
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2007)
M. van de Panne, E. Saund (Editors)

Managing Ambiguity in Mathematical Matrices

David Tausky, George Labahn, Edward Lank and Mirette Marzouk

David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, ON, Canada, N2L 3G1

Abstract

In this paper we describe strategies for recognizing and using hand drawn matrices in a pen math system. This
includes a new technique to recognize common short-forms of writing matrices using ellipsis (. . .). Ellipsis are
commonly used in sketched matrices to illustrate the structure of a matrix without fully specifying the matrix. A
second contribution of this paper is a new method to estimate the parameters of the hand drawn matrix, such as
the number and position of the rows and columns. This is done using a modified clustering algorithm, allowing
one to reduce the number of hard-coded constraints.

Categories and Subject Descriptors(according to ACM CCS): I.5.4 [Computing Methodologies: Pattern Recogni-
tion]: Applications

1. Introduction

Pen-math systems allow users to follow a familiar pen-and-
paper paradigm for working with mathematics. Computer al-
gebra systems such as Maple or Mathematica do not follow
the familiar pen-and-paper interface but do provide rich en-
vironments for actually doing mathematics : manipulations,
solving equations and so on. We believe that a complete pen-
math system should attempt to combine the ease of use of
pen-math environments with the power of computer algebra
systems (in this case either Maple or Mathematica).

Once one is able to input and do mathematics in a pen-
math system, then it is natural to also want to use all the
typical conveniences that are commonly used when inputting
mathematics with pen-and-paper. For example, users often
will input an expression of the form

1+ · · ·+100

with the understanding that this represents the sum of the
first 100 nonzero digits. Any pen-based math system that
hopes to provide the same level of ease of use will need to
understand and work with short-cuts in expressions. Mak-
ing use of convenient, well accepted short-cuts is particu-
larly important when one works with matrix algebra. While
a user can be taught that the sum of the first 100 nonzero

digits should be input as

100

∑
i=1

i

a similar statement is not true if the user wants to work with
matrices that are normally written as

A =


1 x0 · · · x5

0
1 x1 · · · x5

1
...

...
...

1 x5 · · · x5
5


which is a short form for a Vandermonde system or

B =


1 0 · · · −8
2 1 · · · −7
...

...
...

10 9 · · · 1

 .

In addition to inputting and recognizing such expressions, a
system also needs to correctly interpret such matrices and
allow for further computation. For example one could have
the computational engine compute the factored form of the
determinant ofA to obtain

c© The Eurographics Association 2007.

D. Tausky et. al. / Managing Ambiguity in Mathematical Matrices

(x0−x1)(x0−x2)(x0−x3)(x0−x4)(x0−x5)

(x1−x2)(x1−x3)(x1−x4)(x1−x5)(x2−x3)

(x2−x4)(x2−x5)(x3−x4)(x3−x5)(x4−x5)

verifying a well-known identity, or else finding that the
eigenvalues ofB are given by

0,0,0,0,0,0,0,5+20
√

2i,5−20
√

2i,

something which is not easily known in advance.

This paper describes a number of techniques to recognize
matrices, with an emphasis on recognizing matrices simi-
lar to those a user would draw, with short cuts to represent
the structure of the matrix. We propose multiple techniques
based on both local features and global optimizations. Fi-
nally we address a few of the unresolved problems in matrix
recognition such as the limitations of the current MathML
standard.

This paper is organized as follows: Section3 reviews rele-
vant research in the field of matrix and table recognition, and
provides a brief summary of the MathBursh environment
platform that we use as a test bed to evaluate our recognition
techniques. Section4 provides an overview of our method
to recognize matrices. Sections5 and6 discusses alternative
techniques to those used in section4, with an emphasis of
increasing the robustness by finding a globally optimum so-
lution.

2. Definitions

A fully specifiedmatrix is a matrix where each and every
element of the matrix has a symbolic or numeric value and
each value is stated. Figure1 shows an example of a fully
specified matrix.

Figure 1: A fully specified matrix.

An under-specified matrixor abstract matrixrefers to a
matrix where each element is not specified, but can be in-
ferred by the structure of the matrix as indicated by the
presence of ellipsis (a sequences of dots) and the elements

which do exist [SS06]. In the case of under-specified matri-
ces, there are three subclasses that we consider: those ma-
trices where the dimension of the matrix can be inferred di-
rectly, those where the dimension or indexing cannot be di-
rectly inferred, and those where the indexing is ambiguous.
Figure2 shows two examples of an under-specified matrix.
The dimension of the left matrix of figure2 can be inferred
whereas the right matrix is an under-specified matrix where
the dimension cannot be.

Figure 2: Two under-specified matrices. The dimensions of
the left matrix can be inferred. The dimensions of the right
matrix cannot be.

Finally anambiguous matrixis a matrix where there are
multiple interpretations or conflicting interpretations of the
dimension or indexing, and no clear heuristic for resolving
the ambiguity exists. Figure3 shows an example of ambigu-
ous matrix. At first glance, the matrix appears consistent;
however, the second row will resolve to have the forma2
a3 a4 which is not consistent with the 5x5 dimension of the
matrix.

Figure 3: An ambiguous matrix

3. Background

Some relevant research has already been done on recogniz-
ing matrices and interpreting short forms. However to our
knowledge no one has integrated matrix recognition and
under-specified matrix expansions into a hand-drawn math-
ematical system.

Zanibbi, Blostein and Cordy [ZBC04] present a compre-
hensive survey of table recognition techniques in general.
Matrices can be viewed as a specific class of tables. Most
relevant work in table recognition literature operates on
scanned images of typeset data, therefore the techniques dif-
fer from those presented here. Chandran and Kasturi [CK93]

c© The Eurographics Association 2007.

D. Tausky et. al. / Managing Ambiguity in Mathematical Matrices

and Zuyev [Zuy97] present systems to recognize typeset ta-
bles, where cell segmentation is performed by horizontal
and vertical profiling, which has a similar premise to the
element segmentation performed in section4.2. However,
their system only works with off-line, typeset tables. Hu et.
al [HKLW01] present a graph based system which has some
similarities to the graph based representation used in our sys-
tem, but do not address the issue of recognition or structure
extraction. Hu et. al. also describe details of a graph match-
ing algorithm which can be used to verify the recognition
of a table against ground truth data. Specific to recognizing
matrices Kanahori and Suzuki [KS01,KS03] are the only re-
searchers to have developed a system to recognize type-set
scanned matrices as part of their math OCR package, In-
ftyReader.

A general discussion of the problems of matrix recogni-
tion is discussed in Blostein and Grbavec [BG96], along with
a discussion regarding the difficulties of recognizing mathe-
matical notation in general.

In an alternate direction, Sexton and Sorge [SS06] present
an algorithm for interpreting under-specified matrices and
expanding them into fully specified matrices, using linear
interpolation. Their research is devoted to the interpretation,
not recognition, of under-specified matrices. Their research
assumes the under-specified matrix is entered in a very spe-
cific format using a keyboard. However their research is the
basis for our anti-unification method described in section
4.4.

3.1. MathBrush Overview

Our matrix recognition technique is currently integrated
into the MathBrush interactive pen-based math system. For
a more through discussion of MathBrush please refer to
[LMM ∗06].

MathBrush is an experimental pen-based math system
having as the goal of allowing users to perform complex
mathematical tasks on a Tablet PC platform. The mathemat-
ical tasks are performed via interaction with one or more
computer algebra systems, in this case Maple or Mathemat-
ica. MathBrush takes as its starting point that doing math-
ematics with a pen-based device requires much more than
simply being able to input handwritten mathematical expres-
sions and having the ability to do a few mathematical oper-
ations. Rather a mathematical pen-based math system needs
to worry about such matters as what to do with the vast (and
complicated) functionality of existing mathematical systems
and how to deal with the huge and unwieldy results that can
come from such systems (answers that do not really appear
when working with ordinary pen and paper), to name just
two nontrivial issues. At the same time users need the func-
tionality to do mathematics (often even for elementary math-
ematics) and have no choice but to work with whatever an-
swers are returned for their computations (large or small).

Of course there has already been considerable research on
systems that recognize handwritten mathematical input. In
addition, some of these math recognition systems link to ex-
isting mathematical systems so such linkage is by no menas
new. We mention MathPad (which links to Maple via the
symbolic toolbox of MatLab) and MathJournal (which has
its own math system) as two examples where pen-based sys-
tems work with mathematical engines. However these sys-
tems either have very limited mathematical capabilities or
else only allow a few simple interactions with the math sys-
tem. In either case one can do only a very small amount of
mathematics, certainly much less than one could using the
various text and window based interfaces of existing com-
puter algebra systems. This situation mirrors events that oc-
curred when computer algebra systems were first gaining
prominence some 20 years ago. Namely at that time a num-
ber of interesting interfaces for mathematical systems were
proposed, mostly for MacIntosh computers. Examples in-
clude Theorist, Milo and others [KS98]. For the most part
the limited capabilities of these systems relegated them as
being math assistants rather than complete math systems.

Beyond the basic set of features necessary to support
transformation of handwritten expressions and interactions
with computer algebra systems, MathBrush has a number of
additional properties useful for mathematical analysis. For
example, there is support for input and output of large ex-
pressions, interactive manipulation of mathematical expres-
sions via the use of context menus, a logging mechanism for
capturing and archiving of problem solving rationale and the
ability to interactively swap one computer algebra system
for another. The latter feature allows users to find alternative
answers for problems - e.g. computer algebra systems often
produce different answers for the same problems (e.g. inte-
grals or solutions of differential equations). In many cases
results are easier in one system than the other.

The MathBrush system itself is build in five main mod-
ules depicted in figure (4). The interface modulepasses the
ink collected from a user to thecharacter recognizer. The
recognizer detects different characters and generates a set of
bounding boxes along with a set of candidate and confidence
pairs and passes it back to theinterface module. The inter-
face modulethen passes the information generated by the
character recognizerto thestructural analyzer. The analyzer
processes this information, constructs a well-formed mathe-
matical expression, and generates a MathML representation
of the expression. Theinterface modulesend the MathML
together with the operation selected by the user to theCAS
interface tool. This tool is used to interact with the target
computer algebra system and returns back the computed re-
sults generated from the CAS as presentation MathML. The
presentation MathML and the format defined by the user are
sent to aMathML rendering tool, which generates a set of
boxes and characters for theinterface moduleto display. All
of the modules are explained in more details in [LMM ∗06].

c© The Eurographics Association 2007.

D. Tausky et. al. / Managing Ambiguity in Mathematical Matrices

We use MathBrush as a test bed for studying and evaluating
our techniques.

User’s input
ink

Bounding boxes
and ranked
candidates

MathML of input
expression

Display
information

+ CAS + Operation

MathML of
results

+ User
format

Math
Rendering

Tool

User Interface

CAS Interface
Tool

Structural
Analyzer

Character
Recognizer

Symbols
DB

Computer Algebra
Systems

MathML Operators
Dictionary and
External entities

Matrix
Analyzer

Figure 4: MathBrush System Components

Figure 5: MathBrush Matrix Recognition Results

In the context of this paper, we are primarily interested
in the matrix analyzer, which is a separate extension of the
structural analyzer. Therefore, the input to our matrix ana-
lyzer is the character recognizers list of recognized charac-
ters and bounding boxes. The matrix analyzer then outputs
a recognized, MathML based representation of the matrix,
which is presented to the user, using the MathBursh user in-
terface.

4. Matrix Recognition Pipeline

Recognizing sketched matrices is a hard problem. Even if
the matrix is fully specified, the individual elements can be
complex, vary in size from each other, and contain a differ-
ent number of characters. The spacing between the charac-
ters is not uniform. Recognizing under-specified matrices is
a harder problem, as fewer clues about the layout of the ma-
trix exist.

In this section we will describe in detail each stage of our
recognition pipeline. Throughout this section we will exam-
ine the recognition of the first example presented in the left

side of figure2. We will also explain our rationale for choos-
ing the approach we did, and offer our insight into other
strategies or assumptions.

4.1. Pre-Element Processing

The first stage of the pipeline simply removes the square
brackets, and separates the ellipsis from the other elements
of the matrix. The matrix is first recognized without the el-
lipsis and then refined using the information contained in the
ellipsis. Figure6 shows the result of this stage. The elements
on the left (a) are processed in section4.2. The dots (b) are
processed in section4.3.

(a) Character Elements (b) Ellipses Elements

Figure 6: The matrix after pre-element processing.

4.2. Element Processing

This stage of the pipeline determines the layout of the drawn
elements of the matrix. The operations performed in this
stage consist of grouping individual characters into elements
and estimating dimensions of the matrix. Figure7 illustrates
the operations. When the ellipses are reintroduced in section
4.4the size of the matrix will be increased.

Group
characters
into elements

Estimate
matrix
dimensions
as 2 x 2

Figure 7: The example matrix after element grouping

Unlike typeset matrices, sketched matrices have variable
character sizes which cannot be rigidly modeled, and vari-
able spacing between the characters and the elements of the
matrix. In this paper we present two methods to group char-
acters. Our first method, based on only local features, is
described below. We are currently experimenting with the
second method that is based on global features and it is de-
scribed in section5.1.

c© The Eurographics Association 2007.

D. Tausky et. al. / Managing Ambiguity in Mathematical Matrices

In this method we examine the distance between adjacent
characters, and compare it to a soft threshold based on the
average width of the characters. Using this threshold, char-
acters are group into elements. This approach is very similar
to the approach by Kanahori and Suzuki [KS03] used to rec-
ognize typeset matrices. The main difference is that we use
a single soft threshold based on the size of the characters
whereas Kanahori and Suzuki use multiple hard thresholds,
based on the class of the characters being compared.

Once every character has been grouped into an element,
each element is then passed back to the structural analyzer,
which returns a MathML based expression tree for the ele-
ment, as each element is essentially a self-contained expres-
sion. Each element is then classified as beingindexableif it
is a simple element of the forma, ab

c or ab
c,d.

At the completion of this phase of the pipeline, each el-
ement is a fully parsed expression, and the structure of the
matrix has been resolved. If the matrix is a fully specified
matrix, the recognition phase is essentially complete.

4.3. Ellipsis Processing

Whereas the element processing stage groups characters into
elements, the ellipsis processing stage links individually rec-
ognized dots into ellipsis. Ellipses are defined as a set of
co-linear dots aligned in a horizontal, vertical, diagonal or
anti-diagonal direction.

Unlike typeset matrices, the dots that form an ellipsis in a
sketched matrix may be irregularly spaced, and drawn with a
significant deviation from an ideal line between the intended
end points. Consider figure8 showing the grouped dots. In
this paper we present two methods for detecting ellipses, one
based on local features, and an alternative technique is pre-
sented in section6.2that finds a global optimum. In our cur-
rent implementation only local features, ellipses are detected
by searching for groups of dots that may be co-linear within
a hard-coded tolerance, and are close in proximity. The tol-
erance was obtained by statistical evaluation of our data set.
Once we have detected ellipses, we search for elements that
are co-linear with the ellipsis and link the elements together
as described in the next section.

Diagonal
ellipsis,
link a

1
1 to a

5
5

Vertical
ellipsis,
link a

5
1 to a

5
5

Horizontal
ellipsis,
link a

1
1 to a

5
1

Figure 8: Example of a matrix with three detected ellipses.

4.4. Matrix Anti-Unification and Consecration

For hand-drawn matrices, it is frequently the case that user
will under-specify the matrix. There are a number of rea-
sons for this; to save time, the matrix may be too large to be
completely drawn, or the user transferred the paper paradigm
to the pen math system. In this step we resolve the under-
specified matrices into fully specified matrices. The algo-
rithms used here are variants of the algorithms by Sexton and
Sorge [SS06, SS05]. In comparison, we use a graph based
representation of the matrix rather than text based grammars.
We only perform linear interpolation between integer values.

The steps in this stage consist of identifying the structure
of ellipsis regions (anti-unification), interpolating these re-
gions, and checking for consistency. The three types of re-
gions which we detect are linear, triangular and rectangu-
lar regions. Once regions are detected we first interpolate
across the boundary ellipses, then interpolate within the re-
gion. This is shown in figure9. If a conflict occurs during the
interpolation, an error is reported and the recognition process
is terminated.

(a) The initial matrix.


a1

1 a1
2 a1

3 a1
4 a1

5
a2

2 · · · · · · a2
5

a3
3 · · · a3

5
a4

4 a4
5

a5
5


(b) The matrix after performing linear interpolation over the

boundaries.


a1

1 a1
2 a1

3 a1
4 a1

5
a2

2 a2
3 a2

4 a2
5

a3
3 a3

4 a3
5

a4
4 a4

5
a5

5


(c) The fully instantiated matrix after resolving the newly

added horizontal ellipses.

Figure 9: Interpolation of a triangular region

4.5. Rendering output

Presentation MathML is then generated by transforming the
graph structure from the pervious stage into a tree structure
and traversing the tree. The math rendering tool in Math-
Brush accepts presentation MathML and generates a set of

c© The Eurographics Association 2007.

D. Tausky et. al. / Managing Ambiguity in Mathematical Matrices

boxes for the user interface module to display. Currently the
Presentation MathML of the fully-specified Matrix is gen-
erated by the structural analyzer. The rendering tool renders
the matrix elements taking care of alignments in the rows
and columns, so that the height of a row is the same as of the
highest element in it and all the elements are centered ver-
tically in there, and same for the column width. If the ma-
trix width exceeds the width of the display area, the matrix
will be broken by keeping the big square brackets to indicate
matrix breaking and separating the elements of each row by
commas and include them in square brackets. Rows are also
separated by commas.

5. Current Work on Methods to Improve Robustness

5.1. Applying clustering techniques to matrix structure
recognition

In section4.2 we described a simple metric for assigning
characters to elements and determining the position of the
elements using local features. We are currently investigating
a more robust and flexible approach to element segmentation
using the clustering techniques based on the EM algorithm
[FP03].

A characteristic of a matrix is that each element of the
matrix is part of a column and a row, and that the mid-point
of each element in a particular row or column should be
in a line parallel to one of the two primary axes. Therefore
the problem can be reduced to two one-dimensional cluster-
ing problems, where in each dimension we project the cen-
troid of each element onto a horizontal and vertical axis, and
find clusters in the projections. The advantage of this dimen-
sionality reduction is that we reduce the complexity of the
problem and solution by exploiting the structure of the prob-
lem. Figure10illustrates this dimensionality reduction. This
projection approach is already used by Hu [HKLW01] and
Chandran [CK93] to segment scanned typeset tables, how-
ever once the profiling is done they use normalized thresh-
olds to segment the table. We have implemented a more ro-
bust and adaptive method:

Figure 10: Projection of character centroids on the axes are
show as dots. The thick lines indicate the center of the matrix
elements

We use mixture models to solve the clustering problem,

wherek Gaussian distributions are initially uniformly dis-
tributed over the projected axis. Using an EM-algorithm
based formulation, the model parameters we wish to opti-
mize areµi andπi , the mean of each Gaussian model and
the mixing proportions. The varianceσi is fixed to a con-
stant ratio based on the absolute size of the matrix. The op-
timization can be formulated as finding theµ that optimizes
the probability of the characters being generated from that
distribution. In the E (or expectation) step, we calculate the
probability that the character centroids were generated by
the current Gaussian distribution. In the M (or Maximiza-
tion step) we use a weighted least squares metric to optimize
the Gaussian means,µi . This process of assigning ownership
of characters to each distribution, calculating the probability,
and then shifting the distribution based on the points associ-
ated with that distribution continues until the algorithm con-
verges.

The method presented in section4.2 uses only local fea-
tures, the distance between one character and an adjacent
character, to determine the number and position of the el-
ements of a matrix. Therefore, the expected dimension of
the matrix is not useful. In contrast, this clustering method
uses global features to solve the same problem. Therefore
this method works very well, if the expected dimensions of
the matrix are known which in turn dictates how many Gaus-
sian models to use. If the expected dimension of the matrix
is unknown, we are currently exploring other methods of es-
timating the parameters.

One method is to overestimate the number of Gaussian
models. Typically, if the number of models exceeds the ac-
tual number of rows or columns, one of two detectable
events will occur. Either one (or more) mixture model has
a very low mixing proportion (πi < ε), or two mixture mod-
els, with very similar means, will have approximately equal
mixing proportions (|µi −µk|< ε andπi ' πk). We can then
reduce the number of models until we no longer detect these
conditions.

This mixture model technique has many advantages over
traditional heuristic methods when dealing with pen data.
Users, when writing matrices often significantly vary the
size and spacing of the characters as they attempt to visu-
ally fit the characters within the elements perceived bounds
as shown in figure11. By finding a global optimum we are
overcoming the brittleness of heuristic methods that use only
local information.

6. Future Work

6.1. Incorporating additional information

There are several classes of matrices which could be re-
solved if extra information is provided beyond what is com-
monly drawn. For example if the dimension of the ma-
trix is known, either given explicitly, or by analysis of the

c© The Eurographics Association 2007.

D. Tausky et. al. / Managing Ambiguity in Mathematical Matrices

Figure 11: A matrix with varying character sizes

surrounding information, then the following under-specified
matrices could be resolved.

Figure 12: Two matrices where the dimension cannot be
inferred directly, but is indicated as a subscript following
the matrix.

Previous techniques for resolving ambiguity assume that
the dimension of the matrix is known prior to analysis. We
are currently exploring using pen-based input to allow the
user to explicitly indicate the dimensionality as shown in fig-
ure12.

Another example where external information would sup-
plement the recognition process is if each element is more
complex than a simple base-subscript-superscript configura-
tion, it may be difficult for the recognition algorithm to in-
fer which variables should be incorporated into generating
an index function. Allowing the user to explicitly indicate
which variables should be indexed should increase the ver-
satility of our method.

6.2. Ellipsis estimation using clustering techniques

In section5.1 we discussed a strategy we are currently im-
plementing to improve the robustness of term clustering. A
similar but non-Gaussian clustering technique could be ap-
plied to the detection and estimation of ellipses. A reason-
able approach would be to modify k-mean line fitting algo-
rithm [FP03]:

Hypothesizek lines, for some smallk, possibly 1.
Assign points to each line, fitting the line using least
squares.
Constrain the line be either vertical, horizontal, diagonal
or anti-diagonal.
while log likelihood no longer decreasesdo

Allocate each point to the dot line.
Refit the line (translate or rotate in increments of 45◦.)
Calculate perpendicular distance of dots to the nearest
line (log likelihood).

end while
If log likelihood is sufficiently large increasek

If the input was further constrained such that each ellipsis
contains only 3 (or some other fixed number) of dots, then k
could be directly inferred.

6.3. Fill Patterns

Another common technique for indicating the structure of
matrices is that of drawing a single concrete term to repre-
sent filling a region with that term. We intend to add an ad-
ditional stage to the pipeline after the anti-unification stage
to process fill term. However it is unclear how to intuitively
distinguish a fill term from a non-fill term. Sexton and Sorge
[SS06] provide algorithms to accommodate fill terms, but in
their work, fill terms are explicitly labeled in the input. Cur-
rently, a fill pattern of 0 for unspecified regions of the matrix
is assumed.

6.4. User Interface Issues

One of the problems we are still investigating is how to rep-
resent very large matrices efficiently and naturally, giving
the user the option to view all or part of them for better
manipulation. Presentation MathML does not support spec-
ifying short forms for mathematical expressions. Given the
fact that we are using presentation MathML to communicate
between modules and with the CAS, we have to generate
MathML for the fully specified matrix which could be inef-
ficient for large matrices. Furthermore, allowing the user to
view the matrix only in its fully specified form might not be
the most natural way one thinks of the matrix. We are look-
ing at ways to efficiently represent and display the short-cuts
in matrices and provide the capability to zoom in at certain
areas without the need to view the whole complete matrix.
This may involve extending the MathML syntax. One other
issue we are investigating is matrix editing to operate on cer-
tain elements, rows or columns for manipulation.

c© The Eurographics Association 2007.

D. Tausky et. al. / Managing Ambiguity in Mathematical Matrices

Consider for example the following matrix shown in fig-
ure13. Although it can be drawn very compactly, the fully-
instantiated version would contain over 100 million ele-
ments, and the size of the resulting MathML string would
be over 2GB.

Figure 13: A sketch of a matrix. Fully instantiated, the ma-
trix would contain 100 020 001 elements.

Extending the MathML syntax to include underspecified
matrices and equations has other benefits. If the user was to
enter:

x = 1· · ·n

and later entern = 10, using the strict MathML definition
we would not be able to representx, and therefore could not
instantiatex even whenn is known.

7. Conclusion

In this paper we have described the problem of recognizing
hand drawn matrices, and the sub-problem of recognizing
matrices with ellipsis drawn to illustrate the structure of the
matrix. We then presented an approach to recognizing such
hand-drawn matrices. Finally we presented several alterna-
tives that attempt to optimize the recognition over the com-
plete matrix. We believe that recognizing matrices is a criti-
cal component of any pen-math system, that also illustrates
the benefits of pen-based interaction.

References

[BG96] BLOSTEIN D., GRBAVEC A.: Recognition of
Mathematical Notation, vol. Handbook of Optical Char-
acter Recognition and Document Image Analysis. World
Scientific, 1996, pp. 557–582.

[CK93] CHANDRAN S., KASTURI R.: Structural recogni-
tion of tabulated data. InProceedings of the Second Inter-
national Conference on Document Analysis and Recogni-
tion (1993), pp. 516–519.

[FP03] FORSYTH D., PONCE J.: Computer Vision: A
Modern Approach. Prentice Hall, Upper Saddle River,
New Jersey, 2003.

[HKLW01] HU J., KASHI R., LOPRESTAD., WILFONG

G.: Table recognition and its evaluation. InProceed-
ings Document Recognition and Retrieval VIII(2001),
vol. 4307, pp. 44–55.

[KS98] KAJLER N., SOIFFER N.: A survey of user inter-
faces for computer algebra systems.Journal of Symbolic
Computation 25, 2 (1998), 127–159.

[KS01] KANAHORI T., SUZUKI M.: A recognition
method of matrices by using variable block pattern el-
ements generating rectangular area. InGREC 2001
(September 2001), Springer, pp. 320–329.

[KS03] KANAHORI T., SUZUKI M.: Detection of matri-
ces and segmentation of matrix elements in scanned im-
ages of scientific documents. InProceedings of the Sev-
enth International Conference on Document Analysis and
Recognition(2003), pp. 433–437.

[LMM ∗06] LABAHN G., MACLEAN S., MARZOUK M.,
RUTHERFORD I., TAUSKY D.: A preliminary report on
the mathbrush pen-math system. InMaple Conference
2006 Proceedings(July 2006), pp. 162–178.

[SS05] SEXTON A., SORGEV.: Processing textbook-style
matrices. InMathematical Knowledge Management, 4th
International Conference(2005), pp. 111–125.

[SS06] SEXTON A., SORGE V.: Abstract matrices in
symbolic computation. InProceedings of the Interna-
tional Symposium on Symbolic and Algebraic Computa-
tion (ISSAC)(2006), Association for Computing Machin-
ery, pp. 318–325.

[ZBC04] ZANIBBI R., BLOSTEIN D., CORDY J. R.: A
survey of table recognition.International Journal on Doc-
ument Analysis and Recognition 7, 1 (2004), 1–16.

[Zuy97] ZUYEV K.: Table image segmentation. InInter-
national Conference on Document Analysis and Recogni-
tion (1997), pp. 705–708.

c© The Eurographics Association 2007.

