
Efficient Algorithms for Order Bases
Computation

Wei Zhou and George Labahn
Cheriton School of Computer Science

University of Waterloo,
Waterloo, Ontario, Canada

Abstract

In this paper we present two algorithms for the computation of a shifted order basis of an m×n
matrix of power series over a field K with m ≤ n. For a given order σ and balanced shift ~s
the first algorithm determines an order basis with a cost of O∼(nωdmσ/ne) field operations
in K, where ω is the exponent of matrix multiplication. Here an input shift is balanced when
max(~s)−min(~s) ∈ O(mσ/n). This extends earlier work of Storjohann which only determines a
subset of an order basis that is within a specified degree bound δ using O∼(nωδ) field operations
for δ ≥ dmσ/ne.
While the first algorithm addresses the case when the column degrees of a complete order basis

are unbalanced given a balanced input shift, it is not efficient in the case when an unbalanced
shift results in the row degrees also becoming unbalanced. We present a second algorithm which
balances the high degree rows and computes an order basis also using O∼(nωdmσ/ne) field
operations in the case that the shift is unbalanced but satisfies the condition

∑n
i=1(max(~s)−~si) ≤

mσ. This condition essentially allows us to locate those high degree rows that need to be
balanced. This extends the earlier work by the authors from ISSAC’09.

1. Introduction

Let F ∈ K [[x]]
m×n be a matrix of power series over a field K with m ≤ n. Given

a nonnegative integer σ, we say a vector p ∈ K [x]
n×1 of polynomials gives an order σ

approximation of F, or p has order (F, σ), if

F · p ≡ 0 mod xσ,

that is, the first σ terms of F · p are zero. Historically such problems date back to their
use in Hermite’s proof of the transcendence of e in 1873. In 1893 Padé, a student of
Hermite, formalized the concepts introduced by Hermite and defined what is now known

Email address: {w2zhou,glabahn}@uwaterloo.ca (Wei Zhou and George Labahn).

Preprint submitted to Journal of Symbolic Computation June 13, 2011

as Hermite-Padé approximants (where m = 1), Padé approximants (where m = 1, n = 2)
and simultaneous Padé approximants (where F has a special structure). Such rational
approximations also specified degree constraints on the polynomials p and had their order
conditions related to these degree constraints. Additional order problems include vector
and matrix versions of rational approximation, partial realizations of matrix sequences
and vector rational reconstruction just to name a few (cf. the references in Beckermann
and Labahn (1997)). As an example, the factorization of differential operators algorithm
of Van Hoeij (1997) makes use of vector Hermite-Padé approximation to reconstruct dif-
ferential factorizations over rational functions from factorizations of differential operators
over power series domains.

The set of all such order (F, σ) approximations forms a module over K [x]. An order
basis - or minimal approximant basis or σ-basis - is a basis of this module having a type
of minimal degree property (called reduced order basis in (Beckermann and Labahn,
1997)). The minimal degree property parameterizes solutions to an order problem by the
degrees of the columns of the order basis. In the case of rational approximation, order
bases can be viewed as a natural generalization of the Padé table of a power series (Baker
and Graves-Morris, 1996) since they are able to describe all solutions to such problems
given particular degree bounds. They can even be used to show the well known block
structure of the Padé and related Rational Interpolation tables (Beckermann and Labahn,
1997). Order bases are used in such diverse applications as the inversion of structured
matrices (Labahn, 1992), normal forms of matrix polynomials (Beckermann et al., 1999,
2006), and other important problems in matrix polynomial arithmetic including matrix
inversion, determinant and nullspace computation (Giorgi et al., 2003; Storjohann and
Villard, 2005). In our case we also allow the minimal degree property to include a shift
~s. Such a shift is important, for example, for matrix normal form problems (Beckermann
et al., 1999, 2006).

In this paper we focus on the efficient computation of order basis. Algorithms for
fast computation of order basis include that of Beckermann and Labahn (1994) which
converts the matrix problem into a vector problem of higher order (which they called
the Power Hermite-Padé problem). Their divide and conquer algorithm has complexity
of O∼(n2mσ+nm2σ) field operations. As usual, the soft-O notation O∼ is simply Big-O
with polylogarithmic factors (log(nmσ))O(1) ommited. By working more directly on the
input m × n input matrix, Giorgi et al. (2003) give a divide and conquer method with
cost O∼ (nωσ) arithmetic operations. Their method is very efficient if m is close to the
size of n but can be improved if m is small.

In a novel construction, Storjohann (2006) effectively reverses the approach of Becker-
mann and Labahn. Namely, rather than convert a high dimension matrix order problem
into a lower dimension vector problem of higher order, Storjohann converts a low dimen-
sion problem to a high dimension problem with lower order. For example, computing
an order basis for a 1 × n vector input f and order σ can be converted to a problem
of order basis computation with an O (n)×O (n) input matrix and an order O (dσ/ne).
Combining this conversion with the method of Giorgi et al. can then be used effectively
for problems with small row dimensions to achieve a cost of O∼ (nω dmσ/ne).

However, while order bases of the original problem can have degree up to σ, the nature
of Storjohann’s conversion limits the degree of an order basis of the converted problem to
O (dmσ/ne) in order to be computationally efficient. In other words, this approach does
not in general compute a complete order basis. Rather, in order to achieve efficiency,

2

it only computes a partial order basis containing basis elements with degrees within
O (dmσ/ne), referred to by Storjohann as a minbasis. Fast methods for computing a
minbasis are particularly useful for certain problems, for example, in the case of inversion
of structured block matrices where one needs only precisely the minbasis (Labahn, 1992).
However, in other applications, such as those arising in matrix polynomial arithmetic,
one needs a complete basis which specifies all solutions of a given order, not just those
within a particular degree bound (cf. Beckermann and Labahn (1997)).

In this paper we present two algorithms which compute an entire order basis with
a cost of O∼(nωdmσ/ne) field operations. This work extends the previous results first
reported in Zhou and Labahn (2009). The two algorithms differ depending on the nature
of the degree shift required for the reduced order basis. In the first case we use a trans-
formation that can be considered as an extension of Storjohann’s transformation. This
new transformation provides a way to extend the results from one transformed problem
to another transformed problem of a higher degree. This enables us to use an idea from
the null space basis algorithm found in (Storjohann and Villard, 2005) in order to achieve
efficient computation. At each iteration, basis elements within a specified degree bound
are computed via a Storjohann transformed problem. Then the partial result is used
to simplify the next Storjohann transformed problem of a higher degree, allowing basis
elements within a higher degree bound to be computed efficiently. This is repeated until
all basis elements are computed.

In order to compute an order basis efficiently, the first algorithm requires that the
degree shifts are balanced. In the case where the shift is not balanced, the row degrees of
the basis can also become unbalanced in addition to the unbalanced column degrees. We
give a second algorithm that balances the high degree rows and uses O∼(nωdmσ/ne) field
operations when the shift ~s is unbalanced but satisfies the condition

∑n
i=1(max(~s)−~si) ≤

mσ. This condition essentially allows us to locate the high degree unbalanced rows that
need to be balanced. The algorithm converts a problem of unbalanced shift to one with
balanced shift, based on a second idea from (Storjohann, 2006). Then the first algorithm
is used to efficiently compute the elements of an order basis whose shifted degrees exceed
a specified parameter. The problem is then reduced to one where we remove the computed
elements. This results in a new problem with smaller dimension and higher degree. The
same process is repeated again on this new problem in order to compute the elements
with the next highest shifted degrees.

The remaining paper is structured as follows. Basic definitions and properties of order
bases are given in the next section. Section 3 provides an extension to Storjohann’s
transformation to allow higher degree basis elements to be computed. Based on this
new transformation, Section 4 establishes a link between two Storjohann transformed
problems of different degrees, from which an recursive method and then an iterative
algorithm are derived. The time complexity is analyzed in the next section. After this,
Section 6 describes an algorithm which handles problems with a type of unbalanced shift.
This is followed by a conclusion along with a description for topics for future research.

2. Preliminaries

The computational cost in this paper is analysed by bounding the number of arith-
metic operations (additions, subtractions, multiplications, and divisions) in the coefficient
field K on an algebraic random access machine. We use MM(n, d) to denote the cost of

3

multiplying two polynomial matrices with dimension n and degree d, and M(n) to de-
note the cost of multiplying two polynomials with degree d. We define a cost function
M̄(d) = d log d log log d, then M̄(ab) ∈ O

(
M̄(a)M̄(b)

)
and M̄(t) ∈ O(nω−1). We take

MM(n, d) ∈ O (nω M(d)) ⊂ O(nω M′(d)), where the multiplication exponent ω is as-
sumed to satisfy 2 < ω ≤ 3. We refer to the book by von zur Gathen and Gerhard (2003)
for more details and reference about the cost of polynomial multiplication and matrix
multiplication.

In the remaining of this section, we provide some of the background needed in order
to understand the basic concepts and tools needed for order basis computation. This
includes basic definitions and a look at the size of the input and the output for comput-
ing such bases. The challenges of balancing input and handling unbalanced output are
discussed along with the techniques which we plan to use to overcome the difficulties.
We review the construction by Storjohann (2006) which transforms the inputs to those
having dimensions and degree balance better suited for fast computation and discuss an
idea from Storjohann and Villard (2005) for handling the case where the output degree
is unbalanced.

2.1. Order Basis

Let K be a field, F ∈ K [[x]]
m×n a matrix of power series and ~σ = [σ1, . . . , σm] a vector

of non-negative integers.

Definition 2.1. A vector of polynomials p ∈ K [x]
n×1 has order (F, ~σ) (or order ~σ with

respect to F) if F · p ≡ 0 mod x~σ, that is,

F · p = x~σr =


xσ1

. . .

xσm

 r

for some r ∈ K [[x]]
m×1. If ~σ = [σ, . . . , σ] is uniform, then we say that p has order (F, σ) .

The set of all order (F, ~σ) vectors is a K [x]-module denoted by 〈(F, ~σ)〉.

An order basis for F and ~σ is simply a basis for the module 〈(F, ~σ)〉. In this paper we
compute those order bases having a type of minimality degree condition (also referred to
as a reduced order basis in (Beckermann and Labahn, 1997)). While minimality is often
given in terms of the degrees alone it is sometimes important to consider this in terms
of shifted degrees (Beckermann et al., 2006).

The shifted column degree of a column polynomial vector p with shift ~s = [s1, . . . , sn] ∈
Zn is given by

deg~s p = max
1≤i≤n

[deg p(i) + si] = deg(x~s · p).

We call this the ~s-column degree, or simply the ~s-degree of p. A shifted column degree
defined this way is equivalent to the notion of defect commonly used in the literature.
Our definition of ~s-degree is also equivalent to the notion of H-degree from (Beckermann
and Labahn, 1997) for H = x~s. As in the uniform shift case, we say a matrix is ~s-
column reduced or ~s-reduced if its ~s-degrees cannot be decreased by unimodular column
operations. More precisely, if P is a ~s-column reduced and [d1, . . . , dn] are the ~s-degrees of
columns of P sorted in nondecreasing order, then [d1, . . . , dn] is lexicographically minimal

4

among all matrices right equivalent to P. Note that a matrix P is ~s-column reduced if
and only if x~s ·P is column reduced. Similarly, P is in ~s-Popov form if x~s ·P is in Popov
form (Beckermann et al., 1999, 2006).

An order basis (Beckermann and Labahn, 1994, 1997) P of F with order ~σ and shift ~s,
or simply an (F, ~σ,~s)-basis, is a basis for the module 〈(F, ~σ)〉 having minimal ~s-column
degrees. If ~σ = [σ, . . . , σ] are constant vectors then we simply write (F, σ, ~s)-basis. The
precise definition of an (F, ~σ,~s)-basis is as follows.

Definition 2.2. A polynomial matrix P is an order basis of F of order σ and shift ~s,
denoted by (F, ~σ,~s)-basis, if the following properties hold:
(1) P is a nonsigular matrix of dimension n.
(2) P is ~s-column reduced.
(3) P has order (F, ~σ) (or equivalently, each column of P is in 〈(F, ~σ)〉).
(4) Any q ∈ 〈(F, ~σ)〉 can be expressed as a linear combination of the columns of P,

given by P−1q.

Although we allow different orders for each row in this definition, we focus on order
basis computation problems having uniform order. However special cases of non-uniform
order problems are still needed in our analysis. We also assume m ≤ n for simplicity.
The case of m > n can be transformed to the case of m ≤ n by compression (Storjohann
and Villard, 2005). We further assume, without any loss of generality, that n/m and σ
are powers of two. This can be achieved by padding zero rows to the input matrix and
multiplying it by some power of x.

From (Beckermann and Labahn, 1997) we have the following lemma.

Lemma 2.3. The following are equivalent for a polynomial matrix P:
(1) P is a (F, ~σ,~s)-basis.
(2) P is comprised of a set of n minimal ~s-degree polynomial vectors that are linearly

independent and each having order (F, ~σ).
(3) P does not contain a zero column, has order (F, ~σ), is ~s-column reduced, and any

q ∈ 〈(F, ~σ)〉 can be expressed as a linear combination of the columns of P.

In some cases an entire order basis is unnecessary and instead one looks for a minimal
basis that generates only the elements of 〈(F, ~σ)〉 with ~s-degrees bounded by a given δ.
Such a minimal basis is a partial (F, ~σ,~s)-basis comprised of elements of a (F, ~σ,~s)-basis
with ~s-degrees bounded by δ. This is called a minbasis in Storjohann (2006).

Definition 2.4. Let 〈(F, ~σ,~s)〉δ ⊂ 〈(F, ~σ)〉 denote the set of order (F, ~σ) polynomial
vectors with ~s-degree bounded by δ. A (F, ~σ,~s)δ-basis is a polynomial matrix P not
containing a zero column and satisfying:
(1) P has order (F, ~σ) .

(2) Any element of 〈(F, ~σ,~s)〉δ can be expressed as a linear combination of the columns
of P.

(3) P is ~s-column reduced.

A (F, ~σ,~s)δ-basis is, in general, not square unless δ is large enough to contain all n
basis elements in which case it is a complete (F, ~σ,~s)-basis.

5

2.2. Balancing Input with Storjohann’s Transformation

For computing a (F, σ, ~s)-basis with input matrix F ∈ K [[x]]
m×n, shift ~s and order

σ one can view F as a polynomial matrix with degree σ − 1, as higher order terms are
not needed in the computation. As such the total input size of an order basis problem is
mnσ coefficients. One can apply the method of Giorgi et al. (2003) directly, which gives
a cost of

log σ∑
i=0

2i MM(n, 2−iσ) =

log σ∑
i=0

2−iσMM(n, 2i)

⊂O

(
log σ∑
i=0

2−inωσ2i log 2i log log 2i

)

=O

(
nωσ

log σ∑
i=0

i log i

)

⊂O

(
nωσ

log σ∑
i=0

log σ log log σ

)
=O

(
nωσ log2 σ log log σ

)
= O(nωM̄(σ) log σ),

close to the cost of multiplying two matrices with dimension n and degree σ. Note that
this cost is independent of the degree shift. This is very efficient if m ∈ Θ (n). However,
for small m, say m = 1 as in Hermite Padé approximation, the total input size is only
nσ coefficients. Matrix multiplication cannot be used effectively on a such vector input.

Storjohann (2006) provides a novel way to transform an order basis problem with small
row dimension to a problem with higher row dimension and possibly lower degree to take
advantage of Giorgi et al. (2003)’s algorithm. We provide a quick overview of a slightly
modified version of Storjohann’s method. Our small modification allows a nonuniform
degree shift for the input and provides a slightly simpler degree shift, degree, and order
for the transformed problem. The proof of its correctness is provided in Section 3. In
order to compute a (F, σ, ~s)-basis, assuming without loss of generality that min (~s) = 0,
we first write

F = F0 + F1x
δ + F2x

2δ + · · ·+ Flx
lδ,

with deg Fi < δ for a positive integer δ, and where we assume (again without loss of
generality) that σ = (l + 1) δ. Set

F̄ =



F0 + F1x
δ 0m 0m · · · 0m

F1 + F2x
δ Im 0m

F2 + F3x
δ 0m Im

...
. . .

Fl−1 + Flx
δ Im


ml×(n+m(l−1))

.

On the left side of F̄, each block Fi + Fi+1x
δ has dimension m × n. On the right side,

there are l × (l − 1) blocks of 0m’s or Im’s each having dimension m ×m. The overall
dimension of F̄ is ml× (n+m(l− 1)). Set ~s′ = [~s, 0, . . . , 0] (~s followed by m (l − 1) 0’s).

6

A (F̄, 2δ, ~s′)-basis can then be computed by the method of Giorgi et al. with a cost of
O∼ (nωδ) for δ ≥ dmσ/ne. This transformation of Storjohann can be viewed as a partial
linearization of the original problem, where F̄ is analogous to the coefficient matrix of
F. Note that F̄ has l block rows each containing m rows. We continue to use each block
row to represent m rows for the remainder of the paper.

Clearly a (F̄, 2δ, ~s′)-basis P̄ of the transformed problem is not a (F, σ, ~s)-basis of the
original problem, as P̄ has a higher dimension and lower degree. However, the first n
rows of the (F̄, 2δ, ~s′)δ−1-basis contained in P̄ is a (F, σ, ~s)δ−1-basis.

Note that there is no need to set the degree parameter δ to less than dmσ/ne, as this
produces fewer basis elements without a better cost. The lowest cost is achieved when
F̄ is close to square so matrix multiplication can be used most effectively. This requires
the number of block rows l of F̄ to be close to n/m, which requires δ = Θ (dmσ/ne).
Recall that mnσ is the total size of the original m × n input matrix F, hence d =

mnσ/n2 = mσ/n is the average degree of each entry of F if the m rows of F are spread
out over n rows. Choosing δ = Θ (dde), the cost of computing a (F̄, 2δ, ~s′)-basis is then
O∼ (nω dde) = O∼ (nω dmσ/ne). The ceiling function here is used to take care of the
case of mσ < n. For the remainder of the paper, we assume that mσ ≥ n in order to
avoid the need for the ceiling function and so simplify the presentation. Together with
the assumption that σ and n/m are both powers of two, mσ/n is then always a positive
integer in this paper.

Example 2.5. Let K = Z2, σ = 8, δ = 2 and

F = [x+x2+x3+x4+x5+x6, 1+x+x5+x6+x7, 1+x2+x4+x5+x6+x7, 1+x+x3+x7]

a vector of size 1× 4. Then

F̄ =


x+ x2 + x3 1 + x 1 + x2 1 + x+ x2 0 0

1 + x+ x2 + x3 x3 1 + x2 + x3 x 1 0

1 + x+ x2 x+ x2 + x3 1 + x+ x2 + x3 x3 0 1


3×6

and a
(
F̄, 4,~0

)
-basis is given by

P̄ =



1 x 1 x2 + x3 0 x+ x2 + x3

0 1 0 x2 x2 + x3 0

1 1 + x x+ x2 x2 x2 x2

1 0 0 0 0 0

0 1 1 0 x2 x+ x2 + x3

0 1 1 + x2 0 x2 x+ x2


.

The first two columns of P̄ have degree less than 2, hence its top left 4× 2 submatrix is

7

a
(
F, 8,~0

)
1
-basis. This is a low degree part of the (F, 8,~0)-basis

P =


1 x 1 x2

0 1 x2 + x3 0

1 1 + x x x3 + x4

1 0 0 0

 .

Note that if δ is set to σ/2 = 4, then the transformed problem is the same as the original
problem.

2.3. Unbalanced Output

Storjohann’s transformation can be used to efficiently compute a (F, σ, ~s)δ−1-basis if
the degree parameter δ is close to the average degree d = mσ/n. However, if δ is large,
say δ = Θ (σ), or if we want to compute a complete (F, σ, ~s)-basis, then the current
analysis for the computation still gives the cost estimate of O∼ (nωσ).

The underlying difficulty with computing a complete order basis is that the basis can
have degree up to σ. As the output of this problem has dimension n×n and degree up to
Θ (σ), this may seem to suggest O∼ (nωσ) is about the best that can be done. However,
the total size of the output, that is, the total number of coefficients of all n2 polynomial
entries can still be bounded by O (mnσ), the same as the size of the input. This gives
some hope for a more efficient method.

Lemma 2.6. Let ~t be the ~s-column degrees of a (F, σ, ~s)-basis. Then
∑
i

(
~ti − ~si

)
≤ mσ.

In addition, the total size of any (F, σ, ~s)-basis in ~s-Popov form is bounded by nmσ.

Proof. This can be shown by considering the sizes of the pivots in the iterative order
basis computation given in (Beckermann and Labahn, 1994; Giorgi et al., 2003). 2

Let us now look at the average column degree of the output. In the first part of this
paper, we assumed, without loss of generality, that min (~s) = 0 so deg q ≤ deg~s q for
any q ∈ K [x]

n. The situation is simpler if the shift ~s is uniform since then
∑
i
~ti ≤ mσ

by Lemma 2.6 and the average column degree is therefore bounded by d = mσ/n. In
the first part of this paper, we consider a slightly more general case, when the shift ~s is
balanced, which is defined as follows.

Definition 2.7. A shift ~s is balanced if max~s−min~s ∈ O(d) = O(mσ/n).

By assuming min~s = 0, ~s is balanced if max~s ∈ O(d). In this case, Lemma 2.6 implies∑
i

(
~ti
)
≤ mσ +

∑
i (~si) ∈ O (mσ + nd) = O (mσ). Hence the average column degree of

the output basis remains O (d).
The fact that a (F, σ, ~s)-basis can have degree up to σ while its average column degree

is O (mσ/n) implies that an order basis can have quite unbalanced column degrees,
especially if m is small. A similar problem with unbalanced output is encountered in null
space basis computation. Storjohann and Villard (2005) deal with this in the following
way.

8

Let d be the average column degree of the output. Set the degree parameter δ to twice
that of d. This allows one to compute at least half the columns of a basis (since the
number of columns with degree at least δ must be at most a half of the total number of
columns). One can then simplify the problem, so that the computed basis elements are
completely removed from the problem. This reduces the dimension of the problem by at
least a factor of 2. One then doubles the degree bound δ in order to have at least 3/4
of the basis elements computed. Repeating this, at iteration i, at most 1/2i of the basis
elements are remaining. Therefore, no more than log n iterations are needed to compute
all basis elements.

3. Extending Storjohann’s Transformation

In this section, we introduce a transformation that can be viewed as an extension of
Storjohann’s transformation which allows for computation of a full, rather than partial,
order basis. More generally (as discussed in the next section) this transformation pro-
vides a link between two Storjohann transformed problems constructed using different
degree parameters. For easier understanding, we first focus on a particular case of this
transformation in Subsection 3.1 and then generalize this in Subsection 3.2.

3.1. A Particular Case

Consider the problem of computing a (F, σ, ~s)-basis. We assume σ = 4δ for a positive
integer δ and write the input matrix polynomial as F = F0 + F1x

δ + F2x
2δ + F3x

3δ with
deg Fi < δ. In the following, we show that computing a (F, σ, ~s)-basis can be done by
computing a (F′, ~ω, ~s′)-basis where

F′ =

 F 0

F′21 F′22

 =


F0 + F1x

δ + F2x
2δ + F3x

3δ 0 0

F1 + F2x
δ Im 0

F2 + F3x
δ 0 Im

 (3.1)

with order ~ω = [4δ, . . . , 4δ, 2δ, . . . , 2δ] (with m 4δ’s and 2m 2δ’s) and degree shift ~s′ =
[~s, e, . . . , e] (with 2m e’s), where e is an integer less than or equal to 1. We set e to 0 in
this paper for simplicity 1 .

We first look at the correspondence bettween the elements of 〈(F, σ, ~s)〉τ and the ele-
ments of 〈(F′, ~ω, ~s′)〉τ in Lemma 3.1 to Lemma 3.5. The correspondence between (F, σ, ~s)-
bases and (F′, ~ω, ~s′)-bases is then considered in Corollary 3.7 to Theorem 3.10.

Let

B =


In

x−δF0

x−2δ
(
F0 + F1x

δ
)
 .

Lemma 3.1. If q ∈ 〈(F, σ)〉, then Bq ∈ 〈(F′ ~, ω)〉.

1 Storjohann used e = 1 in (Storjohann, 2006). All results in this section still hold for any other e ≤ 1.

9

Proof. The lemma follows from

F′Bq =


F0 + F1x

δ + F2x
2δ + F3x

3δ

F0x
−δ + F1 + F2x

δ

F0x
−2δ + F1x

−δ + F2 + F3x
δ

q ≡ 0 mod x~ω.

Note that the bottom rows of B may not be polynomials. However, Bq is a polynomial
vector since q ∈ 〈(F, σ)〉 implies q ∈ 〈(F0, δ)〉 and q ∈

〈(
F0 + F1x

δ, 2δ
)〉
. 2

The following lemma shows that the condition e ≤ 1 forces deg~s′ Bq to be determined
by q.

Lemma 3.2. If q ∈ 〈(F, σ, ~s)〉τ for any degree bound τ ∈ Z, then deg~s′ Bq = deg~s q.

Proof. By assumption si ≥ 0, so deg q ≤ deg~s q. Now consider the degree of the bottom
2m entries, q2,q3, of 

q

q2

q3

 = Bq =


q

x−δF0 · q

x−2δ
(
F0 + F1x

δ
)
· q

 .
Our goal is to show deg~e

[
qT2 ,q

T
3

]T ≤ deg~s q. Note that

deg q2 = deg
(
F0q/x

δ
)
≤ deg q + δ − 1− δ ≤ deg~s q− 1,

and similarly deg q3 ≤ deg~s q− 1. Therefore

deg~e

q2

q3

 = deg

q2

q3

+ e ≤ deg~s q− 1 + e ≤ deg~s q.

2

Corollary 3.3. If q ∈ 〈(F, σ, ~s)〉τ for any degree bound τ ∈ Z , then Bq ∈ 〈(F′, ~ω, ~s′)〉τ .

Corollary 3.4. Let S̄τ be a (F′, ~ω, ~s′)τ -basis and Sτ be the top n rows of S̄τ for any
bound τ ∈ Z. Then any q ∈ 〈(F, σ, ~s)〉τ is a linear combination of the columns of Sτ .

Proof. By Corollary 3.3, Bq ∈ 〈(F′, ~ω, ~s′)〉τ , and so is a linear combination of columns of
S̄τ . That is, there exists a polynomial vector u such that Bq = S̄τu. This remains true if
we restrict the equation to the top n rows, that is, q = [In,0] Bq = [In,0] S̄τu = Sτu. 2

Lemma 3.5. Let q̄ ∈ 〈(F′, ~ω, ~s′)〉τ for any degree bound τ ∈ Z, and q1 the first n entries
of q̄. Then q1 ∈ 〈(F, σ, ~s)〉τ .

10

Proof. The top rows of

F′q =

 F 0

F′21 F′22

 q1

q2

 =

 Fq1

F′21q1 + F′22q2

 ≡ 0 mod x~ω

give Fq1 ≡ 0 mod xσ. 2

The next lemma shows a (F′, ~ω, ~s′)-basis can be constructed from a (F, σ, ~s)-basis.
This well-formed (F′, ~ω, ~s′)-basis restricts the elements of 〈(F′, ~ω, ~s′)〉 to a simple form
shown in Corollary 3.7. This in turn helps to establish a close correspondence between a
(F′, ~ω, ~s′)-basis and a (F, σ, ~s)-basis in Lemma 3.8, Lemma 3.9, and Theorem 3.10.

Lemma 3.6. If P is a (F, σ, ~s)-basis, then

T̄ =

BP
0n×2m

x2δI2m

 =


P 0n×m 0n×m

x−δF0 ·P x2δIm 0m

x−2δ
(
F0 + F1x

δ
)
·P 0m x2δIm


is a (F′, ~ω, ~s′)-basis.

Proof. By Lemma 3.1, T̄ has order (F′, ~ω) and is ~s′-column reduced since P dominates
the ~s′-degrees of T̄ on the left side by Lemma 3.2. It remains to show that any q̄ ∈
〈(F′, ~ω, ~s′)〉 is a linear combination of the columns of T̄.

Let q be the top n entries of q̄. Then by Lemma 3.5, q ∈ 〈(F, σ, ~s)〉, hence is a linear
combination of the columns of P, that is q = Pu with u = P−1q ∈ K [x]

n×1. Subtracting
the contribution of P from q̄, we get

q′ = q̄−BPu = q̄−Bq =

 0

v

 ,
which is still in 〈(F′, ~ω, ~s′)〉, that is,

F′q′ =

 0

I2mv

 ≡ 0 mod x~ω.

This forces v to be a linear combination of the columns of x2δI2m, the bottom right
submatrix of T̄. Now q̄ = T̄

[
uT ,vT

]T as required. 2

Corollary 3.7. Let τ ∈ Z be any degree bound and Pτ ∈ K [x]
n×t be a (F, σ, ~s)τ -basis.

If q̄ ∈ 〈(F′, ~ω, ~s′)〉τ and q is the top n entries of q̄, then q̄ must have the form

q̄ = BPτu + x2δ

0

v

 = Bq + x2δ

0

v



11

for some polynomial vector u ∈ K [x]
t×1 and v ∈ K [x]

2m×1. In particular, if deg~s′ q̄ < 2δ,
then q̄ = BPτu = Bq.

Proof. This follows directly from Lemma 3.6 with ~s′-degrees restricted to τ . 2

Lemma 3.8. If S̄(1) is a (F̌, ~ω, ~s′)2δ−1-basis, then the matrix S(1) consisting of its first
n rows is a (F, σ, ~s)2δ−1-basis.

Proof. By Lemma 3.5, S(1) has order (F, σ). By Corollary 3.4, any q ∈ 〈(F, σ, ~s)〉2δ−1

is a linear combination of S(1). It remains to show that S(1) is ~s-column reduced.
By Corollary 3.7, S̄(1) = BS(1), and by Lemma 3.5, the columns of S(1) are in

〈(F, σ, ~s)〉2δ−1. Thus, by Lemma 3.2, S(1) determines the ~s′-column degrees of S(1). There-
fore, S̄(1) being ~s′-column reduced implies that S(1) is ~s-column reduced. 2

Lemma 3.9. Let S̄(12) = [S̄(1), S̄(2)] be a (F′, ~ω, ~s′)2δ-basis, with deg~s′ S̄
(1) ≤ 2δ− 1 and

deg~s′ S̄
(2) = 2δ, and S(12),S(1),S(2) the first n rows of S̄(12), S̄(1), S̄(2), respectively. Let I

be the column rank profile (the lexicographically smallest sequence of column indices that
indicates a full column rank submatrix) of S(12). Then the submatrix S

(12)
I comprised of

the columns of S(12) indexed by I is a (F, σ, ~s)2δ-basis.

Proof. Consider doing ~s-column reduction on S(12). From Lemma 3.8, we know that S(1)

is a (F, σ, ~s)2δ−1-basis. Therefore, only S(2) may be ~s-reduced. If a column c of S(2) can
be further ~s-reduced, then it becomes an element of 〈(F, σ, ~s)〉2δ−1, which is generated
by S(1). Thus c must be reduced to zero by S(1). The only nonzero columns of S(12)

remaining after ~s-column reduction are therefore the columns that cannot be ~s-reduced.
Hence S(12) ~s-reduces to S

(12)
I . In addition, S

(12)
I has order (F, σ) as S(12) has order (F, σ)

by Lemma 3.5. From Corollary 3.4 any q ∈ 〈(F, σ, ~s)〉2δ is a linear combination of S(12)

and hence is also a linear combination of S
(12)
I . 2

To extract S
(12)
I from S(12), note that doing ~s-column reduction on S(12) is equivalent

to the more familiar problem of doing column reduction on x~sS(12). As S(12) ~s-column
reduces to S

(12)
I , this corresponds to determining the column rank profile of the leading

column coefficient matrix of x~sS(12). Recall that the leading column coefficient matrix
of a matrix A = [a1, . . . ,ak] used for column reduction is

lcoeff (A) = [lcoeff (a1) , . . . , lcoeff (ak)]

= [coeff (a1,deg (a1)) , . . . , coeff (ak,deg (ak))] .

The column rank profile of lcoeff(x~sS(12)) can be determined by (the transposed version
of) LSP factorization (Ibarra et al., 1982), which factorizes lcoeff(x~sS(12)) = PSU as
the product of a permutation matrix P , a matrix S with its nonzero columns forming a
lower triangular submatrix, and an upper triangular matrix U with 1’s on the diagonal.
The indices, I, of the nonzero columns of S then give S

(12)
I in S(12).

12

Theorem 3.10. Let S̄ = [S̄(12), S̄(3)] be a (F′, ~ω, ~s′)-basis, with deg~s′ S̄
(12) ≤ 2δ and

deg~s′ S̄
(3) ≥ 2δ+ 1, and S,S(12),S(3) the first n rows of S̄, S̄(12), S̄(3), respectively. If I is

the column rank profile of S(12), then the submatrix [S
(12)
I ,S(3)] of S is a (F, σ, ~s)-basis.

Proof. By Lemma 3.5, S has order (F, σ), and so [S
(12)
I ,S(3)] also has order (F, σ). By

Corollary 3.4, any q ∈ 〈(F, σ, ~s)〉 is a linear combination of the columns of S, and so q

is also a linear combination of the columns of [S
(12)
I ,S(3)]. It only remains to show that

[S
(12)
I ,S(3)] is ~s-column reduced.
Let P be a (F, σ, ~s)-basis and T̄ be the (F′, ~ω, ~s′)-basis constructed from P as in Lemma

3.6. Let T̄(3) be the columns of T̄ with ~s′-degrees greater than 2δ, and P(3) be the columns
of P with ~s-degrees greater than 2δ. Assume without loss of generality that S, P, and T̄
have their columns sorted according to their ~s-degrees and ~s′-degrees, respectively. Then
deg~s S(3) ≤ deg~s′ S̄

(3) = deg~s′ T̄
(3) = deg~s P(3). Combining this with the ~s-minimality

of S
(12)
I from Lemma 3.9, it follows that deg~s[S

(12)
I ,S(3)] ≤ deg~s P. This combined with

the fact that [S
(12)
I ,S(3)] still generates 〈(F, σ, ~s)〉 implies that deg~s[S

(12)
I ,S(3)] = deg~s P.

Therefore, [S
(12)
I ,S(3)] is a (F, σ, ~s)-basis. 2

Corollary 3.11. Let S̄ be a (F′, ~ω, ~s′)-basis with its columns sorted in an increasing
order of their ~s′ degrees, and S the first n rows of S̄. If J is the column rank profile of
lcoeff(x~sS), then the submatrix SJ of S indexed by J is a (F, σ, ~s)-basis.

Proof. This follows directly from Theorem 3.10. 2

This rank profile J can be determined by LSP factorization on lcoeff(x~s · S(12)).

Example 3.12. For the problem in Example 2.5, F̌ is given by
x+ x2 + x3 + x4 + x5 + x6 1 + x+ x5 + x6 + x7 1 + x2 + x6 + x7 1 + x+ x3 + x7 0 0

1 + x+ x2 + x3 x3 1 + x2 + x3 x 1 0

1 + x+ x2 x+ x2 + x3 1 + x+ x2 + x3 x3 0 1

 ,
and a

(
F′, [8, 4, 4] ,~0

)
-basis is given as

1 x 1 x2 x2 + x4 1 + x2 + x3 + x4

0 1 x2 + x3 0 x3 0

1 1 + x x x3 + x4 0 x+ x2 + x3

1 0 0 0 0 0

0 1 1 + x2 x2 x2 + x3 1 + x2 + x3 + x4

0 1 1 x2 + x4 x2 + x3 1 + x3


.

Column reduction on the top 4 rows gives the top left 4 × 4 submatrix, which is a
(F, 8,~0)-basis.

13

The following two lemmas verify Storjohann’s result in the case of degree parameter
δ = σ/4. More specifically, we show that the matrix of the top n rows of a (F̄, 2δ, ~s′)δ−1-
basis is a (F, σ, ~s)δ−1-basis, with the transformed input matrix

F̄ =


F0 + F1x

δ 0 0

F1 + F2x
δ Im 0

F2 + F3x
δ 0 Im

 ≡ F′ mod x2δ. (3.2)

Lemma 3.13. If q̄ ∈ 〈(F̄, 2δ, ~s′)〉δ−1 and q denotes the first n entries of q̄, then q̄ must
have the form

q̄ = Bq =


q

x−δF0 · q

x−2δ
(
F0 + F1x

δ
)
· q


and q ∈ 〈(F, σ, ~s)〉δ−1.

Proof. Let q,q2,q3 consist of the top n entries, middlem entries, and bottomm entries,
respectively, of q̄ so that

F̄q̄ ≡


F0q + xδF1q

q2 + F1q + xδF2q

q3 + F2q + xδF3q

 ≡ 0 mod x2δ. (3.3)

From the first and second block rows, we get F0q+xδF1q ≡ 0 mod x2δ and q2+F1q ≡ 0
mod xδ, which implies

F0q ≡ xδq2 mod x2δ. (3.4)
Similarly, from the second and third rows, we get q2 + F1q + xδF2q ≡ 0 mod x2δ and
q3 + F2q ≡ 0 mod xδ, which implies q2 + F1q ≡ xδq3 mod x2δ.

Since deg q ≤ deg~s q = δ−1, we have deg F0q ≤ 2δ−2, hence from (3.4) deg q2 ≤ δ−2
and q2x

δ = F0q. Similarly, deg q3 ≤ δ − 2 and q3x
2δ = q2x

δ + F1qx
δ = F0q + F1qx

δ.
Substituting this to Fq = (F0q + F1qx

δ) + (F2qx
2δ + F3qx

3δ), we get Fq = q3x
2δ +

(F2qx
2δ + F3qx

3δ) ≡ 0 mod x4δ using the bottom block row of (3.3). 2

Lemma 3.14. If S̄δ−1 is a (F̄, 2δ, ~s′)δ−1-basis, then the matrix of its first n rows, Sδ−1,
is a (F, σ, ~s)δ−1-basis.

Proof. By Lemma 3.13, Sδ−1 has order (F, σ). Following Lemmas 3.1 and 3.2 and Corol-
laries 3.3 and 3.4 (replacing ~ω by 2δ), we conclude that any q ∈ 〈(F, σ, ~s)〉δ−1 is a linear
combination of the columns of Sδ−1. In addition, since S̄δ−1 = BSδ−1 by Lemma 3.13,
and the columns of Sδ−1 are in 〈(F, σ, ~s)〉δ−1, it follows from Lemma 3.2 that Sδ−1 deter-
mines the ~s′-column degrees of S̄δ−1. Hence S̄δ−1

~s′-column reduced implies that Sδ−1

is ~s-column reduced. 2

14

3.2. More General Results

Let us now consider an immediate extension of the results in the previous subsection.
Suppose that instead of a (F, σ, ~s)-basis we now want to compute a (F̄(i), 2δ(i), ~s(i))-basis
with a Storjohann transformed input matrix

F̄(i) =



F0 + F1x
δ(i) 0m · · · · · · 0m

F1 + F2x
δ(i) Im

F2 + F3x
δ(i) Im

...
. . .

Fl(i)−1 + Fl(i)x
δ(i) Im


ml(i)×(n+m(l(i)−1))

made with degree parameter δ(i) = 2id for some integer i between 2 and log (σ/d)−1, and
a shift ~s(i) = [~s, 0, . . . , 0] (withm(l(i)−1) 0’s), where l(i) = σ/δ(i)−1 is the number of block
rows 2 . To apply a transformation analogous to (3.1), we write each Fj = Fj0 +Fj1δ

(i−1)

and set

F′(i) =



F00 + F01x
δ(i−1)

+ F10x
2δ(i−1)

+ F11x
3δ(i−1)

0

F01 + F10x
δ(i−1)

F10 + F11x
δ(i−1)

+ F20x
2δ(i−1)

+ F21x
3δ(i−1)

F11 + F20x
δ(i−1)

... I

F(l(i)−1)0 + F(l(i)−1)1x
δ(i−1)

+ Fl(i)0x
2δ(i−1)

+ Fl(i)1x
3δ(i−1)

F(l(i)−1)1 + Fl(i)0x
δ(i−1)

Fl(i)0 + Fl(i)1x
δ(i−1)



, (3.5)

and ~ω(i) =

[[
[2δ(i)]m, [δ(i)]m

]l(i)
, [δ(i)]m

]
, where [◦]k represents ◦ repeated k times. The

order entries 2δ(i), δ(i) in ~ω(i) correspond to the degree 2δ(i) − 1, degree δ(i) − 1 rows in
F′(i) respectively. Let

E(i) =



In 0n×m 0n×m

0m Im

0m Im
.

0m Im


2 Recall that d = mσ/n is the average degree of the input matrix F if we treat F as a square n × n
matrix. Also, i starts at 2 because i = 1 is our base case in the computation of an order basis, which
may become more clear in the next section. The base case can be computed efficiently using the method
of Giorgi et al. (2003) directly and does not require the transformation discussed in this section.

15

with l(i)− 1 blocks of [0m, Im] and hence an overall dimension of (n+m(l(i)− 1))× (n+

m(l(i−1)−1)). Thus E(i)M picks out from M the first n rows and the even block rows from
the remaining rows except the last block row for a matrix M with n+m(l(i−1)−1) rows. In
particular, if i = log (n/m)−1, then (F′(i), ~ω(i), ~s(i−1)) = (F′, ~ω, ~s′), which for d = mσ/n

gives the problem considered earlier in Subsection 3.1, and E(i) = [In,0n×m,0n×m] is
used to select the top n rows of a (F′, ~ω, ~s′)-basis for a (F, σ, ~s)-basis to be extracted.

We can now state the analog of Corollary 3.11:

Theorem 3.15. Let S′(i) be a (F′(i), ~ω(i), ~s(i−1))-basis with its columns sorted in an
increasing order of their ~s(i−1) degrees. Let Ŝ(i) = E(i)S′(i). Let J be the column rank
profile of lcoeff(x~s

(i)

Ŝ(i)). Then Ŝ
(i)
J is a (F̄(i), 2δ(i), ~s(i))-basis.

Proof. One can follow the same arguments used before from Lemma 3.1 to Corollary
3.11. Alternatively, this can be derived from Corollary 3.11 by noticing the redundant
block rows that can be disregarded after applying transformation (3.1) directly to the
input matrix F̄(i). 2

Lemma 3.14 can also be extended in the same way to capture Storjohann’s transfor-
mation with more general degree parameters:

Lemma 3.16. If P̄
(i−1)
1 is a (F̄(i−1), 2δ(i−1), ~s(i−1))δ(i−1)−1-basis, then E(i)P̄

(i−1)
1 is a

(F̄(i), 2δ(i), ~s(i))δ(i−1)−1-basis and the matrix of the top n rows of P̄
(i−1)
1 is a (F, σ, ~s)δ(i−1)−1-

basis.

Proof. Again, this can be justified as done in Lemma 3.14. Alternatively, one can apply
Storjohann’s transformation with degree parameter δ(i−1) to F̄(i) as in (3.2). The lemma
then follows from Lemma 3.14 after noticing the redundant block rows that can be
disregarded. 2

Notice that if i = log (n/m) − 1, then Theorem 3.15 and Lemma 3.16 specialize to
Corollary 3.11 and Lemma 3.14.

4. Computation of Order Bases

In this section, we establish a link between two different Storjohann transformed prob-
lems by dividing the transformed problem from the previous section into two subproblems
and then simplifying the second subproblem. This leads to a recursive method for com-
puting order bases. We also present an equivalent, iterative method for computing order
bases. The iterative approach is usually more efficient in practice, as it uses just O(1)

iterations in the generic case.

16

4.1. Dividing into Subproblems

In Section 3 we have shown that the problem of computing a (F, σ, ~s)-basis can be
converted to the problem of computing a (F′, ~ω, ~s′)-basis and, more generally, that the
computation of a (F̄(i), 2δ(i), ~s(i))-basis, a Storjohann transformed problem with degree
parameter δ(i), can be converted to the problem of computing a (F′(i), ~ω(i), ~s(i−1))-basis.
We now consider dividing the new converted problem into two subproblems.

The first subproblem is to compute a (F′(i), 2δ(i−1), ~s(i−1))-basis or equivalently a
(F̄(i−1), 2δ(i−1), ~s(i−1))-basis P̄(i−1), a Storjohann transformed problem with degree pa-
rameter δ(i−1). The second subproblem is computing a (F′(i)P̄(i−1), ~ω(i),~t(i−1))-basis
Q̄(i) using the residual F′(i)P̄(i−1) from the first subproblem along with a degree shift
~t(i−1) = deg~s(i−1) P̄(i−1). From Theorem 5.1 in (Beckermann and Labahn, 1997) we then
know that the product P̄(i−1)Q̄(i) is a (F′(i), ~ω(i), ~s(i−1))-basis and deg~s(i−1) P̄(i−1)Q̄(i) =

deg~t(i−1) Q̄(i).

Example 4.1. Let us continue with Example 2.5 and Example 3.12 in order to compute a(
F, 8,~0

)
-basis (or equivalently a (F̄(2), 8,~0)-basis). This can be determined by computing

a (F′(2), [8, 4, 4],~0)-basis as shown in Example 3.12 where we have F′(2) = F′. Computing
a (F′(2), [8, 4, 4],~0)-basis can be divided into two subproblems. The first subproblem is
computing a (F̄(1), 4,~0)-basis P̄(1), the Storjohann partial linearized problem in Example
2.5. The residual

F′(2)P̄(1) =


0 x8 x6 + x9 x4 + x6 + x9 x6 + x8 + x9 + x10 x5 + x8

0 0 x5 x4 + x6 x4 + x6 x5 + x6

0 x4 x5 x5 x4 + x5 + x6 x4


is then used as the input matrix for the second subproblem. The shift for the second
subproblem ~t(1) = [0, 1, 2, 3, 3, 3] is the list of column degrees of P̄(1) and so the second
subproblem is to compute a (F′(2)P̄(1), [8, 4, 4] , [0, 1, 2, 3, 3, 3])-basis, which is

Q̄(2) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 x2 x 1

0 0 0 0 x 0

0 0 1 0 0 0

0 0 0 0 1 x


. (4.1)

Then P̄(1)Q̄(2) gives the (F′(2), [8, 4, 4],~0)-basis shown in Example 3.12.

We now show that the dimension of the second subproblem can be significantly re-
duced. First, the row dimension can be reduced by over a half. Let P̂(i−1) = E(i)P̄(i−1).

Lemma 4.2. A (F̄(i)P̂(i−1), 2δ(i),~t(i−1))-basis is a (F′(i)P̄(i−1), ~ω(i),~t(i−1))-basis.

17

Proof. This follows because F̄(i)P̂(i−1) is a submatrix of F′(i)P̄(i−1) after removing rows
which already have the correct order 2δ(i−1). 2

The column dimension of the second subproblem can be reduced by disregarding
the (F̄(i), 2δ(i), ~s(i))δ(i−1)−1-basis which has already been computed. More specifically,
after sorting the columns of P̄(i−1) in an increasing order of their ~s(i−1)-degrees, let
[P̄

(i−1)
1 , P̄

(i−1)
2] = P̄(i−1) be such that deg~s(i−1) P̄

(i−1)
1 ≤ δ(i−1)−1 and deg~s(i−1) P̄

(i−1)
2 ≥

δ(i−1). Then P̂
(i−1)
1 = E(i)P̄

(i−1)
1 is a (F̄(i), 2δ(i), ~s(i))δ(i−1)−1-basis by Lemma 3.16. In

the second subproblem, the remaining basis elements of a (F̄(i), 2δ(i), ~s(i))-basis can then
be computed without P̄

(i−1)
1 .

Let P̂
(i−1)
2 = E(i)P̄

(i−1)
2 , ~b(i−1) = deg~s(i−1) P̄

(i−1)
2 , Q̄

(i)
2 be a (F̄(i)P̂

(i−1)
2 , 2δ(i),~b(i−1))-

basis (or equivalently a (F′(i)P̄
(i−1)
2 , ~ω(i),~b(i−1))-basis), and k(i−1) be the column dimen-

sion of P̄
(i−1)
1 . We then have the following result.

Lemma 4.3. The matrix

Q̄(i) =

 Ik(i−1)

Q̄
(i)
2


is a (F̄(i)P̂(i−1), 2δ(i),~t(i−1))-basis (equivalently a (F′(i)P̄(i−1), ~ω(i),~t(i−1))-basis).

Proof. First note that Q̄(i) has order (F̄(i)P̂(i−1), 2δ(i)) as

F̄(i)P̂(i−1)Q̄(i) = [F̄(i)P̂
(i−1)
1 , F̄(i)P̂

(i−1)
2 Q̄

(i)
2] ≡ 0 mod x2δ(i) .

In addition, Q̄(i) has minimal ~t(i−1) degrees as Q̄
(i)
2 is ~b-minimal. Hence, by Lemma 2.3,

Q̄(i) is a (F̄(i) · P̂(i−1), 2δ(i),~t(i−1))-basis. 2

Lemma 4.3 immediately leads to the following.

Lemma 4.4. Let Ŝ = [P̂
(i−1)
1 , P̂

(i−1)
2 Q̄

(i)
2], and let I be the column rank profile of

lcoeff(x~s
(i)

Ŝ). Then ŜI is a (F̄(i), 2δ(i), ~s(i))-basis.

Proof. From Lemma 4.3, Q̄(i) is a (F′(i)P̄(i−1), ~ω(i),~t(i−1))-basis and hence P̄(i−1)Q̄(i) is
a (F′(i), ~ω(i), ~s(i−1))-basis. Since [P̂

(i−1)
1 , P̂

(i−1)
2 Q̄

(i)
2] = E(i)P̄(i−1)Q̄(i), the result follows

from Theorem 3.15. 2

Example 4.5. Continuing with Example 2.5, Example 3.12, and Example 4.1, notice
that in the computation of the second subproblem, instead of using F′(2), P̄(1), Q̄(2), and
P̄(1)Q̄(2), the previous lemmas show that we can just use their submatrices, F̄(2) the top
left 1× 4 submatrix of F′(2), P̂

(1)
2 the top right 4× 4 submatrix of P̄(1), Q̄

(2)
2 the bottom

right 4× 4 submatrix of Q̄(2), and P̂
(1)
2 Q̄

(2)
2 the top right 4× 4 submatrix of P̄(1)Q̄(2)of

lower dimensions.

18

Lemma 4.4 gives us a way of computing a (F, σ, ~s)-basis. We can set i to log (n/m)−1
so that (F̄(i), 2δ(i), ~s(i))=(F, σ, ~s), and compute a (F̄(i), 2δ(i), ~s(i))-basis. By Lemma 4.4,
this can be divided into two subproblems. The first produces [P̂

(i−1)
1 , P̂

(i−1)
2] = P̂(i−1) =

E(i)P̄(i−1) from computing a (F̄(i−1), 2δ(i−1), ~s(i−1))-basis P̄(i−1). The second subprob-
lem then computes a (F̄(i)P̂

(i−1)
2 , 2δ(i),~b(i−1))-basis Q̄

(i)
2 . Note the first subproblem of

computing a (F̄(i−1), 2δ(i−1), ~s(i−1))-basis can again be divided into two subproblems
just as before. This can be repeated recursively until we reach the base case with degree
parameter δ(1) = 2d. The total number of recursion levels is therefore log (n/m)− 1.

Notice that the transformed matrix F′(i) is not used explicitly in the computation,
even though it is crucial for deriving our results.

4.2. The Iterative View

In this subsection we present our algorithm, which uses an iterative version of the
computation discussed above. The iterative version is usually more efficient in practice,
considering that the generic case has balanced output that can be computed with just
one iteration, whereas the recursive method has to go through log(n/m) − 1 levels of
recursion.

Algorithm 1 uses a subroutine OrderBasis, the algorithm from Giorgi et al. (2003),
for computing order bases with balanced input. Specifically, [Q,~a] = OrderBasis(G, σ,~b)

computes a (G, σ,~b)-basis and also returns its ~b-column degrees ~a. The other subroutine
StorjohannTransform is the transformation described in Subsection 2.2.

Algorithm 1 proceeds as follows. In the first iteration, which is the base case of the
recursive approach, we set the degree parameter δ(1) to be twice the average degree d and
apply Storjohann’s transformation to produce a new input matrix F̄(1), which has l(1)

block rows. Then a (F̄(1), 2δ(1), ~s(1))-basis P̄(1) is computed. Note this is in fact the first
subproblem of computing a (F̄(2), 2δ(2), ~s(2))-basis, which is another Storjohann trans-
formed problem and also the problem of the second iteration. At the second iteration,
we work on a new Storjohann transformed problem with the degree doubled and the
number of block rows l(2) = (l(1) − 1)/2 reduced by over a half. The column dimension
is reduced by using the result from the previous iteration. More specifically, we know
that the basis P̄(1) already provides a (F̄(2), 2δ(2), ~s(2))δ(1)−1-basis P̂

(1)
1 , which can be

disregarded in the remaining computation. The remaining work in the second iteration
is to compute a (F̄(2)P̂

(1)
2 , 2δ(2),~b(1))-basis Q̄(2), where ~b(1) = deg~s(1) P̄

(1)
2 , and then to

combine it with the result from the previous iteration to form a matrix [P̂
(1)
1 , P̂

(1)
2 Q̄(2)]

in order to extract a (F̄(2), 2δ(2), ~s(2))-basis P̄(2).
With a (F̄(2), 2δ(2), ~s(2))-basis computed, we can repeat the same process to use it for

computing a (F̄(3), 2δ(3), ~s(3))-basis. Continue, using the computed (F̄(i−1), 2δ(i−1), ~s(i−1))-
basis to compute a (F̄(i), 2δ(i), ~s(i))-basis, until all n elements of a (F, σ, ~s)-basis have been
determined.

5. Computational Complexity

In this section, we analyze the computational complexity of Algorithm 1.

Lemma 5.1. Algorithm 1 computes a (F, σ, ~s)-basis in no more than log (n/m) − 1
iterations.

19

Algorithm 1 FastBasis (F, σ, ~s)

Input: F ∈ K [x]
m×n, σ ∈ Z≥0,~s ∈ Zn satisfying n ≥ m, n/m and σ are powers of 2

and min (~s) = 0
Output: a (F, σ, ~s)-basis P ∈ K [x]

n×n and deg~s P

1: if 2m ≥ n then return OrderBasis (F, σ, ~s) ;
2: i := 1; d := mσ/n; δ(1) := 2d;
3: F̄(1) := StorjohannTransform(F, δ(1));
4: l(1) := rowDimension(F̄(1))/m;

5: ~b(0) := [~s, 0, . . . , 0] ; // m(l1 − 1) 0’s
6: [P̄(1),~a(1)] := OrderBasis(F̄(1), 2δ(1),~b(0));
7: Sort the columns of P̄(i) and ~a(i) by the shifted column degrees ~a(i) = deg~b P̄(i) in

increasing order;
8: ~t(i) := ~a(i);
9: k(i) := number of entries of ~a(i) less than δ(i);

10: [P̄
(i)
1 , P̄

(i)
2] := P̄(i) with P̄

(i)
1 ∈ K [x]

n×k(i) ;
11: while columnDimension(P̄

(i)
1) < n do

12: i := i+ 1; δ(i) := 2δ(i−1); l(i) := (l(i−1) − 1)/2;
13: F̄(i) := StorjohannTransform(F, δ(i));

14: P̂
(i−1)
2 := E(i)P̄

(i−1)
2 ;

15: G(i) := F̄(i)P̂
(i−1)
2 ;

16: ~b(i−1) := ~t(i−1)[k(i−1) + 1 . . . n+m(l(i−1) − 1)];
// w:=v[k..l] means that w receives a slice of v whose indices range from k to l

17: [Q(i),~a(i)] := OrderBasis(G(i), 2δ(i),~b(i−1));
18: Sort the columns of Q(i) and ~a(i) by ~a(i) = deg~b(i−1) Q(i) in increasing order;
19: P̌(i) := P̂

(i−1)
2 Q(i);

20: J := the column rank profile of lcoeff(x[~s,0,...,0][E(i)P̄
(i−1)
1 , P̌(i)]);

21: P̄(i) := [E(i)P̄
(i−1)
1 , P̌(i)]J ,

22: ~t(i) := deg[~s,0,...,0] P̄
(i);

23: k(i) := number of entries of ~t(i) less than δ(i);
24: [P̄

(i)
1 , P̄

(i)
2] := P̄(i) with P̄

(i)
1 ∈ K [x]

n×k(i) ;
25: end while
26: return the top n rows of P̄

(i)
1 , ~t(i) [1..n];

Proof. Each iteration i computes a (F̄(i), 2δ(i), ~s(i))-basis. At iteration i∗ = log(n/m)−1,
the degree parameter is σ/2 and (F̄(i∗), 2δ(i∗), ~s(i∗)) = (F, σ, ~s). 2

Lemma 5.2. If the shift ~s = [0, . . . , 0], then a (F, σ, ~s)δ(i)−1-basis (or equivalently a
(F̄(i), 2δ(i), ~s(i))δ(i)−1-basis) computed at iteration i has at least n − n/2i elements, and
hence at most n/2i elements remain to be computed. If the shift ~s is balanced, that is,
max~s ∈ O(d) assuming min~s = 0, then the number n(i) of remaining basis elements at
iteration i is O(n/2i).

20

Proof. The uniform case follows from the idea of Storjohann and Villard (2005) on null
space basis computation discussed in Subsection 2.3. For the balanced case, the average
column degree is bounded by cd = cmσ/n for some constant c. The first iteration λ such
that δ(λ) reaches cd is therefore a constant. That is, δ(λ) = 2λd ≥ cd > δ(λ−1) and hence
λ = dlog ce. By the same argument as in the uniform case, the number of remaining basis
elements n(i) ≤ n/2i−λ = 2λ(n/2i) ∈ O(n/2i) at iteration i ≥ λ. For iterations i < λ,
certainly n(i) ≤ n < 2λ(n/2i) ∈ O(n/2i). 2

Theorem 5.3. If the shift ~s is balanced with min (~s) = 0, then Algorithm 1 computes a
(F, σ, ~s)-basis with a cost of O

(
nωM̄(d) log σ)

)
= O (nωd log d log log d log σ)) ⊂ O∼ (nωd)

field operations.

Proof. The computational cost depends on the degree, the row dimension, and the
column dimension of the problem at each iteration. The degree parameter δ(i) is 2id at
iteration i. The number of block rows l(i) is σ/δ(i) − 1, which is less than σ/(2id) =

n/(2im) at iteration i. The row dimension is therefore less than n/2i at iteration i.
The column dimension of interest at iteration i is the column dimension of P̂

(i−1)
2

(equivalently the column dimension of P̄
(i−1)
2), which is the sum of two components,

n(i−1) + (l(i−1)− 1)m. The first component n(i−1) ∈ O(n/2i) by Lemma 5.2. The second
component (l(i−1) − 1)m < n/2i−1 − m < n/2i−1 comes from the size of the identity
matrix added in Storjohann’s transformation. Therefore, the overall column dimension
of the problem at iteration i is O(n/2i).

At each iteration, the four most expensive operations are the multiplications at line
15 and line 19, the order basis computation at line 17, and extracting the basis at line
20.

The matrices F̄(i) and P̂
(i−1)
2 have degree O(2id) and dimensions O(n/2i)×O (n) and

O (n) × O(n/2i). The multiplication cost is therefore 2i MM(n/2i, 2id) field operations,
which is bounded by

2i MM(n/2i, 2id) ∈ O
(

2i
(
n/2i

)ω
M̄(2id)

)
⊂ O

(
nω
(
2i
)1−ω

M̄
(
2i
)

M̄(d)
)

(5.1)

⊂ O
(
nω
(
2i
)1−ω (

2i
)ω−1

M̄(d)
)

(5.2)

⊂ O
(
nωM̄(d)

)
.

Equation (5.1) follows from M̄(ab) ∈ O
(
M̄(a)M̄(b)

)
while equation (5.2) follows from

M̄(t) ∈ O(tω−1).
The matrices P̂

(i−1)
2 and Q̄(i) of the second multiplication have the same degree O(2id)

and dimensions O (n) × O(n/2i) and O(n/2i) × O(n/2i) and can also be multiplied
with a cost of O

(
nωM̄(d)

)
field operations. The total cost of the multiplications over

O(log (n/m)) iterations is therefore O
(
nωM̄(d) log(n/m)

)
.

The input matrix G(i) = F̄(i)P̂
(i−1)
2 of the order basis computation problem at itera-

tion i has dimension O(n/2i)× O(n/2i) and the order of the problem is 2δ(i) ∈ O(2id).

21

Thus, the cost of the order basis computation at iteration i isO
((
n/2i

)ω
M̄
(
2id
)

log
(
2id
))
.

The total cost over O(log (n/m)) iterations is bounded by

O

(∞∑
i=1

((
n/2i

)ω
M̄
(
2id
)

log
(
2id
)))

⊂O

(∞∑
i=1

((
n/2i

)ω
M̄
(
2i
)

log
(
2i
)

M̄ (d) log (d)
))

⊂O

(∞∑
i=1

(
nω
(
2i
)−ω (

2i
)ω−1

M̄ (d) log (d)
))

⊂O

(
nωM̄ (d) log (d)

∞∑
i=1

(
2−i
))

⊂O
(
nωM̄ (d) log (d)

)
.

Finally, extracting an order basis by LSP factorization costs O (nω), which is domi-
nated by the other costs. Combining the above gives

O
(
nωM̄ (d) log(n/m) + nωM̄ (d) log d

)
= O

(
nωM̄ (d) log σ)

)
as the total cost of the algorithm. 2

6. Unbalanced Shifts

Section 5 shows that Algorithm 1 can efficiently compute a (F, σ, ~s)-basis when the
shift ~s is balanced. When the ~s is unbalanced (something important for example in normal
form computation (Beckermann et al., 1999, 2006)), then Algorithm 1 still returns a
correct answer but may be less efficient. The possible inefficiency results because there
may not be enough partial results from the intermediate subproblems to sufficiently
reduce the column dimension of the subsequent subproblem. This is clear from the fact
that the column degrees of the output can be much larger and no longer sum up to
O (mσ) as in the balanced shift case. The shifted ~s-column degrees, however, still behave
well. In particular, the total ~s-degree increase is still bounded by mσ as stated in Lemma
2.6, while the shifted degree of any column can also increase by up to σ. Recall that
Lemma 2.6 states that for any shift ~s, there exists a (F, σ, ~s)-basis still having a total
size bounded by nmσ which gives hope for efficient computation.

In this section, we describe an algorithm for an important special case of unbalanced
shift – when the input shift ~s satisfies the condition:

n∑
i=1

(max(~s)− ~si) ≤ mσ.

For simpler presentation, we use the equivalent condition

~s ≤ 0 and
∑
i

−~si ≤ mσ, (6.1)

which can always be obtained from the previous condition by using ~s−max~s as the new
shift. Note that translating every entry of the shift by the same constant does not change
the problem.

22

In the balanced shift case, a central problem is to find a way to handle unbalanced
column degrees of the output order basis. In this section, the unbalanced shift makes row
degrees of the output also unbalanced, which is a major problem that needs to be resolved.
Here we note a second transformation by Storjohann (2006) which converts the input
in such a way that each high degree row of the output becomes multiple rows of lower
degrees. We refer to this as Storjohann’s second transformation to distinguish it from that
described in Subsection 2.2. The transformed problem can then be computed efficiently
using Algorithm 1. After the computation, rows can then be combined appropriately to
form a basis of the original problem. The method is computationally efficient.

Unfortunately, the bases computed this way are not minimal and hence do not in
general produce our reduced order bases. In the following, we describe a transformation
that incorporates Storjohann’s second transformation and guarantees the minimality of
some columns of the output, hence providing a partial order basis. We can then work on
the remaining columns iteratively as done in the balanced shift case to compute a full
order basis.

Condition (6.1) essentially allows us to locate the potential high degree rows that
need to be balanced. In more general cases, we may not know in advance which are
the high degree rows that need to be balanced, so our approach given in this section
does not work directly. This suggests that one possible future direction to pursue is to
find an effective way to estimate the row degree of the result pivot entries. Such an
estimate may allow us to apply the method given in this section efficiently for general
unbalanced shifts. One example of a case not covered by Condition (6.1) is when the
shift ~s = [0,−nσ,−2nσ, . . . ,−(n− 1)nσ]. This shift makes the resulting order basis close
to Hermite normal form but with possibly higher degree non-pivot entries.

6.1. Transform to Balanced Shifts

We now describe the transformation for balancing the high degree rows of the resulting
basis. Consider the problem of computing a (F, σ, ~s)-basis, where the input shift ~s satisfies
the conditions (6.1). Let α, β ∈ Z>0 be two parameters. For each shift entry si in ~s with
−si > α+ β, let

ri = rem (−si − α− 1, β) + 1

be the remainder when −si − α is divided by β, and where ri = β in the case where the
remainder is 0, and set

qi =

{
1 if − si ≤ α+ β

1 + (−si − α− ri) /β otherwise

Then, for each qi > 1, we expand the corresponding ith column fi of F and shift si to

F̃(i) =
[

fi, x
rifi, x

ri+βfi, . . . , x
ri+(qi−2)βfi

]
, s̃i = [−α− β, . . . ,−α− β]

with qi entries in each case. When qi = 1, the corresponding shift entry and input
column remain the same, that is, s̃i = si, and F̃(i) = fi. Then for the transformed
problem, the new shift becomes s̄ = [s̃1, . . . , s̃n] ∈ Zn̄≤0, and the new input matrix becomes

23

F̄ = [F̃(1), . . . , F̃(n)] ∈ K [x]
m×n̄, with the new column dimension n̄ satisfies n̄ =

∑n
i=1 qi.

Note that every entry of the new shift s̄ is an integer from −α− β to 0. Let

E =



1 xr1 xr1+β · · · xr1+(q1−2)β

. . .
. . .

1 xrn xrn+β · · · xrn+(qn−2)β


n×n̄

.

Then F̄ = FE. Storjohann’s second transformation is determined by setting α = −1, a
value not allowed in our transformation (we show later in Theorem 6.10 that this value
is not useful in our case). One can verify that the new dimension

n̄ =

n∑
i=1

qi ≤ n+

n∑
i=1

−si/β ≤ mσ/β + n.

Thus by setting β ∈ Θ (mσ/n) = Θ (d), we can make n̄ ∈ Θ (n). Furthermore, by also
setting α ∈ Θ (d), we have a balanced shift problem since

max s̄−min s̄ ≤ −min s̄ ≤ α+ β ∈ Θ(d).

Hence Algorithm 1 can compute a
(
F̄, σ, s̄

)
-basis with cost O∼ (nωd) in this case.

With a
(
F̄, σ, s̄

)
-basis P̄ ∈ K [x]

n̄×n̄ computed, let us now consider EP̄ ∈ K [x]
n×n̄.

While it is easy to see that EP̄ has order (F, σ) since FEP̄ = F̄P̄ ≡ 0 mod xσ, in general
it is not a minimal basis (in fact, EP̄ is not even square). However, our transformation
does guarantee that the highest degree columns of EP̄ having ~s-degrees exceed −α are
minimal. That is, the columns of EP̄ whose ~s-degrees exceed −α are exactly the columns
of a (F, σ, ~s)-basis whose ~s-degrees exceed −α. We have therefore correctly computed a
partial (F, σ, ~s)-basis.

Example 6.1. Let us use the same input as in Example 2.5, but with shift ~s =

[0,−3,−5,−6], and parameters α = β = 1. Then we get the transformed input

F̄ = [x+ x2 + x3 + x4 + x5 + x6, 1 + x+ x5 + x6 + x7, x+ x2 + x6 + x7 + x8,

1 + x2 + x4 + x5 + x6 + x7, x+ x3 + x5 + x6 + x7 + x8, x2 + x4 + x6 + x7 + x8 + x9,

x3 + x5 + x7 + x8 + x9 + x10, 1 + x+ x3 + x7, x+ x2 + x4 + x8,

x2 + x3 + x5 + x9, x3 + x4 + x6 + x10, x4 + x5 + x7 + x11]

having 12 components, and s̄ = [0,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2]. In this
case r1 = r2 = r3 = r4 = 1, q1 = 1, q2 = 2, q3 = 4, q4 = 5 and the transformation matrix
is

E =


1 0 0 0 0 0 0 0 0 0 0 0

0 1 x 0 0 0 0 0 0 0 0 0

0 0 0 1 x x2 x3 0 0 0 0 0

0 0 0 0 0 0 0 1 x x2 x3 x4

 .

24

Using the earlier algorithm for balanced shift, we compute a (F̄, 8, s̄)-basis

P̄ =



0 0 0 0 0 0 0 0 0 0 0 1

x 1 0 0 1 0 x 0 0 0 x 0

0 0 1 0 0 x 1 + x x x x 1 0

x 1 0 1 1 + x 1 x 0 0 0 0 1

x 0 1 1 1 + x 1 + x 1 x x 0 0 0

x 0 0 1 1 + x 1 + x 1 x 0 1 0 0

x 0 0 1 1 0 0 1 0 0 0 0

0 0 0 1 x 1 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 x 1 1 1 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0


with s̄-degrees [−1,−2,−2,−2,−1,−1,−1,−1,−1,−1,−1, 0]. Only the last column has

s̄-degree exceeding −α = −1 and so is the only column guaranteed to give a correct

(F, 8, ~s)-basis element. Comparing

EP̄ =


0 0 0 0 0 0 0 0 0 0 0 1

x 1 x 0 1 x2 x2 x2 x2 x2 0 0

x+ x2 + x3 + x4 1 x 1 + x+ x2 + x3 1 1 + x+ x3 x2 x2 x2 x2 0 1

0 x x2 1 + x3 + x4 x 1 + x4 x3 x3 x3 x3 0 1


to a (F, 8, ~s)-basis

P =


0 0 0 1

1 0 0 0

1 x2 + x3 + x4 1 + x+ x2 + x3 1

x x2 1 + x3 + x4 1


with ~s-degrees [−3,−1,−2, 0], we see that the last column of EP̄ is a element of a

(F, 8, ~s)-basis.

25

If we set α = 2, β = 1, then the new transformed problem gives

P̄ =



0 0 0 0 0 0 0 0 1

1 0 0 x 1 + x x x x 0

1 x2 1 x 1 x x 0 1

0 x2 1 x 1 x 0 1 0

0 x2 1 + x 1 0 1 0 0 0

0 x2 1 0 x 0 0 0 1

1 0 0 0 0 0 0 0 0

0 0 x 1 + x 1 1 1 1 0

0 0 x 1 0 0 0 0 0


with s̄-degrees [−3,−1,−2,−2,−2,−2,−2,−2, 0]. In this case the second column also
has s̄-degree exceeding −α = −2, and so it is guaranteed to produce another element of
a (F, 8, ~s)-basis. Computing

EP̄ =


0 0 0 0 0 0 0 0 1

1 0 0 x 1 + x x x x 0

1 x2 + x3 + x4 1 + x+ x2 + x3 x 1 + x x x x 1

x x2 1 + x3 + x4 x2 x+ x2 x2 x2 x2 1

 ,

we notice the second column is indeed an element of a (F, 8, ~s)-basis.

6.2. Correspondence Between the Original Problem and the Transformed Problem

We now work towards establishing the correspondence between the high degree columns
of a

(
F̄, σ, s̄

)
-basis whose s̄-degrees exceed −α and those of a (F, σ, ~s)-basis whose ~s-

degrees exceed −α. A useful link is provided by the following a matrix .
Set

Ai =



xri

−1 xβ

−1
. . .
. . . xβ

−1


qi×(qi−1)

and A =


A1

. . .

An


n̄×(n̄−n)

.

If qi = 1, Ai has dimension 1× 0, which just adds a zero row and no column in A.
We now show that for any w̄ ∈

〈(
F̄, σ, s̄

)〉
, w̄ can be transformed by A to one of

the two forms that correspond to the original problem and transformed problem. This is
made more precise in the following lemma. We then use unimodular equivalence of these
two forms to show the equivalence between the high degree part of the result from the
transformed problem and that of the original problem.

26

Lemma 6.2. Let

w̄ =


w̄1

...

w̄n

 ∈ 〈(F̄, σ, s̄)〉 with w̄i =


w̄i,0
...

w̄i,qi−1


qi×1

.

Then there exists a vector u ∈ K [x]
(n̄−n)×1 such that w̄ + Au has one of the following

two forms.
(a) The first form is

w[1] =


w

[1]
1

...

w
[1]
n

 with w
[1]
i =


wi

0
...

0


qi×1

,

where wi = w̄i,0 + w̄i,1x
ri + w̄i,2x

ri+β + · · ·+ w̄i,qi−1x
ri+(qi−2)β .

(b) The second form is

w[2] =


w

[2]
1

...

w
[2]
n

 with w
[2]
i =


wi,0
...

wi,qi−1

 ,
where degwi,j < ri ≤ β when j = 0 and degwi,j < β when j ∈ {1, . . . , qi − 2}. There
is no degree restriction on wi,qi−1.

Proof. The first form is obtained by setting

u[1] =


u

[1]
1

...

u
[1]
n

 with u
[1]
i =


w̄i,1 + w̄i,2x

β + w̄i,3x
2β + · · ·+ w̄i,qi−1x

(qi−2)β

w̄i,2 + w̄i,3x
β + · · ·+ w̄i,qi−1x

(qi−3)β

...

w̄i,qi−1

 .

Then w̄ + Au[1] gives the first form. Note that u
[1]
i is empty if qi = 1 and w̄i = w

[1]
i =

[w̄i,0] is not changed by the transformation.
The second form can be obtained based on the first form. Let

ti,j =

{
ri if j = 0

β if j ∈ {1, . . . , qi − 2}

and write wi from the first form as

wi = wi,0 + wi,1x
ri + wi,2x

ri+β + · · ·+ wi,qi−1x
ri+(qi−2)β (6.2)

27

with degwi,j < ti,j for j < qi − 1. Note that in general wi,j 6= w̄i,j , as deg w̄i,j may not
be less than ti,j . Now set

v =


v1

...

vn

 with vi =


wi,1 + wi,2x

β + wi,3x
2β + · · ·+ wi,qi−1x

(qi−2)β

wi,2 + wi,3x
β + · · ·+ wi,qi−1x

(qi−3)β

...

wi,qi−1


and u[2] = u[1] − v, which comes from the unimodular transformation

[w̄,A]

 1

u[1] I

 1

−v I

 = [w̄,A]

 1

u[1] − v I

 .
Then w[2] = w̄ + Au[2] is in the second form. Again note that vi and u

[2]
i are empty if

qi = 1 and w
[2]
i = w̄i = [w̄i,0]. 2

Lemma 6.3. Let w̄ ∈
〈(

F̄, σ, s̄
)〉

and w[2] be in the second form. If deg~s Ew̄ > −α or
degs̄ w[2] > −α, then deg~s Ew̄ = degs̄ w[2].

Proof. Consider the ith entry wi of Ew̄ and the entries w
[2]
i = [wi,0, . . . , wi,qi−1]

T in
w[2]. If qi = 1, then wi = wi,0 and the corresponding shifts satisfies si = s̄`(i), where
`(i) =

∑i
k=1 qk. Hence degwi+si = degwi,0+s̄`(i). Thus we only need to consider the case

where qi > 1. Write wi as in Equation (6.2). Note that degwi,qi−1 = degwi−ri−β (qi − 2)
and hence degwi,qi−1−α− β = degwi− ri−α− β (qi − 1), that is, degwi,qi−1 + s̄`(i) =
degwi + si. It follows that

deg~s Ew̄ = max
i

(degwi + si) = max
i

(degwi,qi−1 + s̄`(i))

≤max
i,j

(
degwi,j + s̄`(i−1)+j+1

)
= degs̄ w[2].

The only possible indices j where the inequality can be strict occur when j < qi− 1. But
degwi,j < β for all j < qi−1, which implies degwi,j+s̄`(i−1)+j+1 = degwi,j−α−β < −α,
and so it follows that the entries at these indices j do not contribute to degs̄ w[2] when
degs̄ w[2] > −α or deg~s Ew̄ = maxi(degwi,qi−1 + s̄`(i)) > −α. In other words, if one of
them exceeds −α, then degs̄ w[2] and deg~s Ew̄ are determined only by entries at indices
j = qi − 1, but the equality always holds for these entries. 2

Remark 6.4. Notice that the first form w[1] of w̄ has nonzero entries only at indices
I = [1, q1+1, . . . ,

∑n−1
k=1 qk+1]. Let B be a n̄×nmatrix with 1’s at position (

∑n−1
k=1 qk+1, i)

and 0’s everywhere else. Then the first form satisfies w[1] = BEw̄. Hence Lemma 6.3
provides the degree correspondence between the degrees of the first form BEw̄, which is
just Ew̄ with zero rows added, and the second form w̄[2] of w̄.

28

Corollary 6.5. Let w̄ ∈
〈(

F̄, σ, s̄
)〉

and w[2] be its second form. Then deg~s Ew̄ > −α if
and only if degs̄ w[2] > −α.

Proof. The proof follows directly from Lemma 6.3. 2

Lemma 6.6. Let w̄ ∈
〈(

F̄, σ, s̄
)〉
. Then deg~s Ew̄ ≤ degs̄ w̄.

Proof. As in Lemma 6.3, consider the ith entry wi of Ew̄ and the corresponding entries
w̄i = [w̄i,0, . . . , w̄i,qi−1]

T in w̄. If qi = 1, then degwi + si = degwi,0 + s̄`(i) as before.
Thus we just need to consider the case qi > 1, where the shifts for w̄i are −α− β. Since
wi = w̄i,0 + w̄i,1x

ri + w̄i,2x
ri+β + · · ·+ w̄i,qi−1x

ri+(qi−2)β , we get

degwi = max {deg w̄i,0,deg w̄i,1 + ri,deg w̄i,2 + ri + β, . . . , deg w̄i,qi−2 + ri + (qi − 2)β} .

Then

degwi + si = degwi − ri − α− β(qi − 1)

= max {deg w̄i,0 − ri − α− β(qi − 1), deg w̄i,1 − α− β(qi − 1), . . . ,

. . . ,deg w̄i,qi−2 − α− β}
≤max {deg w̄i,0 − α− β,deg w̄i,1 − α− β, . . . , deg w̄i,qi−2 − α− β} ,

and so deg~s Ew̄ ≤ degs̄ w̄. 2

Corollary 6.7. Let P̄ = [P̄1, P̄2] be a
(
F̄, σ, s̄

)
-basis, where degs̄ P̄1 ≤ −α and degs̄ P̄2 >

−α. Let P̄
[2]
2 be the second form of P̄2. Then degs̄ P̄2 = degs̄ P̄

[2]
2 = deg~s EP̄2. Hence

[P̄1, P̄
[2]
2] is also a (F̄, σ, s̄)-basis.

Proof. Since any column p̄ of P̄2 satisfies degs̄ p̄ > −α, from Lemma 6.3 and Lemma
6.6, we get

degs̄ p̄[2] = deg~s Ep̄ ≤ degs̄ p̄.

The inequality is in fact an equality, since otherwise, p̄ in P̄ can be replaced by p̄[2] to get
a basis of lower degree, contradicting the minimality of P̄. Note that P̄ with its column
p̄ replaced by p̄[2] remains to be a

(
F̄, σ, s̄

)
-basis, since p̄[2] = p̄ + Au involves column

operations with only columns in P̄1 as A has s̄-degrees bounded by −α and hence is
generated by P̄1. 2

Lemma 6.8. If P is a (F, σ, ~s)-basis, then [BP,A] is a basis for
〈(

F̄, σ, s̄
)〉
.

Proof. Any w̄ ∈
〈(

F̄, σ, s̄
)〉

can be transformed by A to the first form

w[1] = w̄ + Au[1] = BEw̄,

where Ew̄ ∈ 〈(F, σ, ~s)〉 is generated by P. That is,

w̄ = w[1] −Au[1] = BEw̄ −Au[1] = BPv −Au[1] = [BP,A] [v,−u[1]]T .

One can also see that the columns of A and the columns of BP are linearly independent,
as each zero row of BP has a −1 from a column of A. 2

29

Lemma 6.9. If P̄ is a
(
F̄, σ, s̄

)
-basis, then EP̄ generates 〈(F, σ, ~s)〉. That is, for any

w ∈ 〈(F, σ, ~s)〉, there is an u ∈ K [x]
n̄×1 such that w = EP̄u.

Proof. For any (F, σ, ~s)-basis P, the columns of BP are in 〈(F̄, σ, s̄)〉 generated by P̄,
that is, BP = P̄U for some U ∈ K[x]n̄×n. Hence EBP = P is generated by EP̄. That
is, P = EP̄U. Then any w ∈ 〈(F, σ, ~s)〉, which satisfies w = Pv for some v ∈ K[x]n×1,
satisfies w = EP̄Uv. 2

We are now ready to prove the main result on the correspondence between a high
degree part of a basis of the transformed problem and that of the original problem.

Theorem 6.10. Let P̄ = [P̄1, P̄2] be a
(
F̄, σ, s̄

)
-basis, where degs̄ P̄1 ≤ −α and degs̄ P̄2 >

−α. Then EP̄2 is the matrix of the columns of a (F, σ, ~s)-basis whose ~s-degrees exceed
−α.

Proof. We want to show that [P1,EP̄2] is a (F, σ, ~s)-basis for any (F, σ, ~s)−α-basis P1.
First, EP̄ has order (F, σ) since F̄P̄ = FEP̄ and P̄ has order

(
F̄, σ

)
. Also, since EP̄

generates 〈(F, σ, ~s)〉 by Lemma 6.9, and from Corollary 6.5 EP̄1 has ~s-degree bounded
by −α hence is generated by P1, it follows that

[
P1,EP̄2

]
generates 〈(F, σ, ~s)〉.

It only remains to show that the ~s-degrees of EP̄2 are minimal. Suppose not, then
[P1,EP̄2] can be reduced to [P1, P̃2] where P̃2 has a column having lower ~s-degree than
that of the corresponding column in EP̄2. That is, assuming the columns of P̃2 and
EP̄2 are in non-decreasing ~s-degrees order, then we can find the first index i where the
~s-degree of ith column of P̃2 is lower than the ~s-degree of the ith column of EP̄2. It
follows that [BP1,BEP̄2] can be reduced to [BP1,BP̃2] and [BP1,BEP̄2,A] can be
reduced to [BP1,BP̃2,A]. Since [BP1,BP̃2,A] generates 〈(F̄, σ, s̄)〉 by Lemma 6.8, it
can be reduced to P̄ = [P̄1, P̄2]. But it can also be reduced to [P̄1, P̃

[2]
2 ,A] with P̃

[2]
2

the second form of BP̃2, and to [P̄1, P̃
[2]
2] as the columns of A are generated by the(

F̄, σ, s̄
)
−α-basis P̄1.

In order to reach a contradiction we just need to show that P̃
[2]
2 has a column with

s̄-degree less than that of the corresponding column in P̄2. Let w̃ be the first column
of P̃2 with ~s-degree less than that of the corresponding column w in EP̄2 and let w̄
be the corresponding column in P̄2. By Corollary 6.7 deg~s w = degs̄ w̄. Let w̃[2] be
the second form of Bw̃, which is a column in P̃

[2]
2 corresponding to the column w̄ in

P̄2. We know that either degs̄ w̃[2] ≤ −α or degs̄ w̃[2] = deg~s w̃ by Lemma 6.3, as
Ew̃[2] = E(Bw̃ + Au) = w̃. In either case, degs̄ w̃[2] < degs̄ w̄, as degs̄ w̄ is greater
than both −α and deg~s w̃. Hence we have [P̄1, P̃

[2]
2] is another

(
F̄, σ, s̄

)
-basis with lower

s̄-degrees than P̄, contradicting with the minimality of P̄. 2

6.3. Achieving Efficient Computation

Theorem 6.10 essentially tells us that a high degree part of a (F, σ, ~s)-basis can be
determined by computing a

(
F̄, σ, s̄

)
-basis, something we know can be done efficiently.

Notice the parallel between the situation here and in the earlier balanced shift case, where
the transformed problem also allows us to compute a partial (F, σ, ~s)-basis, albeit a low
degree part, in each iteration.

30

After a
(
F̄, σ, s̄

)
-basis, or equivalently a high degree part of a (F, σ, ~s)-basis, is com-

puted, for the remaining problem of computing the remaining basis elements, we can in
fact reduce the dimension of the input F by removing some of its columns corresponding
to the high shift entries.

Theorem 6.11. Suppose without loss of generality that the entries of ~s are in non-
decreasing order. Let I be the index set containing the indices of entries si in ~s such that
si ≤ −α. Let FI be the columns of F indexed by I. Then a (FI , σ, ~s)−α-basis P1 gives a
(F, σ, ~s)−α-basis

[
PT

1 ,0
]T .

Proof. For any p ∈ K [x]
n×1 and deg~s p ≤ −α, note that if the ith entry of the shift

satisfies si ≤ −α, then the corresponding entry pi of p is zero. Otherwise, if pi 6= 0 then
the ~s-degree of p is at least si > −α, contradicting the assumption that the ~s-degree of
p is lower than or equal to −α. 2

Thus, these zero entries do not need to be considered in the remaining problem of
computing a (F, σ, ~s)−α-basis. As such the corresponding columns from the input matrix
F can be removed.

Example 6.12. Let us return to Example 6.1. When the parameters α = β = 1, after
computing an element of a (F, 8, ~s)-basis with ~s-degree 0 that exceeds −α = −1, the
first row of any (F, σ, ~s)−1-basis must be zero by Theorem 6.11 (since the first entry
of ~s = [0,−3,−5,−6] is 0 > −α). This is illustrated by the (F, 8, ~s)-basis P given in
Example 6.1. This implies that the first column of F is not needed in the subsequent
computation of the remaining basis elements.

Corollary 6.13. If the shift ~s satisfies condition (6.1) and c is a constant greater than
or equal to 1, then a (F, σ, ~s)−cd-basis has at most n/c basis elements.

Proof. Since d = mσ/n ≥ −
∑n
i=1 si/n under condition (6.1), there cannot be more

than n/c entries of ~s less than or equal to −cd. By Theorem 6.11, the only possible
nonzero rows of a (F, σ, ~s)−cd-basis are the ones corresponding to (with the same indices
as) the shift entries that are less than or equal to −cd. Hence there cannot be more than
n/c nonzero rows and at most n/c columns, as the columns are linearly independent. 2

We now have a situation similar to that found in the balanced shift case. Namely,
for each iteration we transform the problem using appropriate parameters α and β to
efficiently compute the basis elements with degrees greater than −α. Then we can remove
columns from the input matrix F corresponding to the shift entries that are greater than
−α. We can then repeat the same process again, with a larger α and β, in order to
compute more basis elements.

Theorem 6.14. If the shift ~s satisfies condition (6.1), then a (F, σ, ~s)-basis can be com-
puted with cost O

(
nωM̄(d) log σ

)
= O(nωd log d log log d log σ) ⊂ O∼(nωd).

31

Proof. We give the following constructive proof. Initially, we set transformation param-
eters α1 = β1 = 2d with d = mσ/n ≥ −

∑n
i=1 si/n. Algorithm 1 works efficiently on

the transformed problem as the shift s̄(1) is balanced and the dimension of F̄1 remains
O (n). By Theorem 6.10 this gives the basis elements of (F, σ, ~s)-basis with ~s-degree ex-
ceeding −α1 = −2d. By Corollary 6.13, the number of basis elements remaining to be
computed is at most n/2, hence the number of elements correctly computed is at least
n/2. By Theorem 6.11, this also allows us to remove at least half of the columns from the
input F and correspondingly at least half of the rows from the output for the remaining
problem. Thus the new input matrix F2 has a new column dimension n2 ≤ n/2 and
the corresponding shift ~s(2) has n2 entries. The average degree of the new problem is
d2 = mσ/n2.

For the second iteration, we set α2 and β2 to 2d2. Since

α2 = 2mσ/n2 ≥ −2

n∑
i=1

si/n2 ≥ −2

n2∑
i=1

s
(2)
i /n2,

this allows us to reduce the dimension n3 of F3 to at most n2/2 after finishing comput-
ing a

(
F̄2, σ, s̄

(2)
)
−α1

-basis. Again, this can be done using Algorithm 1 with a cost of
O
(
nω2 M̄(d2) log σ

)
as the shift ā2 is balanced and the dimension of F̄2 is O (n2). Repeat-

ing this process, at iteration i, we set αi = βi = 2di = 2mσ/ni. The transformed problem
has a balanced shift āi and column dimension O (ni). So a

(
F̄i, σ, s̄

(i)
)
−αi−1

-basis can be
computed with a cost of

O
(
nωi M̄ (di) log σ

)
⊂ O

((
2−in

)ω
M̄
(
2id
)

log σ
)
⊂ O

(
2−inωM̄(d) log σ

)
.

Since

αi = 2mσ/ni ≥ −2

n∑
i=1

si/ni ≥ −2

ni∑
i=1

s
(i)
i /ni,

the column dimension ni+1 of the next problem can again be reduced by a half. After
iteration i, at most n/2i (F, σ, ~s)-basis elements remain to be computed. We can stop this
process when the column dimension ni of the input matrix Fi reaches the row dimension
m, as an order basis can be efficiently computed in such case. Therefore, a complete
(F, σ, ~s)-basis can be computed in at most log(n/m) iterations, so the overall cost is

O

log(n/m)∑
i=1

(
2−inωM̄(d) log σ

) = O

nωM̄(d) log σ

log(n/m)∑
i=1

2−i

 ⊂ O (nωM̄(d) log σ
)

field operations. 2

Finally, we remark that when the condition (6.1) is relaxed to
∑n
i=1−si ∈ O (mσ),

so that
∑n
i=1−si ≤ cmσ for a constant c, we can still compute a (F, σ, ~s)-basis with the

same complexity, by setting αi = βi = 2cmσ/ni at each iteration i and following the
same procedure as above. The cost at each iteration i remains O∼ (nωd), and the entire
computation still uses at most log(n/m) iterations.

32

Algorithm 2 UnbalancedFastBasis (F, σ, ~s)

Input: F ∈ K [x]
m×n, σ ∈ Z≥0, ~s satisfies condition (6.1).

Output: P ∈ K [x]
n×n, an (F, σ, ~s)-basis.

Uses:
(a) TransformUnbalanced : converts an unbalanced shift problem to a balanced one
using the transformation described in Section 6. Returns transformed input matrix,
transformed shift, and transformation matrix.
(b) FastBasis : computes order basis with balanced shift.

1: i := 1; P = [];
2: F(i) := F, ~s(i) := ~s;
3: while columnDimension(P) 6= n do
4: di =

⌈
mσ/ columnDimension(F(i))

⌉
;

5: αi := βi := 2di;
6:

[
F̄(i), s̄(i),E

]
:= TransformUnbalanced

(
F(i), ~s(i), αi, βi

)
;

7: P̄(i) := FastBasis
(
F̄(i), σ, s̄(i)

)
;

8: Set P(i) to be the columns of EP̄(i) with s̄i-column degrees in (−αi,−αi−1];
9: P :=

[
P(i),P

]
;

10: Set I as the set of indices i satisfying si ≤ −αi;
11: F(i+1) := F

(i)
I , ~s(i+1) := ~s

(i)
I ;

12: i := i+ 1;
13: end while
14: return P ;

7. Future Research

The algorithms in this paper give fast procedures for efficiently computing a large
class of order basis problems, including those without shift, those with a balanced shift or
with a restricted unbalanced shift. However a number of problems remain to be solved.
In particular, the efficient computation of order basis with a general unbalanced shift
remains an open problem. In addition, order bases are closely related to many other
problems in polynomial matrix computation, for example nullspace basis and matrix
normal forms. We are interested in seeing how our tools can be used to solve these
problems more efficiently. Our work assumes that we are working with polynomials and
power series represented in standard bases. We would like to obtain efficient methods for
computation of order bases represented in arbitrary bases, particularly those associated to
interpolation bases. Finally, the constructions used in this paper assume exact arithmetic
where coefficient growth is not an issue. We are interested in determining how our tools
can be used with methods such as fraction-free or modular construction of order bases,
particularly combining the constructions found in (Beckermann and Labahn, 2000).

AcknowledgementsWe would like to thank Arne Storjohann and an anonymous referee
for their valuable comments.

References

Baker, G., Graves-Morris, P., 1996. Padé Approximants, 2nd edition. Cambridge.

33

Beckermann, B., Labahn, G., 1994. A uniform approach for the fast computation of
matrix-type Padé approximants. SIAM Journal on Matrix Analysis and Applications
15 (3), 804–823.
URL http://www.cs.uwaterloo.ca/ glabahn/publications.html

Beckermann, B., Labahn, G., 1997. Recursiveness in matrix rational interpolation prob-
lems. Journal of Computational and Applied Math 5-34.
URL http://www.cs.uwaterloo.ca/ glabahn/Papers/recursive.pdf

Beckermann, B., Labahn, G., 2000. Fraction-free computation of matrix rational inter-
polants and matrix GCDs. SIAM Journal on Matrix Analysis and Applications 22 (1),
114–144.
URL http://www.cs.uwaterloo.ca/ glabahn/publications.html

Beckermann, B., Labahn, G., Villard, G., 1999. Shifted normal forms of polynomial
matrices. In: Proceedings of the International Symposium on Symbolic and Algebraic
Computation. ISSAC’99. pp. 189–196.
URL http://perso.ens-lyon.fr/gilles.villard/BIBLIOGRAPHIE/biblio.html

Beckermann, B., Labahn, G., Villard, G., 2006. Normal forms for general polynomial
matrices. Journal of Symbolic Computation 41 (6), 708–737.
URL http://perso.ens-lyon.fr/gilles.villard/BIBLIOGRAPHIE/biblio.html

Giorgi, P., Jeannerod, C.-P., Villard, G., 2003. On the complexity of polynomial matrix
computations. In: Proceedings of the International Symposium on Symbolic and Al-
gebraic Computation, Philadelphia, Pennsylvania, USA. ACM Press, pp. 135–142.
URL http://perso.ens-lyon.fr/gilles.villard/BIBLIOGRAPHIE/biblio.html

Ibarra, O., Moran, S., Hui, R., 1982. A generalization of the fast LUP matrix decompo-
sition algorithm and applications. J. Algorithms 3 (1), 45–56.

Labahn, G., 1992. Inversion components for block Hankel-like matrices. Linear Algebra
and Its Applications 177, 7–48.

Storjohann, A., 2006. Notes on computing minimal approximant bases. In: Challenges in
Symbolic Computation Software. Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany.

Storjohann, A., Villard, G., 2005. Computing the rank and a small nullspace basis of a
polynomial matrix. In: Proceedings of the International Symposium on Symbolic and
Algebraic Computation. ISSAC’05. pp. 309–316.
URL http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0505030

Van Hoeij, M., November 1997. Factorization of differential operators with rational func-
tions coefficients. Journal of Symbolic Computation 24, 537–561.
URL http://portal.acm.org/citation.cfm?id=271276.271278

von zur Gathen, J., Gerhard, J., 2003. Modern Computer Algebra, 2nd Edition. Cam-
bridge University Press.

Zhou, W., Labahn, G., 2009. Efficient computation of order bases. In: Proceedings of the
International Symposium on Symbolic and Algebraic Computation. ISSAC’09. ACM,
pp. 375–382.
URL http://doi.acm.org/10.1145/1576702.1576753

34

