsection, proceeds by jumping from one stable subproblem to the
next stable subproblem along a diagonal path in the Padé table. The individual subproblems
are solved using Gaussian elimination with pivoting. The determination of a stable or well con-
ditioned subproblem was done by using an estimation of the condition number of the associated
Hankel linear system using inversion formulae for such matrices. The complexity of the algorithm
depends on the size of the largest jump needed for the look–ahead process. In the case of small
jumps the algorithm requires O(n2) operations. However, in the case of very large jump sizes,
the algorithm could require as many as O(n4) operations.

The approach used by Cabay and Meleshko was generalized in many different directions.
Cabay, Jones and Labahn [17] presented a generalization for the case of Hermite-Padé and
simultaneous Padé approximation, again using an offdiagonal path in the corresponding Padé
tables. Beckermann [5] used a similar look–ahead method for the computation of orthogonal
polynomials, except that the small subproblems for the look–ahead steps were solved using
QR decomposition rather than Gaussian elimination. The use of the QR decomposition for
intermediate problems implied that the algorithm would always compute in O(n3) in the worst
case.

Gutknecht [33] and Gutknecht and Hochbruck [35] presented new numerical algorithms for
Padé approximants which were based on Toeplitz rather than Hankel linear systems. This allowed
for computation along rows of the Padé table where the singularity and stability structure was
often better known. The algorithms had superfast complexity of O(n log2 n) operations but
required that all points in the computational path be well conditioned. Van Barel and Bultheel
[49] presented a look–ahead algorithm for the solution of block Toeplitz systems, again providing
an algorithm for computation along row paths. The authors also provided a complete forward
error analysis. Beckermann and Labahn [10, 11] used a look–ahead procedure based on jumping
over ill conditioned subproblems of a Sylvester matrix to efficiently determine when two numeric
polynomials are relatively prime.

Additional methods in numeric environments include the work of Freund and Zha [26, 27]
for orthogonal polynomials, and Bojanczyk, Brent and de Hoog [13, 14] for fast QR factorization
of Toeplitz matrices. One interesting method based on displacement rank matrices is given by
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Gohberg, Kailath and Olshevski [29] (see also [20, 30, 32]). This approach uses FFT to convert
a Toeplitz problem into a Cauchy problem. The Cauchy problem can be solved in a numerically
stable way by using pivoting — essentially the ability to reorder the interpolation Fourier points.
The solution to the Cauchy problem is converted into a solution to the original problem by
again using FFTs. The transformation of (block) Hankel matrices via FFT was also considered
by Kravanja and Van Barel [39, 40]. They recover (block) Loewner matrices and solve the
corresponding system via rational interpolation on the unit circle.

Finally we mention that there is a close link between look-ahead methods for Hankel
systems and look-ahead procedures for Lanzcos type algorithms. To our knowledge, there is
no precise error analysis for the latter class of methods. In fact, though a polynomial language
is quite suitable for describing the mechanism of the jumps, it seems that the use of the basis of
monomials (or another fixed basis of polynomials like Chebyshev polynomials) does not allow
one to derive sharp error bounds for Lanzcos type methods.

2.2. Example: Cabay–Meleshko Revised

In this subsection we give some details of the Cabay and Meleshko [19] algorithm. This illustrates
one method of using look–ahead to solve numeric problems. It is particularly interesting for its
use of a single numerical parameter, determined by studying inversion formula for the coefficient
matrices of the associated linear system.

The Cabay–Meleshko algorithm is used for computing a Padé approximant of type (n, n)
for a given integer n in a numeric environment. That is, for a given power series f(x) having
floating point coefficients and an integer n the algorithm looks for polynomials pn(x) and qn(x)
satisfying

deg pn(x) < n, deg qn(x) ≤ n, f(x)qn(x)− pn(x) = O(x
2n)x→0.

In the case of numeric computation the Cabay–Meleshko algorithm scales the input series so that
||f(x)|| ≈ 1 and also specifies the constraints ||pn(x)|| + ||qn(x)|| ≈ 1. Here ||

∑
ajx

j || =
∑
|aj |

for polynomials (we may assume that the power series input f is truncated).

The basic building block used by the Cabay–Meleshko algorithm is

Un(x) =

[
pn(x) pn+1(x)
qn(x) qn+1(x)

]
,

a pair of consecutive Padé forms in a matrix polynomial form. These matrix polynomials satisfy
detUn(x) = τn · x

2n for a constant |τn| ≤ 1. A building block Un(x) is called stable if |τn| is not
“too small” this being specified with a user input tolerance. If Un(x) is stable then the algorithm
iterates by constructing the “next” stable Un+s(x). For s = 1, 2, ..., candidates are obtained by

forming the product Un(x) · Ûs(x) and then normalizing so that columns have magnitude 1.

Here Ûs(x) is a building block of index s for the residual power series rn(x)rn+1(x)
−1, where

rn(x) := x−2n[f(x)qn(x)− pn(x)]. This Ûs(x) is computed as a solution of a “small” system of
equations by some stable method (which does not take into account the structure).
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The reason that the algorithm works has do to with estimation of condition numbers of the
Hankel coefficient matrices

Hn =




f0 f1 · · · fn
f1 f2 · · · fn+1
...

...
...

...
fn fn+1 · · · f2n




of the associated linear systems. The norm of this matrix is related to the scaling of the finite
section f (2n)(x) = f0 + ... + f2nx

2n of the initial power series; its inverse may be expressed in
terms of the coefficients of Un(x) by means of an inversion formula from Heinig and Rost [37].
This leads to the following bounds for the 1–Hölder norm [5, Theorem 1]

1

4
√
|τn|

||f (2n)||√
||f (2n+1)||

≤ cond1(Hn) ≤
||f (2n)||

|τn|
.

In other words, we are constructing a solution Un(x) using only well-conditioned subproblems
(with sufficiently large |τn|).

Of course, this latter argument is only heuristic if one wants to validate a numerical algo-
rithm. To be more precise, one has to estimate the growth of the error vector ηn consisting of
the coefficients of the undesired powers x0, ..., x2n−1 in the expression f(x)qn(x)− pn(x), where
now (pn(x), qn(x)) denotes the computed counterpart of our desired Padé form. However, for
sufficiently small errors ηn, ηn+1, we may still estimate the condition number using numerical
building blocks Un(x) [5, Theorem 1]. Moreover, denoting as before the leading coefficient of
detUn(x) by τn, Cabay and Meleshko in their forward error analysis [19] (see also [5]) show
that by using only stable numerical building blocks one may bound the norms of the error
vector: if UN (x) is the final block and 0 = n0 < n1 < ... < nS ≤ N the indices of interme-
diate stable numerical building blocks, then ||ηN || + ||ηN+1|| is bounded by a sum of products
of the form ||Unj

(z)−1UN (z)|| times some small local error occurring in the jth step. Since

||Unj
(z)−1UN (z)|| ≤ 2/|τn| in exact arithmetic and about the same size in a numerical setting,

the growth of the error vectors is kept under control.

We remark that the typical normalization of an (n− 1, n) Padé approximant requires that
the denominator qn(x) be either monic or has 1 as the constant coefficient. In the Cabay–
Meleshko algorithm a different normalization is required, namely that ||pn(x)|| + ||qn(x)|| = 1.
This change in normalization also comes up in Section 4 where one wishes to efficiently compute
rational interpolants without forming fractions.

3. Symbolic Computation

Computer algebra systems have the basic property that they allow a user to manipulate with
symbolic and numeric data. In the case of symbolic manipulation, the natural domain of com-
putation is a quotient field Q(a1, . . . , an) of symbols and exact rationals or else an algebraic
extension of such a domain. Clearly arithmetic in a polynomial domain such as Q[a1, . . . , an] is
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easier than arithmetic in its quotient domain. For example, the simple operation of addition

a

b
+
c

d
=
a · d+ b · c

b · d

requires one to normalize by removing greatest common divisors at every step if one wants to do
such operations as recognizing zero, a fundamental concern in most computational algorithms.

The greatest common divisor computation in Q[a1, . . . , an] required for the addition of
rational functions is a hidden cost for such an operation. In order to avoid such hidden costs one
typically attempts to keep all computations inside the polynomial domain, whenever possible.
In the next two subsections we discuss how one overcomes such a hidden cost in the case of such
classical computations as Gaussian elimination and Euclidean remainder sequences for GCD
computation.

3.1. Fraction-free Gaussian Elimination

One can use classical Gaussian elimination to illustrate some of the problems and some of the
alternatives that are possible when one wishes to avoid quotient arithmetic.

It is easy to see that one can use a process of cross multiplication to eliminate nonzero
terms from a given column in the reduction

A =




a b c · · · · · ·
d e f · · · · · ·
g h i · · · · · ·
...

...
...


 ≈




a b c · · · · · ·

0 ẽ f̃ · · · · · ·

0 h̃ ĩ · · · · · ·
...

...
...


 .

While this avoids forming quotients it also potentially doubles the size of the entries in the
remaining reduced matrix with each cross multiplication reduction process. This results in an
exponential growth of coefficients giving a complexity of O(2n ·N2) in the n× n case where N
is a bound for the size of the entries of the matrix.

Bareiss [3] observed that one has a common divisor after 2 steps of the reduction, namely

A ≈




a b c · · · · · ·

0 ẽ f̃ · · · · · ·
0 0 a(..) · · · a(...)
...

...
...

0 0 a(..) · · · a(...)



.

Thus one can divide out by a known common factor - the pivot used in the reduction 2 steps
before - and continue the elimination process. This simple observation results in a linear rather
than exponential growth of coefficients. The result is an algorithm, fraction-free Gaussian elim-
ination, which triangulates a matrix in O(n5 · N2) operations. In fact Bareiss also presented a
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multi-step version of this process (see also [28]). An important fact to point out is that fraction-
free Gaussian elimination gives the Cramer solution of a linear problem, that is the solution
determined by using Cramer’s rule. This is fundamental to the observations of Section 4.

3.2. Euclidean-like GCD Computation

Consider now the problem of computing a greatest common divisor of a pair of polynomials
in ID [x] where ID is an integral domain rather than a field. We again wish to compute such
a greatest common divisor using only operations in ID [x], that is, without going to a quotient
field.

As an example, consider the two polynomials

a(x) = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5
b(x) = 3x6 + 5x4 − 4x2 − 9x+ 21

originally used as an example by Knuth [38]. Let R0(x) = a(x) and R1(x) = b(x). The five
examples below illustrate various ways of computing a polynomial greatest common divisor via
a “polynomial remainder sequence ”process.

(i) The Euclidean Algorithm over Q[x]. In this case the remainders are

R2(x) = x4 − 1
5 x

2 + 3
5

R3(x) = x2 + 25
13 x−

49
13

R4(x) = x− 6150
4663

R5(x) = 1

(ii) A Pseudo Euclidean Algorithm over ZZ [x] based on pseudo-division but without removing
common factors:

R2(x) = 15x4 − 3x2 + 9
R3(x) = 15795x2 + 30375x− 59535
R4(x) = 1254542875143750x− 1654608338437500
R5(x) = 12593338795500743100931141992187500

Pseudo-division can be viewed as a type of reduction which corresponds to the cross
multiplication used in the previous section [28, 38].

(iii) The Primitive Euclidean Algorithm over ZZ [x] based on pseudo-division and removing
common factors after every pseudo-division:

R2(x) = 5x4 − x2 + 3
R3(x) = 13x2 + 25x− 49
R4(x) = 4663x− 6150
R5(x) = 1

paper.tex; 14/12/1999; 17:17; p.8



9

(iv) The Reduced PRS Algorithm over ZZ [x]:

R2(x) = −15x4 + 3x2 − 9
R3(x) = 585x2 + 1125x− 2205
R4(x) = −18885150x+ 24907500
R5(x) = 527933700

(v) The Subresultant PRS Algorithm over ZZ [x]:

R2(x) = 15x4 − 3x2 + 9
R3(x) = 65x2 + 125x− 245
R4(x) = 9326x− 12300
R5(x) = 260708

The mathematical descriptions of these algorithms for polynomials from ID [x] with ID an
integral domain is given using the polynomial remainder sequences defined by R0(x) = a(x),
R1(x) = b(x) and

αi ·Ri−1(x) = Qi(x) ·Ri(x) + βi ·Ri+1(x) with αi, βi ∈ ID .

Let ri denote the leading coefficient of the i-th remainder Ri(x) and δi = degRi−1(x)−degRi(x).
Then the five algorithms mentioned previously are given by

(i) Classical Euclidean: αi = 1, βi = 1.

(ii) Pseudo-Eucidean using only pseudo-division: αi = rδi+1
i , βi = 1.

(iii) Primitive Eucidean: αi = rδi+1
i , βi = content(Ri+1(x)) where the content of a polynomial

is the greatest common divisor of the coefficients of the polynomial.

(iv) Reduced PRS algorithm: αi = rδi+1
i , βi = αi−1 where β1 = 1.

(v) Subresultant PRS algorithm: αi = rδi+1
i , βi = −ri−1 · φ

δi

i with β1 = (−1)δi+1, φ1 = 1 and

φi = (−ri−1)
δi−1 · φ

1−δi−1

i−1 for i ≥ 2.

Example (i) is the classical Euclidean algorithm which works over a field and hence uses
rational arithmetic, something which we have wanted to avoid. Example (ii) avoids rational
arithmetic but encounters exponential coefficient growth making it unacceptable. Example (iii)
uses only polynomial operations and has a minimal coefficient growth. However it accomplishes
this by using greatest common divisor calculations making it equivalent to the classic Euclidean
algorithm for our purposes.

The remaining two methods - the Reduced PRS algorithm of Collins [21] and the Subre-
sultant PRS algorithm of Brown and Collins [16, 21] both use only polynomial operations and
have moderate coefficient growth. While the coefficient growth is not minimal it does have the
advantage that the cost to reduce coefficient growth is minimal, namely a simple division by a
known divisor, exactly the process followed in fraction-free Gaussian elimination. Further details
on these algorithms can be found in [1, 28, 45].
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In the case of fraction-free Gaussian elimination there is a simple mechanism for determining
a divisor at a later stage, at least in the single step case. However, one can see by the previous
examples and accompanying mathematical formulae that determining divisors of remainders is a
nontrivial task. The key observation that we wish to note is that the Subresultant PRS algorithm,
with each subresultant viewed as a solution of a linear system with a Trudi or Sylvster matrix
of coefficients, is an iteration of Cramer solutions that ultimately result in the same solution as
that obtained by fraction-free Gaussian elimination but in a manner that takes advantage of the
special structure of the coefficient matrices.

In addition to the algorithms of Brown and Collins for polynomial GCD computations,
other examples of note for fraction-free computations include the work of Sylvester [47] and
Habicht [36] on Sturm sequences, Cabay and Kossowski [18] for Padé approximants and Akritas
[1] for polynomial GCD computations using a matrix triangulation procedure that sometimes
results in larger known divisors.

4. Symbolic Computation of Rational Interpolants

In this section we describe two methods for computing rational interpolants using only fraction-
free computations. Let ID be an integral domain, Q its quotient field and let (xi)i=0,1,... be a set
of (distinct) interpolation points (knots) from ID .

DEFINITION 4.1. Let f, g be functions such that f(xi), g(xi) ∈ ID and (f(xi), g(xi)) 6= (0, 0)
for all i. A rational interpolant of type (m,n) is a pair of polynomials p(x), q(x) from ID [x], at
least one nonzero, satisfying

deg p(x) ≤ m, deg q(x) ≤ n (1)

f(xi) · p(xi) + g(xi) · q(xi) = 0 for i = 0, . . . ,m+ n. (2)

Recursive algorithms for computing rational interpolants along a path in the solution table
with coefficients in a field have been given by a number of authors, see for instance [2, 7, 24,
31, 34, 48, 51, 52]. Our goal in this section is to describe efficient methods without leaving the
domain ID [x].

Notice that a solution of our interpolation problem always exists, but is not necessarily
unique. However, as seen for instance from [22, 23] or [48], there exists always a so–called
“minimal” solution. This minimal solution is unique up to a constant from Q and cannot be
further reduced by dividing both p(x) and q(x) by a nontrivial polynomial from Q[x]. In case of
singularities, we will determine this particular solution.
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For a given pair (m,n) define

Km,n,k =



f(x0) · · · x0

m−1 · f(x0) g(x0) · · · x0
n−1 · g(x0)

...
...

...
...

f(xk) · · · xk
m−1 · f(xk) g(xk) · · · xk

n−1 · g(xk)


 (3)

a paired Vandermonde matrix of size (k+1)× (m+ n). The rational interpolation equation (2)
is equivalent to solving the linear system of equations

Km+1,n+1,m+n · [p0, . . . , pm, q0, . . . , qn]
T = 0. (4)

We can obtain a fraction-free solution to the system (4) by using fraction-free Gaussian
elimination. However such an approach does not take into consideration the special structure of
the matrix Km,n,m+n. Our goal is to obtain the same solution as found via fraction-free Gaussian
elimination but using a more efficient procedure. This procedure will avoid fractions but take
advantage of the special structure of the coefficient matrix of the linear system.

If we setKm,n = Km,n,m+n−1 and dm,n = det Km,n, then Cramer’s rule produces a solution
with coefficients in ID to the linear system

Km+1,n+1 · [p0, . . . , pm, q0, . . . , qn]
T = [0, . . . , 0, dm+1,n+1]

T (5)

which we call the Cramer solution. This solution may be written down in terms of determinants.
Indeed, if

pm,n(x) = det




Km+1,n+1,m+n

1, . . . , xm|0 · · · 0


 , (6)

qm,n(x) = det




Km+1,n+1,m+n

0 · · · 0|1, . . . , xn


 (7)

and

rm,n(x) = det




Km+1,n+1,m+n

f(x) · · · xmf(x)|g(x), . . . , xng(x)


 (8)

then

f(x) · pm,n(x) + g(x) · qm,n(x) = rm,n(x) (9)

and rm,n(xi) = 0 for i = 0, . . . ,m+n with rm,n(xm+n+1) = dm+1,n+1. Thus pm,n(x) and qm,n(x)
define the Cramer solution for the linear system (5). Using the determinantal representations
(6) and (7) we see that the m-th coefficient of pm,n(x) is (−1)

n+1dm,n+1 and the n-th coefficient
of qm,n(x) is dm+1,n.

Notice that, while computing Cramer solutions, we get for free the determinant of paired
Vandermonde and thus of Toeplitz matrices [41].
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REMARK 4.2. Cramer solutions enable us to find the particular “minimal” solution [22, 23]
mentioned after Definition 4.1. For suppose that the Cramer solution pm,n(x) and qm,n(x) for
the linear system (5) is not identically zero. Then at least one minor of size m + n + 1 of
Km+1,n+1,m+n is nontrivial, showing that (up to multiplication with an element of Q) there is a
unique solution for the index (m,n). In particular, the pair pm,n(x), qm,n(x) cannot be reducible
since after division of pm,n(x) and qm,n(x) by some common factor we necessarily have lost one
interpolation condition.

Consequently, for any indices m′, n′ with deg pm,n(x) ≤ m′, deg qm,n(x) ≤ n′, m′ + n′ ≥
m + n, and f(xi) · p(xi) + g(xi) · q(xi) = 0, i = 0, . . . ,m′ + n′, the couple pm,n(x), qm,n(x)
constitutes a minimal solution of index (m′, n′).

We say that (m,n) is a normal point if the determinant dm,n 6= 0. The fraction-free
methods presented in this section use Mahler Systems [9, 6] as the basic building blocks for
their recursions. These systems have been considered already by Mahler [44] in his study of
Hermite-Padé approximants. However, he chooses a different normalization and supposes that
all points are normal.

DEFINITION 4.3. [9, 6] A Mahler system of type (m,n) is a 2× 2 matrix polynomial

Mm,n(x) =

[
(−1)npm,n−1(x) pm−1,n(x)
(−1)nqm,n−1(x) qm−1,n(x)

]
. (10)

One can verify using the well-known block structure of the table of rational interpolants
that det Mm,n(x) 6= 0 iff (m,n) is normal. Thus in the sequel we will only consider Mahler
systems at normal points. Clearly both columns of Mm,n(x) verify the interpolation condition
at the knots x0, ..., xm+n−1. Furthermore, the entries of Mm,n(x) satisfy the degree constraints

[
= m < m
< n = n

]

with a common leading coefficient (namely dm,n) of the entries on the diagonal (the desire for the
same leading coefficient explains the need for the sign (−1)n used in the first column). Finally,
in the normal case a Mahler system is unique up to multiplication from Q, that is, any 2 × 2
matrix polynomial satisfying the same interpolation conditions and degree constraints coincides
with c ·Mm,n(x) for some c ∈ Q. For further properties and proofs we refer the reader to [9,
Section 5].

The aim of the following subsections is to show how to compute from a given Mahler system
at a normal point (m,n)

[
p(x) u(x)
q(x) v(x)

]
= ε ·Mm,n(x), ε ∈ {±1}, (11)

to a Mahler system at a “neighboring” normal point (m∗, n∗)
[
p∗(x) u∗(x)
q∗(x) v∗(x)

]
= ε∗ ·Mm∗,n∗(x), ε∗ ∈ {±1} (12)
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in a way that does not introduce fractions. We remark that the freedom of the sign will allow us
to obtain some major simplifications. Notice that, starting from the normal point (0, 0) (with the
identity as corresponding Mahler system), the above recursion completely specifies an algorithm
following a particular path in the two-dimensional solution table.

4.1. Computation of Mahler Systems

In this section we want to follow a “ascending” path (~nk)k=0,1,... of normal indices, ~n0 = (0, 0),
where two succeeding points ~nk = (m,n) and ~nk+1 = (m∗, n∗) satisfy

m∗ ≥ m, n∗ ≥ n, m∗ + n∗ = m+ n+ 1.

THEOREM 4.4. Let (m,n) be normal, with its corresponding Mahler system given by (11).
Furthermore, let

f̂0 = f(xm+n) · p(xm+n) + g(xm+n) · q(xm+n),
ĝ0 = f(xm+n) · u(xm+n) + g(xm+n) · v(xm+n),

(13)

and denote here (and in the sequel) u(x) =
∑

ujx
j (and similarly for the other polynomials

involved in (11), (12)).

(a) We have f̂0 6= 0 iff (m∗, n∗) = (m+ 1, n) is normal. In this case, the columns in (12) with
ε∗ = (−1)n · ε are computed via

vn ·
[
u∗(x)
v∗(x)

]
= f̂0 ·

[
u(x)
v(x)

]
− ĝ0 ·

[
p(x)
q(x)

]

vn ·
[
p∗(x)
q∗(x)

]
= f̂0 · (x− xm+n) ·

[
p(x)
q(x)

]
− qn−1 ·

[
u∗(x)
v∗(x)

]
,

and thus u∗m∗ = v∗n∗ = f̂0 = ε∗ · dm+1,n.

(b) We have ĝ0 6= 0 iff (m∗, n∗) = (m,n+ 1) is normal. In this case, the columns in (12) with
ε∗ = ε are computed via

vn ·
[
p∗(x)
q∗(x)

]
= ĝ0 ·

[
p(x)
q(x)

]
− f̂0 ·

[
u(x)
v(x)

]

vn ·
[
u∗(x)
v∗(x)

]
= ĝ0 · (x− xm+n) ·

[
u(x)
v(x)

]
− um−1 ·

[
p∗(x)
q∗(x)

]
,

and thus u∗m∗ = v∗n∗ = ĝ0 = ε∗ · dm,n+1.

Proof: See [9, Theorem 6.1]. ¤

In fact, the identities of Theorem 4.4 are two of the four well-known Frobenius identities
in the table of rational interpolants, see [24, 51] or [7, Theorem 1]. Though often not stated in
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terms of determinants, a verification of the above identities is immediate by checking the degrees
and interpolation constraints, and by using the above mentioned determinantal representation
of un, pm, f̂0, ĝ0. Notice also that each of the first of the two coupled recurrences may be shown
using Sylvester’s identity — precisely as in the fraction-free Gaussian elimination procedure
mentioned earlier. The second recurrence, however, depends on the special structure of the
coefficient matrix and allows for a significant speed-up.

Theorem 4.4 gives us the identities that we need to compute Mahler systems in a way
that avoids fractions. Namely, in each case we first form the right hand side and then divide
out by the known constant vn. At each step we compute the components of a Mahler system.
Since the entries of each Mahler system have a representation as a determinantal polynomial or
equivalently as a Cramer’s solution, the growth of the coefficients in the entries is bounded by
Hadamard’s inequality. In fact the algorithm produces a linear growth in the coefficient size of
the entries. Note that this restricted growth of coefficients involves no greatest common divisor
coefficient operations. We only need divide out by a known common multiple.

When all the points (~nk)k=0,1,...,n are normal, we can therefore apply part (a) for the case
where ~nk+1 = ~nk + (1, 0), and part (b) otherwise. The resulting algorithm is a special case of
FFFGnormal of [9, Section 6]; we omit the details. However we recall from [9, Theorem 6.3] that
the complexity of this algorithm is then O(n4 ·N2), where N is a bound on the coefficients of the
input matrix. Thus we gain a factor n in comparison with fraction-free Gaussian elimination.

4.2. Nonnormality and Minimal Row Pivoting

In this subsection we consider the general case where some of the points on our staircase are
singular. Since the interpolation problem of Definition 4.1 does not involve derivatives, we have
at our disposal a permutation of the knots (which is no longer true for problems involving
derivatives such as Newton-Padé or Padé type problems1). Such a (row) pivoting has been
applied successfully by Werner [52] and others in the context of Thiele continued fractions.
In fact, Graves-Morris [31] showed that a pivoting similar to partial row pivoting in Gaussian
elimination leads to a forward stable numerical algorithm. Knot pivoting has also been applied
successfully in [39, 40, 41].

To describe more precisely the necessary changes of the method in the preceding section, we
take a closer look at ~nk+1 = (m∗, n∗) = ~nk+(1, 0) = (m+1, n) (the other case is similar). Denote
by γk ≥ m + n − 1 the largest index from the knots which were involved in the computation
of M~nk

(x) and its predecessors (γ0 = −1). In order to be able to apply a relation similar to
Theorem 4.4(a), we need to next treat a suitable point where the residual of the first column
does not vanish. On the other hand, we only want to apply pivoting if necessary in order to keep
track of the original rational interpolants corresponding to our staircase.

1 In the more general setting of [9], one may apply row pivoting following the general lines described below
exactly in the case of diagonal C. Such a pivoting is in fact a useful tool in algorithms for matrices having a small
displacement rank [29, 30].
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Figure 1. An example of singular rational interpolation. We have drawn the corresponding C–table of Bigradients,
that is, the table having (m,n) entry the determinant dm,n. Here the dashed square indicates a singular block of
zero–entries. By a straight line we denote the offdiagonal path induced by ~n = (7, 6), with the dots characterizing
the path of computation used by our look–around method.

Therefore, let f̂(x) = f(x) · p(x) + g(x) · q(x), and denote by κ the smallest index i such

that f̂(xi) 6= 0. We then apply Theorem 4.4(a) with

f̂0 = f(xκ) · p(xκ) + g(xκ) · q(xκ),
ĝ0 = f(xκ) · u(xκ) + g(xκ) · v(xκ),

instead of (13). Furthermore, γk+1 = max{γk, κ}. Such a “minimal” knot pivoting enables us to
find all minimal solutions connected to our staircase. In fact, it follows from Remark 4.2 that,
provided that γk+1 > γk, a minimal solution for the index ~nj − (1, 1), j = γk +1, γk +2, ..., γk+1

is given by (p(x), q(x)).

4.3. Look-around and Minimal Column Pivoting

Though knot (or row) pivoting can be applied quite successfully for rational interpolation in the
presence of singularities, it fails for similar approximation problems involving derivatives, for
example problems such as Padé approximation. The aim of this subsection is to show that, for
offdiagonal paths, we may instead apply a kind of minimal column pivoting. In order to keep
track of the special structure of the corresponding linear system, this column pivoting should
be done in a way that the occurring minors will all be paired Vandermonde matrices.

Roughly speaking, we make a small detour around singular blocks in the solution table
while staying as close as possible to the desired offdiagonal path. This will enable us to recover
the subsequence of normal points of our off-diagonal path, and to compute minimal solutions
for all points of our path. For readers familiar with the block structure in the table of rational
interpolants (overlapping squares with common main diagonal, see [23]), the principle of our
look–around algorithm is probably best understood by looking at Figure 1.
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In order to be more precise, we start by defining the offdiagonal path induced by a point
(m′, n′)

~nk =





(k, 0) for k = 0, ...,m′ − n′ + 1 (if m′ ≥ n′),
(0, k) for k = 0, ..., n′ −m′ (if m′ < n′),
(m′ − n′ + j, j) for k = m′ − n′ + 2j, j ≥ max{0, n′ −m′},
(m′ − n′ + j + 1, j) for k = m′ − n′ + 2j + 1, j ≥ max{0, n′ −m′}.

(14)

Then the closest normal point of the form ~νk = ~nk + (tk,−tk) with an integer tk is uniquely
defined by the requirements that (compare [9, Theorem 7.3])

d~νk
6= 0, and d~nk+(t,−t) = 0 for |t| < |tk|.

In the case where |tk| > 1, d~nk−(tk,−tk) 6= 0 (where our offdiagonal path goes through the main
diagonal of an interior block) and thus ~nk ≥ (|tk|, |tk|) we need to add the convention that tk > 0
if k −m′ + n′ is even and tk < 0 if k −m′ + n′ is odd.

Suppose that we have at our disposal the point ~νk = (m,n) and the corresponding Mahler
system ±M~νk

(x) as described in (11) (the algorithm takes the initializations ~ν0 = 0, M~ν0
(x) =

I2). Since minimal solutions along antidiagonals in singular blocks remain the same [23], the
minimal solution for the point ~nk+1 − (1, 1) is then given by (p(z), q(z)) provided that m− n ≤
m′ − n′, and by (u(z), v(z)) otherwise.

Define (f̂0, ĝ0) as in (13). It follows from the block structure (overlapping squares with
common main diagonal) of the generalized C–table of determinants di,j , that, with dm,n 6= 0,

at least one of the quantities dm+1,n = ±f̂0 or dm,n+1 = ±ĝ0 is nonzero (for a formal proof
see for example [4, Lemma 3.1]). Thus we may always continue our algorithm by choosing
~νk+1 = (m∗, n∗) ∈ {(m + 1, n), (m,n + 1)} and by applying Theorem 4.4 in order to compute
the new Mahler system. 2 Indeed, as shown in [9, Section 7], we have ~νk+1 = (m+ 1, n) iff

ĝ0 = 0 or (f̂ 6= 0 and m′ −m ≥ n′ − n),

and otherwise ~νk+1 = (m,n + 1). Roughly speaking, if m′ −m > n′ − n then we actually are
located above the offdiagonal path. Thus we would like to come closer to our offdiagonal path
and thus take ~νk+1 = (m + 1, n) if possible (i.e., if f̂0 6= 0). For a concrete implementation of
this look–around procedure we refer the reader to the algorithm FFFG given in [9, Section 7].
We remark here that the complexity of our procedure again is O(n4 ·N2).

4.4. Look-ahead and Modified Schur Complements

So far we have presented a fraction-free procedure that allows for computation of rational
interpolants along a set of closest normal points to an off-diagonal path of computation. The
method uses relationships between neighbors in the rational interpolation table in the normal
case.

2 The fact that ~νk+1 is a neighbor of ~νk depends on the particular offdiagonal path chosen. It is no longer true
for an arbitrary ascending path.
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In this subsection we use a different method to obtain a second procedure, again fraction-
free, for computing interpolants of a given type. The method is a look–ahead method for
computing interpolants which allows for an arbitrary path (~nk)k=0,1,..., ~n0 = (0, 0) of com-
putation, with the only restriction for two succeeding points ~nk = (m,n) and ~nk+1 = (m∗, n∗)
being that

m∗ ≥ 0, n∗ ≥ 0, m∗ + n∗ ≥ m+ n.

Thus we may follow columns, rows, diagonal or anti-diagonal paths in the solution table. The
method is based on the use of modified Schur complements of the associated linear system.
It can be extended for general steps in the setting of [9] (for the special case of Matrix Padé
approximation and diagonal paths see [6]). We can view the problem of rational interpolation
as being parallel to rational approximation with the paired Vandermonde matrix being replaced
by a Sylvester matrix. Using this view a computation along a path (m+s, n+s)s=1,2,... becomes
similar to a Hankel solver while along a path (m+ s, n)s=1,2,... is similar to a Toeplitz solver.

The principle of our algorithm is that, given a normal point ~nk, we scan the points ~nj ,
j = k + 1, k + 2, ... in order to find the next normal point of the sequence. This requires us to
describe two steps:

• How to decide that a point (m∗, n∗) = ~nj , j > k is normal given that the point (m,n) = ~nk is
normal?

• In this case, how to compute the new Mahler system M∗(x) given by (12) in terms of the
current Mahler system M(x) of (11)?

From the general principle of look–ahead methods it is not surprising that the answer for the
first question is to check whether a certain “small” matrix K̂ is nonsingular. In this case, we may
apply fraction-free Gaussian elimination on K̂ in order to find a certain 2×2 matrix polynomial

M̂(x) =

[
p̂(x) û(x)
q̂(x) v̂(x)

]
(15)

with coefficients in ID . The new Mahler system is then obtained by

c ·M∗(x) = M(x) · M̂(x) (16)

with a suitable c ∈ ID . Here the main difficulty is to predict in advance the common factor c.

Recurrence relations of the form (16) with coefficients in a field have been given by a number
of authors, for instance see [8] for references. In the context of rational interpolation, Gutknecht
showed in [34] that the columns of M̂(x) are solutions of a multi-point Padé approximation
problem.

In order to present more details, we assume that s := n∗ − n ≥ m∗ −m (the other case is
covered by a permutation of f, g), and define τ ∗ := m∗+n∗−1, τ := m+n−1, σ = s−(m∗−m) ≥
0. Since τ∗ ≥ τ by assumption, we get that s ≥ 1, and 0 ≤ σ ≤ 2s (σ = 0 for a diagonal step

and σ = 2s for an antidiagonal step). We also define the residuals f̂(x) = f(x)p(x) + g(x)q(x)
and ĝ(x) = f(x)u(x) + g(x)v(x).
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It is easy to check that finding M∗(x) is equivalent to solving



Km+s+1,n+s+1,τ∗

0 Iσ+1 0 0
0 0 0 I1


 ·




p∗0 u∗0
...

...
p∗m+s u∗m+s

q∗0 v∗0
...

...
q∗m+s v∗m+s




= dm∗,n∗ ·




0 0
...

...
0 0
1 0 ← τ∗ + 2
0 0
...

...
0 0
0 1 ← τ∗ + σ + 3

Denote the square matrix of order m + n + 2s + 2 on the left by K∗, and define the square
matrix K = Km,n,τ of order m+ n, the square matrix K̂ of order 2s+ 2 with row blocks of size
(τ∗ − τ, σ + 1, 1) by




f̂(xτ+1) xτ+1 · f̂(xτ+1) · · · x
s
τ+1 · f̂(xτ+1) ĝ(xτ+1) xτ+1 · ĝ(xτ+1) · · · x

s
τ+1 · ĝ(xτ+1)

...
...

...
...

...
...

f̂(xτ∗) xτ∗ · f̂(xτ∗) · · · xsτ∗ · f̂(xτ∗) ĝ(xτ∗) xτ∗ · ĝ(xτ∗) · · · xsτ∗ · ĝ(xτ∗)
pm · · · pm−σ um · · · um−σ

. . .
...

. . .
...

pm um
qn vn




as well as the square matrix of order m+n+2s+2 with row blocks of size (m+ s+1, n+ s+1)
and column blocks of size (m,n, s+ 1, s+ 1) by

B =




p0 u0

Im 0
...

. . .
...

. . .

pm p0 um u0

0 0
. . .

...
. . .

...
pm um

q0 v0

0 In
...

. . .
...

. . .

qn q0 vn v0

0 0
. . .

...
. . .

...
qn vn




. (17)

Note that qn = um = 0 and pm = vn = ±dm,n in the above matrices.

If K̂ is nonsingular, we define in addition the entries of (15) by the system

K̂ ·




p̂0 û0
...

...
p̂s ûs
q̂0 v̂0
...

...
q̂s v̂s




= det (K̂) ·




0 0
...

...
0 0
1 0 ← τ∗ − τ + 1
0 0
...

...
0 0
0 1 ← τ∗ − τ + σ + 2

(18)
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THEOREM 4.5. (Modified Schur Complement)
Let (m,n) be a normal point. Then

det (K∗) · [dm,n]
2s+1 = ±det (K̂).

In particular, (m∗, n∗) is a normal point iff K̂ is nonsingular. In the latter case, solving system
(18) by fraction-free Gaussian elimination, we obtain M̂(x) as described in (15), and the new
Mahler system M∗(x) of (12) is obtained via (16) by factoring out the common factor c =
[vn]

2s+1.

Proof: We start by the observation that we may compute the determinant of B by
expanding with respect to the elements pm and vn, leading to

det (B) = ±[pm · vn]
s+1 = ±[dm,n]

2s+2.

Secondly, we have by construction

K∗ ·B =

[
K 0

# K̂

]
, (19)

and taking determinants gives the desired determinantal identity. Writing X for the solution of
(18), we also get that

K∗ ·B ·

[
0
X

]
=

[
K 0

# K̂

]
·

[
0
X

]
=

[
0

K̂ ·X

]
.

It is easily checked that on the left-hand side we multiply K∗ on the right with the coefficient
vector of M(x) ·M̂(x). Since at the right hand side we find det (K̂) = ±[vn]

2s+1 · det (K∗) times
some columns of the identity Im+n+2s+2, and since K∗ is non-singular, we obtain the claimed
identity for M∗(x) by uniqueness of Mahler systems at normal points. ¤

Equation (19) is similar to the well-known Schur complement formula. In fact, the classical

Schur complement K∗/K would be obtained at the position of K̂ by choosing a multiplier B
having a slightly different structure. However, our choice of the multiplier is more appropriate
for taking into account the special structure of K∗ and K. We therefore may refer to K̂ as a
modified Schur complement.

The complexity of this approach depends on the stepsize s: if all quantities s are bounded
by some modest constant, then again we obtain an O(n4 ·N2) algorithm.

By looking carefully at system (18), one may see that the matrix M̂(x) already contains a

common factor vn according to the particular form of the last two rows of K̂. Let K̃ be obtained
from K̂ by dividing the last two rows through by vn. One may easily relate the solution of (18)

to that obtained by replacing K̂ in (18) by K̃.

COROLLARY 4.6. Let (m,n) be a normal point. Then (m∗, n∗) is a normal point iff K̃ is

nonsingular. In the latter case, let M̃(x) be obtained using fraction-free Gaussian elimination
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by solving system (18) with K̂ being replaced by K̃. Then the new Mahler system M∗(x) of (12)
may be computed as

(vn)
2s ·M∗(x) = M(x) · M̃(x), if σ = 0, (20)

M∗(x) ·

[
(vn)

2s−1 0
0 (vn)

2s

]
= M(x) · M̃(x), if σ > 0. (21)

REMARK 4.7. One can prove the recurrence relations of Theorem 4.4 using Theorem 4.5. For
instance, part (b) follows by taking the parameters τ ∗ = τ + 1, s = 1, and σ = 0.

REMARK 4.8. Following a diagonal path ~nk = (k, k), our algorithm (with the new normal-
ization of (20)) may be understood as a fast two-step fraction-free Gaussian elimination. This
new normalization is in accordance with the results given in [6, Theorem 3.3] for Matrix Padé

approximation on diagonal paths. Notice that, for diagonal paths, the M̃(x) is also a Mahler

system, but for the residual functions f̂ , ĝ.

REMARK 4.9. Another interesting special case is given by the antidiagonal ~nk+j = ~nk+(−j, j),

j ≥ 1. Here K̂ is a Sylvester matrix (up to the last row) since, because τ ∗ = τ , the paired

Vandermonde part in K̂ vanishes. It is not difficult to see that the smallest index s ≥ 1 with
nonsingular K̃ is given by degu = m− s, and then

K̃ =




pm−s · · · pm+1−2s pm−2s um−s · · · um+1−2s um−2s
...

...
...

. . .
...

...
pm−1 pm−s pm−s−1 um−s um−s−1

pm pm−s+1 pm−s um−s

. . .
...

...
pm pm−1

1
1




.

In particular (recall that pm = vn),

det (K̃) = [pm · um−s]
s, M̂(x) =

[
0 −ps−1

m · us+1
m−s

psm · u
s−1
m−s v̂(x)

]
,

and v̂(x) = ps−1
m · Q(x), where Q(x) = pquo(p(x), u(x)) is the pseudo-quotient obtained via the

pseudo-division 

um−s · · · um−2s

. . .
...

um−s


 ·



Q0
...
Qs


 = us+1

m−s



pm−s

...
pm


 .

Thus recurrence (21) takes the form

p2s−1
m

[
p∗(x)
q∗(x)

]
= psmu

s−1
m−s

[
u(x)
v(x)

]
, p2s

m

[
u∗(x)
v∗(x)

]
= −ps−1

m us+1
m−s

[
p(x)
q(x)

]
+ ps−1

m Q(x)
[
u(x)
v(x)

]
,

which in the present case can be simplified by dividing out common factors (this is in general no
longer true if τ ∗ > τ).
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It is also of interest to note that there is a strong link between the above recurrence and the
Subresultant PRS algorithm mentioned in Section 3. Indeed, set

Ri+1(x) = u∗(x), Ri(x) = u(x), ri = um−s, φi = pm, φi+1 = p∗m−s, s = δi

then from the first recurrence we see that φδi−1
i · φi+1 = rδi

i , and φδi−1
i p∗(x) = rδi−1

i Ri(x), or
rip

∗(x) = φi+1Ri(x). Thus we may eliminate p(x) in the second recurrence using ri−1p(x) =

φiRi−1(x). Dividing the resulting equation by ps−1
m · φi/ri = φδi

i /ri leads to the relation

−rδi+1
i Ri−1 + (ri/φi)Q(x)Ri(x) = psmriRi+1(x) = riφ

δi

i Ri+1(x).

Since (ri/φi)Q(x) = (ri/φi)pquo(p(x), u(x)) = pquo(Ri−1(x), Ri(x)), we have that

αi ·Ri−1(x) = Q̂(x) ·Ri(x) + βi ·Ri+1(x)

with αi =
δi+1
i and βi = −riφ

δi

i where φi = r
δi−1

i−1 · φ
1−δi−1

i−1 . Thus we obtain (up to signs) exactly
the relation of the the Subresultant PRS algorithm.

5. Related and Future Work

In this paper we have considered the problem of computing rational approximants and in-
terpolants for scalar power series. The intent is that the methods that we describe work at
the implementation level. The arithmetic environments considered for such implementations
include numeric and symbolic domains. In the numeric environment the primary issue is to find
algorithms that are both efficient and at the same time numerically stable. In the symbolic
environment the main issue is to find algorithms that are efficient while controlling the size of
intermediate computations to avoid exponential coefficient growth.

The intent of this paper is to show some of the modifications needed for efficient algo-
rithms at the implementations level. The problems considered here have a common thread. In
all cases the problems seek to compute coefficient representations of polynomials that satisfy
certain order-like equations. The problems can all be considered as solving a linear system of
equations with a special structured coefficient matrix. These structured matrices include Hankel
and Toeplitz (in the case of rational approximation problems), Sylvester (in the case of GCD
problems) and paired Vandermonde (in the case of rational interpolants). One can extend many
of the algorithms discussed in this paper using linear functionals and a special rule as described
in [9]. In this case the structured matrix is a striped Krylov matrix. These allow for vector and
matrix versions of various rational approximation and interpolation problems — for example
Hermite Padé, M-Padé or Matrix Padé Approximants.

We should point out that computing rational approximants and interpolants along with
their vector and matrix generalizations has many applications in computer algebra computations.
Such computations appear in such applications as the Gfun package of Salvy and Zimmerman
[46] for determining recurrences relations, computation of matrix greatest common divisors [9]
and the factorization of linear differential operators having rational function coefficients [50].
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In all cases there is a general theme that runs through our search for efficient algorithms
for such linear systems. Namely we want to solve the linear systems efficiently by taking into
consideration the special structure rather than just using general techniques such as Gaussian
elimination while at the same time taking care to avoid the pitfalls that are part of the com-
putational environment. Two methods, the Cabay–Meleshko algorithm for Padé approximation
and the modified Schur complement algorithm for rational interpolation are both look–ahead
methods that build their solutions in an efficient way by solving a number of smaller linear
systems. In both cases the methods involve combining solutions of small systems of a certain
type (stable in Cabay–Meleshko and Cramer solutions in modified Schur complements) and then
normalizing the results (by making the 1 norm unity in the numeric case and dividing out a
predicted constant in the fraction-free case).

The look–around method of section 4 can be generalized to a number of important approx-
imation and interpolation problems [9]. One of its primary advantages is that it determines all
solutions of a given problem, that is, a basis for a particular algebraic module defined by the
order conditions of the problem. However, it does not appear, at least at the time of writing,
to have a counterpart in a numeric settings. Indeed it seems to be a difficult task to imagine
determining a closest stable point of a particular order along a specific path of computation.
However, as remarked by one of the referees, a “close enough” stable path may be sufficient.

In the case of exact arithmetic environments there are a number of directions that can be
pursued. A classic technique in computer algebra [28] for overcoming the problem of intermediate
coefficient growth is to map the problem into a number of problems which are easier computa-
tionally (for example reducing to modular arithmetic or evaluating variables at a point), solve
the individual problems and then combine the results into a solution of the original problem
(for example using Chinese remaindering or polynomial interpolation). This gains an order of
magnitude in the case of GCD computations. In order to design a modular algorithm one needs
to have an idea of some of the properties of the final result. For example, one needs to have an
idea of the potential size of the answers in order to determine the number of problems to consider.
In addition, one needs to be able to ensure that a final answer has a proper normalization (the
reduced domains often have extra algebraic properties which use different normalizations) [28].
We expect that both of these properties can be found using the Cramer solutions determined by
our algorithms. As such we expect that we can build efficient modular algorithms for rational
approximation and interpolation problems along with their vector and matrix generalizations.
We also expect this can help in determining solutions using a second classical technique from
computer algebra, namely Hensel lifting.

Finally, in the case of exact arithmetic there are a number of other problems which we
would like to be able to compute efficiently with a fraction-free procedure. These include one
sided greatest common divisors of differential operators (used in finding closed form solutions of
linear ODEs) [43], minimal bases for kernels of matrix polynomials, and matrix normal forms
such as Popov and Hermite normal forms. Partial results for the case of matrix normal forms
and minimal bases for kernels can be found in [12].
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of Padé approximants, J. of Algorithms 1 (1980) 259-295.
16. W. Brown & J.F. Traub, On Euclid’s algorithm and the theory of subresultants, J. ACM 18 (1971) 505-514.
17. S. Cabay, A. R. Jones & G. Labahn, Computation of Numerical Padé-Hermite and Simultaneous Padé
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