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ABSTRACT
In this paper we present a deterministic algorithm for the
computation of a minimal nullspace basis of an m × n in-
put matrix of univariate polynomials over a field K with
m ≤ n. This algorithm computes a minimal nullspace basis
of a degree d input matrix with a cost of O∼ (nω dmd/ne)
field operations in K. Here the soft-O notation is Big-O
with log factors removed while ω is the exponent of matrix
multiplication. The same algorithm also works in the more
general situation on computing a shifted minimal nullspace
basis, with a given degree shift ~s ∈ Zn≥0 whose entries bound
the corresponding column degrees of the input matrix. In
this case if ρ is the sum of the m largest entries of ~s, then
a ~s-minimal right nullspace basis can be computed with a
cost of O∼(nωρ/m) field operations.
Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems
General Terms: Algorithms, Theory
Keywords: Nullspace basis, Complexity

1. INTRODUCTION
Let F ∈ K [x]m×n be a matrix of polynomials over a field

K with rank r ≤ m ≤ n. The set

{p ∈ K [x]n | Fp = 0} ,

is a (right) nullspace of F, which is also a K[x]-module. It
can be generated by a basis – a nullspace basis of F, that
can be represented as a matrix in K [x]n×(n−r), with the
columns being the basis elements.
Nullspaces of polynomial matrices appear in a large num-

ber of applications, being first used as an algebraic formal-
ism in the area of control theory (Kucera, 1979). For ex-
ample, in linear system theory if a system is respresented
by a transfer function given in terms of a left coprime ma-
trix fraction decomposition T = D−1

` N`, with D` and N`
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polynomial matrices, then one often wants to find a right
coprime matrix fraction representation T = NrD

−1
r with

Dr and Nr polynomial matrices of appropriate dimensions
(Kailath, 1980). This is equivalent to the nullspace basis
computation

[D` −N`]

[
Nr

Dr

]
= 0. (1)

Solving and determining fundamental properties of the basic
matrix equation AZ = B where A and B have polynomial
elements can be determined by finding a complete descrip-
tion (that is, a basis) of the nullspace of [A,−B]. Other
examples of the use of nullspaces and their bases include
fault diagnostics (Frisk, 2001), column reduction of matrix
polynomials, matrix inverse and determinant computations
(Beelen et al., 1988; Jeannerod and Villard, 2006, 2005).
In most applications one is interested in finding a minimal

nullspace basis of F in K [x]n (Forney, 1975). A nullspace
basis N of F is said to be minimal if it has the minimal pos-
sible column degrees among all right nullspace bases. This is
also often referred to as a minimal polynomial basis. Exam-
ples where minimality are needed include the right coprime
matrix factorization problem and the problem of column
reducing a polynomial matrix. As an example, finding a
basis for the nullspace corresponding to the right matrix
fraction problem (1) finds a matrix fraction while a minimal
nullspace basis finds such a fraction in reduced form having
a minimal column degree denominator (needed for example
in minimal partial realization problems). In some cases, for
example when using nullspace bases for column reduction,
as in (Beelen et al., 1988), or for normal form computation,
as in (Beckermann et al., 1999, 2006), one is interested in
shifting the importance of the degrees of some of the rows
of a basis via a vector. If ~s = [s1, . . . , sn] ∈ Zn then the
shifted ~s-column degree of a column vector of polynomials
p = [p1, . . . , pn]T is

deg~s p = max
i
{deg(pi) + si}.

The ~s-column degree specializes to the column degree when
~s = 0. A nullspace basis N is said to be ~s-minimal if it has
the minimal possible ~s-column degrees among all nullspace
bases, or equivalently, the column degrees of

x~sN = diag(xs1 , . . . , xsn) ·N

are the minimal possible among all nullspace bases of F.
In this paper we are interested in fast computation of min-

imal nullspace bases and shifted minimal nullspace bases in
exact environments. Historically computation of a minimal



nullspace basis has made use of either matrix pencil or re-
sultant methods (often called linearized approaches). Ma-
trix pencil methods convert a nullspace basis computation
problem to one of larger matrix size but having polynomial
degree one. In this case a minimal nullspace basis is de-
termined from the computation of the Kronecker canonical
form, with efficient algorithms given by (Beelen and Dooren,
1988; Misra et al., 1994; Oara and Dooren, 1997). The cost
of these algorithms is O(m2nd3). Resultant methods con-
vert the nullspace basis computation of the matrix poly-
nomial F into a block Toeplitz kernel problem with much
higher dimension with the resulting complexity again being
high. In (Storjohann and Villard, 2005) the authors give
an algorithm for computing a nullspace basis with a cost of
O∼

(
nmrω−1d

)
where O∼ is the same as Big-O but without

log factors and where ω is the power of fast matrix multipli-
cation. However, their algorithm is randomized Las Vegas
and, in addition, the bases they compute are not minimal
in general.
In this paper we present a new, deterministic algorithm

for computing a minimal nullspace basis with a complex-
ity cost of O∼ (nω dmd/ne) field operations in K. This cost
reduces to O∼

(
nω−1md

)
when md ∈ Ω(n), that is, when

md is asymptotically bounded below by a constant factor
of n, as in the case of md ≥ n. The same algorithm can
also compute a ~s-minimal nullspace basis of F with a cost
of O∼(nωρ/m) if the entries of ~s bound the corresponding
column degrees of F, where ρ is the sum of the m largest
entries of ~s. The computational cost in this paper is ana-
lyzed by bounding the number of arithmetic operations in
the coefficient field K on an algebraic random access ma-
chine. We assume the cost of multiplying two polynomial
matrices with dimension n and degree d is O∼(nωd) field op-
erations, where the multiplication exponent ω is assumed to
satisfy 2 < ω ≤ 3. We refer to the book by von zur Gathen
and Gerhard (2003) for more details and reference about the
cost of polynomial multiplication and matrix multiplication.
Our method uses three complementary techniques: re-

duce the column dimension by using an order basis com-
putation to compute a partial nullspace basis, reduce the
row dimension by first computing a nullspace basis of a
subset of the rows, and finally, controlling the degrees by
maintaining a bound throughout the computation. One key
component of the algorithm, the computation of order ba-
sis (also known as minimal approximant basis or σ-basis)
(Beckermann and Labahn, 1994) can be done efficiently us-
ing the algorithms from Giorgi et al. (2003) and Zhou and
Labahn (2009, 2012), allowing us to efficiently reduce the
column dimension. The problem can then be separated to
two subproblems of smaller row dimensions, which can then
be handled recursively.
The remainder of this paper is structured as follows. Basic

definitions and properties of order bases and nullspace bases
are given in the next section. The details of our nullspace
basis computation and a formal statement of the algorithm
can be found in Section 3. A complexity analysis of the
algorithm is provided in the following section. The paper
ends with a conclusion and topics for future research.

2. PRELIMINARIES
In this section, we provide some of the background needed

in order to understand the basic concepts and tools needed
for nullspace basis computation. We also provide a brief in-

troduction to order basis, a key ingredient in our algorithm.

2.1 Nullspace Basis
LetK be a field. Given a polynomial matrix F ∈ K [x]m×n,

we are interested in computing a minimal (right) nullspace
basis of F, or more generally, a shifted minimal nullspace
basis of F. While minimality is often given in terms of the
degrees alone it is sometimes important to consider this in
terms of shifted degrees (Beckermann et al., 2006) as given
in the introduction.
A shifted column degree (called the ~s-column degree, or

simply the ~s-degree) is equivalent to the notion of defect
commonly used in the literature. As in the uniform shift
case, we say a matrix is ~s-column reduced or ~s-reduced if its
~s-degrees cannot be decreased by unimodular column oper-
ations. More precisely, if a matrix P is ~s-column reduced
and [d1, . . . , dn] are the ~s-degrees of columns of P sorted
in nondecreasing order, then [d1, . . . , dn] is lexicographically
minimal among all matrices right equivalent to P. Note that
a matrix P is ~s-column reduced if and only if x~s · P is col-
umn reduced. A ~s-minimal (right) nullspace basis of a given
polynomial matrix F ∈ K [x]m×n is then defined as follows.

Definition 2.1. Given F ∈ K [x]m×n, a polynomial ma-
trix N ∈ K [x]n×∗ is a ~s-minimal (right) nullspace basis of
F if the following properties hold:

1. N is full-rank and ~s-column reduced (equivalently, the
leading column coefficient matrix of x~sN is full-rank).

2. N satisfies F ·N = 0.

3. Any q ∈ K [x]n satisfying Fq = 0 can be expressed as a
linear combination of the columns of N, that is, there
exists some polynomial vector p such that q = Np.

Note that a ~s-column reduced nullspace basis of F has the
minimal ~s-column degrees among all nullspace bases of F.

2.2 Order Basis
Order basis computation is a key tool we use in our nullspace

basis computation, which is not surprising considering the
close relationship between order basis and nullspace basis,
as we will see from the definition of order basis. First, let
us look at the order in order basis.
Let K be a field, F ∈ K [[x]]m×n a matrix of power series

and σ a non-negative integer.

Definition 2.2. A vector of polynomials p ∈ K [x]n×1

has order (F, σ) (or order σ with respect to F) if F · p ≡ 0
mod xσ, that is,

F · p = xσr

for some r ∈ K [[x]]m×1. The set of all order (F, σ) vectors
is a K [x]-module denoted by 〈(F, σ)〉.

An order basis P of F with order σ and shift ~s, or simply a
(F, σ, ~s)-basis, is a polynomial matrix whose columns form a
basis for the module 〈(F, σ)〉 having minimal ~s-column de-
grees (Beckermann and Labahn, 1994, 1997). Again, note
that a ~s-column reduced basis of 〈(F, σ)〉 has the minimal
~s-column degrees among all bases of 〈(F, σ)〉.

Definition 2.3. A polynomial matrix P is an order basis
of F of order σ and shift ~s, denoted by (F, σ, ~s)-basis, if the
following properties hold:



1. P is nonsingular and ~s-column reduced.

2. P has order (F, σ) (or equivalently, each column of P
is in 〈(F, σ)〉).

3. Any q ∈ 〈(F, σ)〉 can be expressed as a linear combi-
nation of the columns of P, given by P−1q.

Note that the definition of order can be easily extended to
having a different order for each row of F ·P as in (Zhou and
Labahn, 2009). However, a single uniform order is sufficient
for our discussion of minimal nullspace basis computation in
this paper.

2.3 Computing Nullspace Bases via Order Bases
Minimal nullspace bases can be directly computed via or-

der basis computation. Indeed if the order σ of a (F, σ, ~s)-
basisP is high enough, thenP contains a ~s-minimal nullspace
basis N, as we will see later in Lemma 3.3. However, this
approach may require the order σ to be quite high. For ex-
ample, if F has degree d and ~s is uniform, then its minimal
nullspace bases can have degree up to md. In that case the
order σ would need to be set to d + md in the order basis
computation in order to fully compute a minimal nullspace
basis. The fastest method of computing such a (F, d+md)-
basis would cost O∼

(
nω
⌈
m2d/n

⌉)
using the algorithm from

(Zhou and Labahn, 2009).
We can see from this last cost that there is room for

improvement when m is large. For example, in the worst
case when m ∈ Θ (n) this cost would be O∼

(
nω+1d

)
. Here

m ∈ Θ (n) means that m ∈ O(n) and n ∈ O(m), that is, m
is asymptotically close to n and within a constant factor of
n. This points to a root cause for the inefficiency in this ap-
proach. Namely, when m is large, the computed nullspace
basis, with a column dimension usually n − m, is a small
subset of the order basis computed. Hence considerable ef-
fort is put in the computation of order basis elements that
are not part of a nullspace basis. A key to reducing the cost
is therefore to reduce such computation of unneeded order
basis elements, which is achieved in our algorithm by only
using order basis computation to compute partial nullspace
bases of low degrees.

3. NULLSPACE BASIS COMPUTATION
In this section, we describe a new, efficient algorithm for

computing a shifted minimal nullspace basis. The algorithm
uses two computation processes recursively. The first pro-
cess, described in Subsection 3.2, uses an order basis com-
putation to compute a subset of nullspace basis elements of
lower degree, and results in a new problem of lower column
dimension. The second process, described in Subsection 3.4,
reduces the row dimension of the problem by computing a
nullspace basis of a submatrix formed by a subset of the
rows of the input matrix.
We require that the entries of the shift ~s to be non-negative

and bound the corresponding column degrees of F. For ex-
ample, we can set ~s to be the list of the column degrees
of F, or we can simply set each entry of ~s to be the maxi-
mum column degree of F. This is a very useful condition as
it helps us to keep track of and bound the shifted degrees
throughout the nullspace basis computation, as we will see
in Subsection 3.1.
For simplicity, we will also assume without loss of gener-

ality that the columns of F and the corresponding entries of

~s = [s1, . . . , sn] are arranged so that the entries of ~s are in
increasing order.
Let ρ =

∑n
n−m+1 si be the sum of m largest entries of ~s,

and s = ρ/m be their average. The algorithm we present in
this section computes a ~s-minimal nullspace basis N with a
cost of O∼(nωs) field operations. For a uniform shift ~s =
[s, . . . , s], we improve this later to O∼ (nω dms/ne).

3.1 Bounds based on the shift
A key requirement for efficient computation is making sure

that the intermediate computations do not blow up in size.
We will see that this requirement is satisfied by the exis-
tence of a bound, ξ =

∑
~s =

∑n
i=1 si, on the sum of all

entries of the input shift of all subproblems throughout the
computation. Here, and in the rest of this paper, we use the
summation notation

∑
without index to denote the sum-

mation over all elements of the list.
First, we have the following, easily proved, bound on the

column degrees of the product of F with another matrix.

Lemma 3.1. Let ~s be a shift whose entries bound the cor-
responding column degrees of F. Then for any polynomial
matrix A, the column degrees of FA are bounded by the cor-
responding ~s-column degrees of A.

The following lemma gives a bound on the ~s-column degrees
of (F, σ, ~s)-bases.

Lemma 3.2. The sum of the ~s-column degrees of a (F, σ, ~s)-
basis P is at most ξ + rσ, where r is the rank of F.

Proof. The sum of the ~s-column degrees is ξ at order
0, since the identity matrix is a (F, 0, ~s)-basis. This sum
increases by at most r for each order increase, as can be
seen from the iterative computation of order bases in (Beck-
ermann and Labahn, 1994; Giorgi et al., 2003).

The following lemma shows that any (F, σ, ~s)-basis con-
tains a partial ~s-minimal nullspace basis of F, and as a re-
sult, any (F, σ, ~s)-basis with high enough σ contains a ~s-
minimal nullspace basis of F.

Lemma 3.3. Let P = [P1,P2] be any (F, σ, ~s)-basis and
N = [N1,N2] be any ~s-minimal nullspace basis of F, where
P1 and N1 contain all columns from P and N, respectively,
whose ~s-column degrees are less than σ. Then [P1,N2] is a
~s-minimal nullspace basis of F, and [N1,P2] is a (F, σ, ~s)-
basis.

Proof. From Lemma 3.1, any column p of P1 satisfies
degFp ≤ deg~s p < σ. Combining this with the fact that
Fp ≡ 0 mod xσ we get Fp = 0. Thus P1 is generated
by N1, that is, P1 = N1U for some polynomial matrix
U. On the other hand, N1 has order (F, σ) and therefore
satisfies N1 = P1V for some polynomial matrix V. We
now have P1 = P1VU and N1 = N1UV, implying both
U and V are unimodular. The result then follows from the
unimodular equivalence of P1 and N1 and the fact that they
are ~s-column reduced.

We can now provide a simple bound on the ~s-minimal
nullspace basis of F.

Theorem 3.4. Suppose F ∈ K [x]m×n and ~s ∈ Zn≥0 is
a shift with entries bounding the corresponding column de-
grees of F. Then the sum of the ~s-column degrees of any
~s-minimal nullspace basis of F is bounded by ξ =

∑
~s.



Proof. Let P be a (F, σ, ~s)-basis with high enough order
σ so that P =

[
N, N̄

]
contains a complete nullspace basis,

N, of F. By Lemma 3.3 we just need σ to be greater than
the ~s-column degree of a ~s-minimal nullspace basis of F. Let
r be the column dimension of N̄. Note that this is the same
as the rank of F. By Lemma 3.2 the sum of the ~s-column
degrees of P is at most ξ+rσ. By Lemma 3.1 the sum of the
~s-column degrees of N̄ is greater than or equal to the sum of
the column degrees of F ·N̄, which is at least rσ, since every
column of FN̄ is nonzero and has order σ. So the sum of the
~s-column degrees of N is bounded by ξ + rσ − rσ = ξ.

3.2 Reducing the column dimension via order
basis computation

In this subsection we look at how an order basis compu-
tation can be used to reduce the column dimension of our
problem. While order basis computations were also used in
(Storjohann and Villard, 2005) to reduce the column dimen-
sions of their problems, here order basis computations are
used in a more comprehensive way. In particular, Theorem
3.9 given later in this section, allows us to maintain the min-
imality of the bases with the use of the shifted degrees and
the residuals.
We begin by computing a (F, 3s,~s)-basis P, which can

be done with a cost of O∼ (nωs) using the algorithm from
Giorgi et al. (2003). Note that if ~s is balanced, then we
can compute this with a cost of O∼ (nω dρ/ne) using the
algorithm from Zhou and Labahn (2009). We will show that
at most 3m

2
columns of P are not elements of a nullspace

basis of F.

Remark 3.5. Note that it is not essential to choose 3s for
the order. The order can be set to `s for any constant ` > 1.
A smaller ` means less work to compute a (F, `s, ~s)-basis,
but also results in fewer nullspace basis elements computed
and leaves more work for computing the remaining basis el-
ements. On the other hand, a larger ` means more work is
needed for order basis computation, but leaves less remaining
work. It may be possible to better balance these computations
with a better choice of `. However, as we will see later, the
resulting complexity given in this paper would remain the
same for any ` > 1 as long as we use the big O notation and
do not care about the constant factors in the cost.

Theorem 3.6. Let P = [P1,P2] be a (F, σ, ~s)-basis with
σ > s and P1 containing all columns n of P satisfying
Fn = 0. Then for ` = σ/s the column dimension κ of
P2 is bounded by `m

(`−1)
.

Proof. Any column p of P2 has order σ but also satisfies
Fp 6= 0. Thus the degree of Fp must be at least σ and, by
Lemma 3.1, p must have ~s-column degree at least σ. It
follows that the sum of the ~s-column degrees of the columns
of P2 must satisfy

∑
deg~sP2 ≥ κσ. From Lemma 3.2 we

know that the sum of the ~s-column degrees of the columns
of P satisfies

∑
deg~sP ≤

∑
~s + mσ, and hence the sum of

~s-column degrees of the columns of P1 must satisfy∑
deg~sP1 =

∑
deg~sP−

∑
deg~sP2 ≤

∑
~s+mσ − κσ.

On the other hand, the lowest possible value of
∑

deg~sP1

is
∑n−κ
i=1 si, the sum of the n−κ smallest entries of ~s (which

occurs when P1 = [I, 0]T ). It follows that∑
~s+mσ − κσ ≥

n−κ∑
i=1

si,

or, after rearrangement,

mσ ≥ κσ −

(∑
~s−

n−κ∑
i=1

si

)
.

Combining this with the fact that for κ ≥ m the average of
the κ largest entries of ~s is no more than the average of the
m largest entries of ~s, that is,(∑

~s−
n−κ∑
i=1

si

)
/κ ≤ s, or

∑
~s−

n−κ∑
i=1

si ≤ κs,

we get mσ ≥ κσ−κs, which gives κ ≤ mσ/(σ−s) for σ > s.
Substituting in σ = `s, we get κ ≤ `m

(`−1)
as required.

Let [P1,P2] = P with P1 consisting of the nullspace ba-
sis elements computed. Then the residual FP = [0,FP2]
can be used to compute the remaining nullspace basis el-
ements. Before showing this can be correctly done, let us
first make sure that the matrix multiplication FP2 can be
done efficiently, which may not be obvious since F, P2, and
their product FP2 can all have degrees up to Θ(ξ). But we
do have the sum of the column degrees of F, that of FP2,
and the sum of the ~s-column degrees of P2 all bounded by
O(ξ), which means their total size are not too big but their
column degrees can be quite unbalanced. We will encounter
this type of multiplication again multiple times, for comput-
ing residuals and combining results. In fact, almost all of the
matrices in our nullspace basis computation can have such
unbalanced degrees. To efficiently multiply these matrices,
we provide the following theorem, whose proof we defer until
the end of this section.

Theorem 3.7. Let A ∈ K [x]m×n, ~s a shift with entries
bounding the column degrees of A and ξ, a bound on the sum
of the entries of ~s. Let B ∈ K [x]n×k with k ∈ O (m) and
the sum θ of its ~s-column degrees satisfying θ ∈ O (ξ). Then
we can multiply A and B with a cost of O∼(nmω−2ξ).

With Theorem 3.7, we can now do the multiplication FP2

efficiently.

Corollary 3.8. The multiplication of F and P2 can be
done with a cost of O∼

(
nmω−2ξ

)
.

Proof. Since P = [P1,P2] is a (F, 3s,~s)-basis, we have
from Lemma 3.2 that the sum of the ~s-column degrees of
P2 satisfies

∑
deg~sP2 ≤ 3sm+ ξ ≤ 4ξ. Hence Theorem 3.7

applies.

It remains to show that the residual FP2 can be used to
compute the remaining nullspace basis elements.

Theorem 3.9. Let P = [P1,P2] be a (F, σ, ~s)-basis such
that P1 consists of all the nullspace basis elements of F in
P. Let ~b = [~b1,~b2] be the ~s-column degrees of P, where ~b1,~b2
are the ~s-column degrees of P1, P2 respectively. Let Q be
a ~b2-minimal nullspace basis of FP2 with ~b2-column degrees
~b′2. Then [P1,P2Q] is a ~s-minimal nullspace basis of F with
~s-column degrees [~b1,~b

′
2].

Proof. Let Q′ = diag([I,Q]), where the dimension of
the identity matrix I matches that of P1. Then Q′ is a ~b-
minimal nullspace basis of FP since FPQ′ = [FP1,FP2Q] =
0. It follows that PQ′ = [P1,P2Q] is a nullspace basis of
F. We now show that PQ′ is ~s-column reduced and has



~s-column degrees [~b1,~b
′
2], or equivalently, x~sPQ′ is column

reduced and has column degrees [~b1,~b
′
2]. Notice that x~sP

has column degrees [~b1,~b2] and a full rank leading column
coefficient matrix P . Hence x~sPx−[~b1,~b2] has column de-
grees [0, . . . 0]. (If one is concerned about the entries not
being polynomials, one can simply multiply the matrix by
xξ to shift the degrees up.) Similarly, x~b2Qx−~b

′
2 has col-

umn degrees [0, . . . , 0], and so x[
~b1,~b2]Q′x−[~b1,~b

′
2] also has

column degrees [0, . . . , 0] and a full rank leading column
coefficient matrix Q′. Putting these together, we see that
x~sPx−[~b1,~b2]x[

~b1,~b2]Q′x−[~b1,~b
′
2] = x~sPQ′x−[~b1,~b

′
2] has column

degrees [0, . . . , 0] and a full rank leading column coefficient
matrix PQ′. It follows that x~sPQ′ has column degrees
[~b1,~b

′
2], or equivalently, the ~s-column degrees ofPQ′ is [~b1,~b

′
2].

It remains to show that any n satisfying Fn = 0 must
be a linear combination of the columns of PQ′. Since n ∈
〈(F, σ)〉, it is generated by the (F, σ)-basis P, that is, n =
Pa with a = P−1n ∈ K [x]n. Also, Fn = 0 implies FPa = 0,
hence a = Q′b for some vector b as Q′ is a nullspace basis
of FP. We now have n = PQ′b as required.

Example 3.10. Let us look at an example of computing
nullspace basis using Theorem 3.9. Let F be given by[
x+ x2 + x3 1 + x 0 1 + x
1 + x2 + x3 x+ x2 + x3 x+ x2 x3

]
∈ Z2 [x]2×4 .

Let σ = 3, ~s = [3, 3, 3, 3]. We first compute a (F, σ, ~s)-basis

P =


0 0 x2 x
1 0 0 x2

1 x2 x+ x2 1 + x
1 0 0 0

 ,
with the ~s-column degrees ~b = [3, 5, 5, 5] and the residual

FP =

[
0 0 x3 + x4 + x5 x4

0 x3 + x4 x5 x3 + x5

]
.

Thus P1 = [0, 1, 1, 1]T , with ~s-column degree 3, is the only
nullspace basis element computed. Let P2 contain the re-
maining columns of P and ~b2 = [5, 5, 5] be its ~s-column
degrees. Next we compute a ~b2-minimal nullspace basis of
FP2

Q = [1 + x+ x4, x+ x2, 1 + x3]T

which has ~b2-column degree 9. Then

[P1,P2Q] =


0 x+ x3

1 x2 + x5

1 1 + x+ x6

1 0


is a complete ~s-minimal nullspace basis of F with ~s-column
degrees [3, 9].

Theorem 3.9 shows that the remaining ~s-minimal nullspace
basis elements P2Q can be correctly computed from the
residual FP2. Before discussing the computation of a ~b2-
minimal nullspace basis Q of FP2, let us first note that
the multiplication P2Q can be done efficiently, which again
follows from Theorem 3.7.

Lemma 3.11. The multiplication of P2 and Q can be done
with a cost of O∼

(
nmω−2ξ

)
.

Proof. Note that the dimension of P2 is n×O(m) from
Theorem 3.6 and the dimension of Q is O (m)×O (m). The
column degrees of P2 are bounded by the ~s-column degrees
~b2 of P2 since ~s is non-negative. Also recall that

∑~b2 ≤ 4ξ
from the proof of Corollary 3.8. By Lemma 3.1 the column
degrees of FP2 are bounded by the ~s-column degrees ~b2 of
P2. By Theorem 3.4, the sum of the ~b2-column degrees of
Q is also bounded by

∑~b2 ≤ 4ξ. Now if we separate P2 to
n/m blocks rows each with no more than m rows, Theorem
3.7 can be used to multiply each block row with Q. Each
multiplication involves matrices of dimension O (m)×O (m).
In addition, both the sum of the column degrees of P2 and
the sum of the ~b2-column degrees of Q are bounded by 4ξ.
So each multiplication costs O∼(mω−1ξ). Hence doing this
for all n/m block rows costs O∼

(
nmω−2ξ

)
.

3.3 Reducing the degrees
Our next task is computing a ~b2-minimal nullspace basis

of the residual FP2. It is useful to note that the lower degree
terms of FP2 are zero since it has order σ. Hence we can
use G = FP2/x

σ instead to compute the remaining basis
elements. In the following, we show that just like the original
input matrix F, this new input matrixG has column degrees
bounded by the corresponding entries of ~s.

Lemma 3.12. If an (F, σ, ~s)-basis has columns arranged
in increasing ~s-column degrees with ~s-column degrees ~b, then
the entries of ~b−[σ, . . . , σ] = [b1 − σ, . . . , bn − σ] are bounded
component-wise by ~s.

Proof. A (F, 0, ~s)-basis of order 0 has ~s-column degrees
given by ~s. For each order increase, any column of the basis
has its ~s-column degree increases by at most one, which
occurs when its order is increased by multiplying the column
by x. Hence at order σ, the ~s-column degree increase for
each column is at most σ.

Corollary 3.13. The column degrees of FP/xσ are
bounded component-wise by ~s.

Proof. From Lemma 3.1, the column degrees of FP

are bounded component-wise by ~b, the ~s-column degrees
of P. Hence the column degrees of FP/xσ are bounded
component-wise by ~b − [σ, . . . , σ]. The result then follows
from Lemma 3.12.

From Corollary 3.13, the column degrees of FP2/x
σ are

bounded by the entries of the corresponding subset ~t of
~b − [σ, . . . , σ], which is in turn bounded by the entries of
the corresponding subset of ~s.

Example 3.14. From Example 3.10, note that instead of
using the residual

FP2 =

[
0 x3 + x4 + x5 x4

x3 + x4 x5 x3 + x5

]
to compute a [5, 5, 5]-minimal nullspace basis of F, we can
instead use

G = FP2/x
3 =

[
0 1 + x+ x2 x

1 + x x2 1 + x2

]
to compute a [2, 2, 2]-minimal nullspace basis of G. The
column degrees of G are bounded by the new shift [2, 2, 2],
which is in turn bounded by the corresponding entries [3, 3, 3]
of ~s.



At this point, using Theorem 3.9 and Corollary 3.13, the
problem is reduced to computing a ~t-minimal nullspace ba-
sis of G = FP2/x

3s, which still has row dimension m. But
its column dimension is now bounded by 3m/2. Also notice
that as in the original problem, the column degrees of the
new input matrix G are bounded by the corresponding en-
tries of the new shift ~t. In addition, as the new shift ~t is
bounded component-wise by a subset of the old shift ~s, the
new problem is no more difficult than the original problem.

3.4 Reducing the row dimension
We now turn to the new problem of computing a ~t-minimal

nullspace basis of G. Let

G =

[
G1

G2

]
with G1 having bm/2c rows and G2 having dm/2e rows. If
we compute a ~t-minimal nullspace basis N1 of G1, where N1

has ~t-column degrees ~u, then compute a ~u-minimal nullspace
basis N2 of G2N1, then the next theorem shows that N1N2

is a ~t-minimal nullspace basis of G.

Theorem 3.15. Let G =
[
GT

1 ,G
T
2

]T ∈ K [x]m×n and ~t a
shift vector. If N1 is a ~t-minimal nullspace basis of G1 with
~t-column degrees ~u, and N2 is a ~u-minimal nullspace basis of
G2N1 with ~u-column degrees ~v, then N1N2 is a ~t-minimal
nullspace basis of G with ~t-column degrees ~v.

Proof. The proof is very similar to the proof of Theorem
3.9. It is clear that GN1N2 = 0 hence N1N2 is a nullspace
basis of G. We now show that N1N2 is ~t-column reduced
and has ~t-column degrees ~v, or equivalently, x~tN1N2 is col-
umn reduced. Notice that x~tN1 has column degrees ~u and
a full rank leading column coefficient matrix N1. Hence
x
~tN1x

−~u has column degrees [0, . . . , 0]. Again, if one is
concerned about the entries not being polynomials, one can
simply multiply the matrix by xξ to shift the degrees up.
Similarly, x~uN2x

~v has column degrees [0, . . . , 0] and a full
rank leading column coefficient matrix N2. Putting them
together, x~tN1x

−~ux~uN2x
−~v = x

~tN1N2x
−~v has column de-

grees [0, . . . , 0] and a full rank leading column coefficient
matrix N1N2. It follows that x~tN1N2 has column degrees
~v, or equivalently, the ~t-column degrees of N1N2 is ~v.

It remains to show that any n satisfying Gn = 0 must be
a linear combination of the columns of N1N2. First notice
that n = N1a for some polynomial vector a since N1 is a
nullspace basis of G1. Also, Gn = 0 implies that G2N1a =
0, hence a = N2b for some vector b as N2 is a nullspace
basis of G2N1. We now have n = N1N2b as required.

Example 3.16. Let us compute a ~t-minimal nullspace ba-
sis of

G =

[
0 1 + x+ x2 x

1 + x x2 1 + x2

]
from Example 3.14, where ~t = [2, 2, 2]. Then

G1 =
[

0 1 + x+ x2 x
]
and G2 =

[
1 + x x2 1 + x2

]
.

We first compute a ~t-minimal nullspace basis N1 of G1:

N1 =

 1 0
0 x
0 1 + x+ x2



with its ~t-column degrees ~u = [2, 4]. Next, we compute a ~u-
minimal nullspace basis N2 of G2N1 =

[
1 + x 1 + x+ x4

]
:

N2 = [1 + x+ x4, 1 + x]T .

Then

N1N2 = [1 + x+ x4, x+ x2, 1 + x3]T

is a ~t-minimal nullspace basis of G.

While Theorem 3.9 allows us to compute nullspace bases by
columns, which then reduces the column dimensions, The-
orem 3.15 shows that that the nullspace bases can also be
computed by rows, which then reduces the row dimensions.
Again, we need to check that these computations can be
done efficiently. In the following, Lemma 3.17 and Lemma
3.18 show that the multiplication G2N1 and the multipli-
cation N1N2 can be done efficiently, which are again conse-
quences of Theorem 3.7.

Lemma 3.17. The multiplication of G2 and N1 can be
done with a cost of O∼(mω−1ξ).

Proof. Theorem 3.7 applies directly here.

Lemma 3.18. The multiplication of N1 and N2 can be
done with a cost of O∼(mω−1ξ).

Proof. Theorem 3.7 applies because the sum of the col-
umn degrees of N1 is bounded by the sum of the ~t-column
degrees of N1, which is

∑
~u ≤ ξ, and by Theorem 3.4 the

sum of ~u-column degrees of N2 is also bounded by ξ.

3.5 Recursive computation
The computation of N1 and N2 is identical to the original

problem, only the dimension has decreased. For computing
N1, the dimension of the input matrix G1 is bounded by
bm/2c×(3m/2). For computing N2 , the dimension of input
matrix G2N1 is bounded by dm/2e × (3m/2). The column
degrees of G1 are bounded by the entries of ~t, with

∑
~t ≤ ξ.

Similarly, the column degrees of G2N1 are bounded by the
entries of ~u, with

∑
~u ≤ ξ. Hence, the same computation

process can be repeated on these two smaller problems. This
gives a recursive algorithm, shown in Algorithm 1.
Before analyzing the computational complexity of Algo-

rithm 1 in the following section, we provide a proof of The-
orem 3.7, which is needed to efficiently multiply matrices
with unbalanced degrees in the algorithm.

3.6 Proof of Theorem 3.7
In this subsection we give a proof of Theorem 3.7.
Proof. Recall that ~s is a shift with entries ordered in

terms of increasing values and ξ is a bound on the sum of the
entries of ~s. We wish to determine the cost of multiplying the
two polynomials matrices A ∈ K [x]m×n and B ∈ K [x]n×k

where A has column degrees bounded by ~s and where k ∈
O (m) and the sum θ of its ~s-column degrees satisfies θ ∈
O (ξ). The goal is to show that these polynomial matrices
can be multiplied with a cost of O∼(nmω−2ξ).
For simplicity we assume m is a power of 2, something

which can be achieved by appending zero rows to F. We
divide the matrix B into logm column blocks according to
the ~s-column degrees of its columns. Let

B =
[
B(logm) B(logm−1) · · · B(2) B(1)

]
,



Algorithm 1 MinimalNullspaceBasis (F, ~s): Compute a ~s-
Minimal Nullspace Basis

Input: F ∈ K [x]m×n, ~s = [s1, . . . , sn] ∈ Zn with entries
arranged in non-decreasing order and bounding the cor-
responding column degrees of F.

Output: A ~s-minimal nullspace basis of F and its ~s-column
degrees ~s′.

1: ξ :=
∑n
i=1 si; ρ :=

∑n
i=n−m+1 si; s := ρ/m;

2:
[
P,~b

]
:= orderBasis (F, 3s,~s), a (F, 3s,~s)-basis with the

columns of P and the entries of its ~s-column degrees ~b
arranged so that the entries of ~b are in non-decreasing
order;

3: [P1,P2] := P where P1 consists of all columns p of P
satisfying Fp = 0;

4: if m = 1 then
5: return P1, deg~sP1

6: else
7: ~t := deg~sP2 − [3s, 3s, . . . , 3s] ;
8: G := FP2/x

3s;
9:

[
GT

1 ,G
T
2

]T
:= G, with G1 having bm/2c rows and

G2 having dm/2e rows;
10: [N1, ~u] := MinimalNullspaceBasis

(
G1,~t

)
;

11: [N2, ~v] := MinimalNullspaceBasis (G2N1, ~u) ;
12: Q := N1N2;
13: return [P1,P2Q] , [deg~sP1, ~v]
14: end if

with B(logm), B(logm−1), B(logm−2), ... , B(2), B(1) hav-
ing ~s-column degrees in the range [0, 2ξ/m], (2ξ/m, 4ξ/m],
(4ξ/m, 8ξ/m], ...,(ξ/4, ξ/2], (ξ/2, θ], respectively. We will
multiply A with each B(i) separately.
We also divide the matrix A into logm column blocks and

each matrix B(i) into logm row blocks according to the size
of the corresponding entries in ~s. Set

~s =
[
~slogm ~slogm−1 · · · ~s1

]
A =

[
Alogm Alogm−1 · · · A1

]
B =

[
B(logm) B(logm−1) · · · B(1)

]
=


B

(logm)
logm B

(logm−1)
logm · · · B

(1)
logm

...
...

B
(logm)
1 B

(logm−1)
1 · · · B

(1)
1


with ~slogm, ~slogm−1, . . . , ~s1 having entries in the range [0, 2ξ/m],
(2ξ/m, 4ξ/m], (4ξ/m, 8ξ/m], ..., (ξ/2, ξ] respectively. Also
the column dimension of Aj and the row dimension of B(i)

j

match that of ~sj for j from 1 to logm.
Notice that B

(i)

(j) for i > j must be zero. Otherwise, as
~sj > ξ/2j ≥ ξ/2i−1, the ~s-column degree of B(i) would ex-
ceed ξ/2i−1, a contradiction since by definition the ~s-column
degree of B(i) is bounded by ξ/2i−1 when i > 1. So B in
fact has a block triangular shape

B =


B

(logm)
logm B

(logm−1)
logm · · · B

(1)
logm

B
(logm−1)
logm−1

...
. . .

B
(1)
1



(while remembering that the blocks have varying sizes).
First consider the multiplication

AB(1) =
[
Alogm · · · A1

] [
B

(1)
logm · · · B

(1)
1

]T
.

Note that there are O (1) columns in B(1) since θ ∈ O (ξ).
We do this in logm steps. At step j for j from 1 to logm we
multiply Aj and B

(1)
j . The column dimension of Aj , which

is the same as the row dimension ofB(1)
j , is less than 2j . The

degree ofB(1)
j is O (ξ). To use fast multiplication, we expand

B
(1)
j to a matrix B̄

(1)
j with degree less than δ ∈ Θ(ξ/2j) and

column dimension q ∈ O(2j) as follows. Write

B
(1)
j = B

(1)
j,0 + B

(1)
j,1x

δ + · · ·+ B
(1)
j,q−1x

δ(q−1) =

q−1∑
k=0

B
(1)
j,kx

δk

with each B
(1)
j,k having degree less than δ. Set

B̄
(1)
j =

[
B

(1)
j,0 ,B

(1)
j,1 , . . . ,B

(1)
j,q−1

]
.

We can then multiply Aj , which has dimension m × O(2j)

for j < logm, and B̄
(1)
j , which has dimension O(2j)×O(2j)

for j < logm, with a cost of

O∼
(

(m/2j)
(

2j
)ω

ξ/2j
)

= O∼
((

2j
)ω−2

mξ

)
.

⊂ O∼
(
mω−1ξ

)
⊂ O∼(nmω−2ξ)

For j = logm, Aj has dimension m × O (n), B̄(1)
j has di-

mension O (n)×O(m), and their degrees are O (ξ/m). Hence
they can be multiplied with a cost ofO∼ ((n/m)mω(ξ/m)) =

O∼
(
nmω−2ξ

)
. Adding up the columns of AjB̄

(1)
j gives

AjB
(1)
j and costs O(mξ). Therefore, multiplying A and

B(1) over log(m) steps costs O∼
(
nmω−2ξ

)
.

Next we multiply A with B(2). We proceed in the same
way as before, but notice that A1B

(2)
1 is no longer needed

sinceB(2)
1 = 0. MultiplyingA andB(2) also costsO∼

(
nmω−2ξ

)
.

Continuing to doing this, gives a costs of O∼
(
nmω−2ξ

)
to multiply A with the columns B(i) for i from 1 to logm.
As before, we recall that B(i)

(j) = 0 for j > i. The overall cost
for i from 1 to logm is therefore O∼

(
nmω−2ξ

)
to multiply

A and B.

4. COMPUTATIONAL COMPLEXITY
For the cost analysis we first consider the case where the

column dimension n is not much bigger than the row dimen-
sion m.

Theorem 4.1. If n ∈ O (m), then the cost of Algorithm
1 is O∼

(
mω−1ξ

)
= O∼

(
mω−1ρ

)
field operations.

Proof. We may assume m is a power of 2, which can be
achieved by appending zero rows to F. Note that ρ ∈ Θ (ξ)
when n ∈ O (m). Then the order basis computation at line 2
costs O∼ (nωs) = O∼

(
mω−1ρ

)
. The multiplications at line

8 and line 13 cost O∼
(
nmω−2ξ

)
= O∼

(
mω−1ξ

)
. The re-

maining operations including multiplications at line 11 and
line 12 cost O∼

(
mω−1ξ

)
. Let g(m, ξ) be the computational

cost of the original problem. Then we have the recurrence
relation

g(m, ξ) ∈ O∼(mω−1ξ) + g(m/2, ξ) + g(m/2, ξ),



with the base case g(1, ξ) ∈ O∼ (ξ), the cost of just an
order basis computation at m = 1. This gives g(m, ξ) ∈
O∼(mω−1ξ) field operations as the cost of the algorithm.

We now consider the general case where the column dimen-
sion n can be much bigger than the row dimension m.

Theorem 4.2. Algorithm 1 costs O∼ (nωs) field opera-
tions in general.

Proof. The order basis computation at line 2 costsO∼ (nωs)
in general, which dominates the cost of other operations.
The problem is then reduced to one where we have column
dimension O (m), which is handled by Theorem 4.1 with a
cost of O∼

(
mω−1ξ

)
∈ O∼ (nωs).

When we have the important special case where the shift
~s = [s, . . . , s] is uniform then Algorithm 1 has a lower cost.
Indeed we notice that the order basis computation at line
2 costs O∼ (nω dms/ne) using the algorithm from Zhou and
Labahn (2009). In addition, the multiplication of F and P2

at line 8 and the multiplication of P2 and Q at line 13 both
cost O∼

(
nmω−1s

)
as shown in Lemma 4.3 and Lemma 4.4.

Lemma 4.3. If the degree of F is bounded by s, then the
multiplication of F and P2 at line 8 costs O∼

(
nmω−1s

)
.

Proof. Since P2 is a part of a (F, 3s,~s)-basis, its degree
is bounded by 3s. It has dimension n×O (m) from Theorem
3.6. Multiplying F andP2 therefore costs (n/m)O∼ (mωs) =
O∼

(
nmω−1s

)
.

Lemma 4.4. If F has degree s, then the multiplication of
P2 and Q at line 13 costs O∼

(
nmω−1s

)
.

Proof. First note that the dimension of Q is O (m) ×
O (m) since it is a ~t-minimal nullspace basis ofG = FP2/x

3s,
which has dimension m × O (m). In addition, by Theorem
3.4, the sum of the ~t-column degrees of Q is bounded by∑
~t, which is bounded by O (ms) since ~t has O (m) entries

all bounded by s.
Now Theorem 3.7 and its proof still work. The current

situation is even simpler as we do not need to subdivide the
columns of P2, which has degree bounded by 3s and dimen-
sion n×O (m). We just need to separate the columns ofQ to
O (logm) groups with degree ranges [0, 2s] , (2s, 4s], (4s, 8s],
. . . , and multiply P2 with each group in the same way as
in Theorem 3.7, with each of these O (logm) multiplications
costs (n/m)O∼ (mωs) = O∼

(
nmω−1s

)
.

Theorem 4.5. If ~s = [s, . . . , s] is uniform, then Algo-
rithm 1 costs O∼ (nω dms/ne).

Proof. After the initial order basis computation, which
costs O∼ (nω dms/ne) , and the multiplication of F and P2,
which costs O∼

(
nmω−1s

)
from Lemma 4.3, the column di-

mension is reduced to O (m), allowing Theorem 4.1 to ap-
ply for computing a ~t-minimal nullspace basis of FP2/x

3s.
Hence the remaining work costs O∼ (mωs). The overall cost
is therefore dominated by the cost O∼ (nω dms/ne) of the
initial order basis computation.

Corollary 4.6. If the input matrix F has degree d, then
a minimal nullspace basis of F can be computed with a cost
of O∼ (nω dmd/ne).

Proof. We can just set the shift ~s to [d, . . . , d] and apply
Theorem 4.5.

5. CONCLUSION
In this paper we have presented a fast, deterministic pro-

cedure for computing a minimal nullspace basis of a polyno-
mial matrix. For a number of extensions and applications of
this work, and for other related results, we refer the readers
to the upcoming PhD thesis of the first author.
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