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Abstract
Despite the increasing prevalence of touch-based tablet devices, little attention has been paid to what effects, if any,
this form factor has on sketch behaviours in general and on sketch recognizers in particular. We investigate the title
question through an empirical study in the context of mathematical expression recognition. Using a corpus of thirty
expressions drawn on Tablet PC and iPad by thirty writers, we show that characteristics of sketching and drawing
differ depending on platform. While recognition is most accurate on the Tablet PC due to its technical superiority,
recognition is feasible on mobile touch-based devices. However, there are characteristics of sketching on multi-
touch tablets that differ, and these physical characteristics of writing impact recognition accuracy. Together, our
observations inform the broader Sketch Recognition community as they design systems targeted to multi-touch
tablets.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Systems]: Information interfaces
and presentation—User interfaces

1. Introduction

Tablet based computers are popular devices for applications
that can make use of two dimensional input and the ability
of sketching smooth curves in two dimensions. Examples of
such applications include mathematics, music, drawing pro-
grams and environments for marking up documents. While
the current generation of Tablet PC has been a popular plat-
form for two-dimensional input for the last ten years, more
recently multi-touch tablets such as the iPad, the Android
tablet, and the Playbook have supplanted the Tablet PC as a
candidate for two-dimensional input.

The popularity of the iPad, Google Android and RIM’s
Playbook devices marks a significant shift from earlier tablet
interfaces designed around the Tablet PC. While Tablet PCs
were designed for stylus interaction, the newer devices make
use of multi-touch interfaces designed for finger interaction.
However, even with such a shift, there is significant demand
for sketching applications on multi-touch tablets. A quick
perusal of the App Store for Apple’s popular iPad tablet dis-
plays many examples of sketching and drawing applications.
Adobe’s Ideas and Autodesk’s SketchBookX are popular ex-
amples of these sketching and drawing applications [Aut11].

For sketch recognition researchers, it is clear that new
sketch applications may wish to target multi-touch tablet de-
vices alongside the more traditional Tablet PC form factor.
However, despite years of developing interfaces and tech-
niques based on the Tablet PC interface, there is a notable ab-
sence of research on how these sketch technologies work on
touch based platforms. An exploration of related literature
for information on how the drawing task changes when mov-
ing to multi-touch (does speed, size, or legibility change?),
on the expected performance of recognition algorithms (how
much worse should we expect it to be?), and on user at-
titudes toward these multi-touch tablets as a platform for
drawing (do users find the platform usable? compelling?)
gives little guidance. Questions such as: “Is the ‘fat-finger
problem’ [WFB∗07] significant?” and “Is a stylus neces-
sary for reliable recognition on multi-touch tablets?” (see
Figure 1) remain unanswered. This implies a clear need for
studies of multi-touch versus tablet as a target platform for
sketch, studies similar in nature to those of Apte and Kimura
[AK93] comparing the mouse and tablet.

Surveying all possible sketch domains is clearly not pos-
sible. Amongst the many sketch based applications for tablet
based computers, the ability to input and work with mathe-
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matical expressions has been a popular target for research.
A number of current math recognition systems have the
ability to work with symbolic and numeric input that are
available for the Tablet PC platform including for exam-
ple MathBrush [LLM∗08], MathPaper [ZMLL08] and FFES
[ZBC02]. However, math recognition requires considerable
computing resources, something not present in the current
generation of multi-touch tablets. We know of no math
recognition software other than our own which is available
for iPads.

On the other hand, there are properties of mathematical
notation that make it well suited to a study of sketching on
Tablet PC versus multi-touch tablet platforms. Mathematical
notation is two dimensional and, as such has not been a nat-
ural fit for one dimensional interface devices based on key-
boards and mice. Mathematical expressions contain a variety
of symbols (thus testing for object recognition) and a vari-
ety of spatial relationships (thus testing for spatial recogni-
tion). It is also possible to determine if a given mathematical
expression has been recognized correctly or even a close-
to-correct measure for such expressions. Finally, mathemat-
ical manipulation as done by pen and paper also lends it-
self to many tablet-friendly gestures. For example, crossing
out common factors in rational fractions or deleting com-
mon terms on both sides of an equation is typically done via
commands in one dimensional environments but involves no
more than a simple crossing-out gesture on pen and paper or
touch tablet.

Our study led to both expected and unexpected results.
The fact that, at the level of mathematical notation recog-
nition specifically, we found recognition was more accurate
on the Tablet PC than on the iPad was expected. Similarly
it was not surprising that writer-dependent training of our
symbol recognition system produced large increases in ac-
curacy on all platforms, though these increases were most
dramatic on the Tablet. Less expected was the observation
that the Tablet platform’s advantage was limited to prob-
lems requiring discrimination of fine detail, such as symbol
recognition. Coarser features such as spatial relationships
were recognized equally well on all platforms, suggesting
that the Tablet’s superiority is more a function of its relative
technical sophistication than of the form factor itself. While
the Tablet PC outperformed the multi-touch tablet in both
accuracy and writing speed, it was surprising that pens de-
signed specifically for multi-touch tablet devices (see Figure
1, where the second stylus is one designed for the iPad) were
of little benefit on multi-touch tablets. For example, symbol
recognition accuracy on the iPad was higher when drawing
with a finger than with an iPad stylus. As well, writing speed
did not differ significantly with finger from speed with iPad
stylus.

The rest of this paper is organized as follows. The next
section introduces basic background on the Tablet form fac-
tor and the ‘fat-finger problem’. Section 3 describes the

methodology of our study and gives an overview of our
recognition system. Section 4 discusses how we interpreted
the results of our experiments, and provides math recogni-
tion accuracy rates. Following that, Section 5 analyzes some
physical characteristics of the expression transcriptions we
collected, and describes how those characteristics affected
the lower-level classification systems included in our math
recognition system, explaining the accuracy results in more
detail. Finally, we point out our main findings in Section 6,
and offer some problems whose solution would likely dra-
matically improve recognition accuracy on touch-based de-
vices.

Figure 1: An Tablet PC stylus (top) and an iPad stylus (bot-
tom).

2. Background

Currently, tablet computing platforms can be broadly di-
vided into two categories - the Tablet PC platform, which is
based on a conventional PC architecture and mobile multi-
touch tablets such as the Apple iPad. The Tablet PC plat-
form is a conventional laptop, coupled with the Microsoft
Windows operating system and a high resolution electro-
magnetic digitizer. Typical Wacom digitizers used on Tablet
PCs provide spatial resolution of over 1000dpi and a sam-
pling frequency of 133Hz. Although some Tablet PCs sup-
port touch and multi-touch, the primary mode of interaction
is with a stylus. Extensions to the Microsoft operating sys-
tem allow developers to use built-in ink collection and han-
dling data structures and character recognizers.

In comparison, multi-touch tablets have significantly re-
duced hardware and processing capabilities when compared
to Tablet PC computers. As well, the capacitive based touch
screen of the iPad captures much lower resolution ink sam-
pling (at most 132 dpi), compared to the Tablet PC, at a
far lower sampling rate that is determined by the operating
system as it responds to events. Furthermore, while capaci-
tive styli do exist, the tips are necessarily large when com-
pared with their electromagnetic counter-parts. The primary
method of interacting with such tablets is by the multi-touch
interface, using your fingers to directly gesture on the screen.
While some of the differences between these platforms, no-
tably processor power and screen resolution, may change
with time, the paradigm of finger or capacitive stylus draw-
ing will, we argue, persist on multi-touch tablet devices. It
is the effect of these features on input recognition that we
examine in this paper.
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One commonly cited problem with multi-touch inter-
action is the ‘fat-finger problem’ [WFB∗07, WWC∗09], a
problem that arises from the relatively broad profile of a
finger relative to the pixel-based contact point registered
on a multi-touch screen. The pixel that represents the con-
tact point with the display is always occluded by the fin-
ger. Furthermore, the fat-finger phenomenon persists even
when moving to a capacitive sylus designed for multi-touch
tablets. To enable high capacitance readings upon contact
with the display, a capacitive stylus is broader. It presents a
profile more like that of a crayon than like that of a tradi-
tional stylus.

While researchers have studied the design of widget
sets to address widget interaction on multi-touch surfaces
[WFB∗07,WWC∗09], as we note earlier, we are aware of no
studies contrasting sketch input and recognition behaviour
on multi-touch tablet versus traditional Tablet PC platforms.

3. Methodology

3.1. Data collection

Thirty students participated in our data collection study.
They were recruited using posters and were given a $10 gift
certificate in exchange for transcribing mathematical expres-
sions. Participant data was collected on three different com-
puting configurations: A Tablet PC using a stylus, an Apple
iPad using a stylus and an Apple iPad using your finger. Par-
ticipants sketched the same 30 expressions on each platform,
sketching all the expressions on one platform before switch-
ing to the next platform. The study was fully factorial, with
the ordering of the platforms being switched for each par-
ticipant, such that an equal number of participant performed
each plausible ordering.

Figure 2: Our data collection software on the Apple iPad.

The equations that participants were asked to tran-
scribe consisted of 30 mathematical expressions de-
rived from a first year introductory Calculus textbook
[HHGWM98]. The average equation contained 12 sym-
bols. Examples of some of the equations are shown be-
low. The entire set is available in an online appendix at

http://www.scg.uwaterloo.ca/mathbrush/publications.

x =
−b±

√
b2−4ac

2a

A =
1√
2π

∫ b

0
e

−x2
2 dx

Each session was organized as follows: One of three tablet
platforms was placed in front of each participant, displaying
the transcription interface shown in Figure 2. The functional-
ity of the interface was described to them and demonstrated
by the researcher conducting the data collection. The thirty
expressions to be transcribed were organized in a binder,
printed one expression per page. Participants were asked to
draw expressions presented on each page in the binder, then
click ‘Next’ to clear the screen and proceed to the next ex-
pression. They could also click ‘Clear’ to clear the display
and redo an expression. The order of the expressions was
the same for all participants.

Once the participant had completed all 30 expressions on
a particular platform, they were rotated to a different plat-
form and told to repeat the transcription task. Participants
were asked in written instructions to write as legibly as they
would on an assignment they would hand in for evaluation.
It was observed part way through the data collection study
that some participants were not writing legibly. We there-
fore changed the protocol to include both an oral and written
reminder to write legibly. Participants were told that if they
did not recognize a symbol, or were unsure how to draw a
symbol, they should ask for help. Aside from requested as-
sistance, no feedback or advice was offered during transcrip-
tion. They were not advised on how to write or on how to
interact with the data collection software.

Once the participants had completed transcribing the 30
calculus equations on all three platforms, participants were
asked to transcribe a series of randomly generated mathe-
matical equations on the Tablet PC platform for the remain-
der of the one-hour session. The purpose of this second task
was simply to gather additional examples of characters and
spatial relationships. The techniques used to generate the
random equations are discussed in [MTL∗09]. Our collec-
tion software recorded the x,y position and system times-
tamp associated with each sampled ink point.

3.2. Recognition system architecture

Our recognition system is based on a relational grammar for-
malism that describes how symbols may be arranged into
spatial relationships to produce well-formed mathematical
expressions [ML10]. Within the system, there are two clas-
sification subsystems. The symbol classification subsystem
decides which input strokes should be grouped together into
distinct symbols, and identifies what symbols those stroke
groups represent. The relation classification subsystem de-
termines which spatial relationships apply to a pair of stroke
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groups, each representing potential subexpressions of the in-
put expression. The relations indicate general writing direc-
tions (e.g., horizontal, vertical, superscript, subscript, con-
tainment). The grammar formalism integrates these two sub-
systems by specifying how individual symbols and subex-
pressions combine via the spatial relations into larger math-
ematical expressions. The grammar model also attaches se-
mantic interpretations to these symbol and subexpression ar-
rangements.

Because of ambiguities in handwritten input, it is unrealis-
tic to expect perfect accuracy in the recognition subsystems.
As such, they each report several candidates, along with con-
fidence scores. We say that a particular symbol or relation
classification decision is correct if the top-ranked candidate
is the right one. If the decision was not correct, but the cor-
rect decision appeared as a candidate in the subsystem’s out-
put, we call the decision ranked.

Our recognition system reports interpretations of the input
expression in decreasing order of confidence. It can report
interpretations of any subset of the input, allowing users to
correct the recognition results. For example, if a user draws
the expression Ax + b, but it is incorrectly recognized as
AX tb, then the user may correct the expression to an ad-
dition, AX + b, and correct the upper-case X to the correct
symbol x, provided these alternatives were identified by the
system as valid parses.

4. Results

Given the recognition architecture described in the previous
section, the transcriptions we collected were annotated with
ground truth identifying which strokes correspond to which
symbols, and which groups of strokes relate to one another
by spatial relationships. For example, consider the expres-
sion shown in Figure 3. Assuming that the strokes are iden-
tified by integers starting from 0 and increasing from left to
right, the ground truth can be written schematically as

{0} SYMBOL ‘e′

{1} SYMBOL ‘l′

{2} SYMBOL ‘n′

{3,4} SYMBOL ‘x′

{5,6} SYMBOL ‘ =′

{7,8} SYMBOL ‘x′

{0} SUPERSCRIPT {1,2,3,4}
{0,1,2,3,4} HORIZONTAL {5,6}
{5,6} HORIZONTAL {7,8}

Figure 3: Expression demonstrating our ground-truth for-
mat.

We discarded any transcriptions which were illegible, in-
complete, or contained cursive writing, which our recognizer
does not currently support. Generally, if a human operator
could not decide on an appropriate ground-truth assignment
to a transcription, it was discarded. Of the 900 possible ex-
pressions, this left 794, 778, and 803 available for testing in
the Tablet PC, iPad (pen), and iPad (finger) configurations,
respectively.

Using this ground truth, we evaluated our math recog-
nizer on the data collected under each of the three config-
urations. To determine the recognizer’s accuracy, we mea-
sured, for each expression, how many corrections were re-
quired to be made through the recognition interface to ob-
tain the correct recognition result. This measurement was
taken automatically by a program that simulates a user in-
teracting with the recognition system. If an expression is
recognized perfectly, then it requires zero corrections. We
say such a result is correct. Otherwise, the program identi-
fies which symbols and/or subexpressions were recognized
incorrectly and requests alternative parses from the recog-
nizer for the appropriate subsets of the input. It searches the
alternatives for symbols or subexpressions matching the ex-
pression’s ground truth, and, if it finds them, corrects the
recognizer’s output. These corrections may change mistaken
symbol identities, or they may change the expression’s struc-
ture and semantics. If, after making some corrections, the
program obtains the correct result, we say the result is at-
tainable. Otherwise, the result is incorrect.

For example, the first expression in Figure 4 was recog-
nized as

∫
xn dx = 1

n+1 xn+1 and so counts as correct. In
the second expression, the π symbol was recognized as an
upper-case Π. The lower-case symbol was available as an
alternative, so the expression was attainable with one cor-
rection. In the third expression, the first closing parenthesis
was recognized as the number 7, causing the expression to
be recognized as x3+y3 =

(
x+ y7 [xz− xyT ]z

)
. The correct

parse was discovered by the recognizer, but without suffi-
cient confidence for it to be among the top candidates. It was
attainable after two corrections to the expression structure
and three to incorrectly recognized symbols.

Figure 4: Expressions demonstrating the classification of
our test results.
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It is important to distinguish between failures in symbol
classification and failures in relation classification. This is
especially important since our system does not allow for ex-
traneous ink (e.g., small dots from accidental finger or pen
contact), and uses a model-based approach to symbol classi-
fication (preventing recognition of visually similar symbols
that contain differing numbers of strokes).

Particularly in writer-independent testing, poor symbol
classification accuracy can prevent expression recognition
from succeeding. If the correct symbol identities are not re-
ported as candidates by the symbol recognizer, then the test
result will be incorrect no matter how many corrections the
testing program makes. We call such expressions infeasible.
Figure 5 shows two infeasible transcriptions. In the first, the
left hand side was intended to be x, but the participant did
not lift the pen, resulting in a symbol that looks more like α,
which the symbol classification system could not identify as
x. Note that this particular writer consistently wrote x sym-
bols in this way, so it was not a transcription error. In the
second transcription, there is some extraneous ink around
the plus symbol, which our recognizer was forced to inter-
pret incorrectly since it lacks a model for noise or extra ink.

Figure 5: Unknown symbol allographs and extraneous ink
cause expressions to be classified as infeasible.

To better identify the effects on recognition of each con-
figuration, we evaluated the recognizer under three different
scenarios. The first, called default, simply ran each expres-
sion in the corpus through the testing program. Figure 6 il-
lustrates the recognizer’s accuracy in each configuration for
this scenario. Since the number of usable transcriptions is
similar between scenarios, the results are reported as per-
centages rather than raw expression counts.

The low feasibility rate in the default scenario indicates
that symbol recognition failure often prevented the recog-
nizer from obtaining the correct parse. The two remaining
scenarios were designed to avoid this problem so as to isolate
the effects of each configuration on relation classification.
In the pretrain scenario, we used a writer-dependent train-
ing strategy. Prior to running a participant’s transcriptions
through the test program, we added up to ten samples of
each symbol to the database of symbol models. These sam-
ples were extracted from the participant’s transcriptions of
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Figure 6: Recognition accuracy in the default scenario.

randomly-generated expressions. The relation classifier was
not directly affected by this training step. One participant
did not provide random expression transcriptions and was
omitted from this scenario. Figure 7 shows the recognizer’s
accuracy for the pretrain scenario.
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Figure 7: Recognition accuracy in the pretrain scenario.

The final scenario, called perfect, focused on relation
classification accuracy by bypassing the symbol recogni-
tion phase altogether. In it, the correct symbol identities and
bounding boxes were extracted from expression ground truth
and passed directly to the math recognizer. Figure 8 shows
the recognizer’s accuracy for the perfect scenario.
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Figure 8: Recognition accuracy in the perfect scenario.

Although these recognition rates are relatively low, it
should be noted that math recognition is a difficult prob-
lem. These rates are comparable to those reported by other
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researchers both when ignoring symbol recognition (e.g.,
[GC04, ZBC02]), and under comparable training regimes
(e.g., [AMVG09]).

5. Analysis

During our experiments, we collected a large amount of data
concerning the behaviour of our recognizers as well as the
physical characteristics of the transcriptions. We also tested
the symbol and relation classification subsystems on isolated
symbols and subexpression groups extracted from the tran-
scriptions. These tests measured classification accuracy in-
dependently of any complicating factors introduced by the
math recognition system as a whole. We will make some ob-
servations about the transcriptions, then use those facts to
interpret the behaviour of our recognition system.

5.1. Physical transcription characteristics

The physical characteristics we measured are broadly divis-
ible into four categories: time (average time per pen-down
stroke, average time between strokes, average time per ex-
pression transcription), speed (average pen-tip speed), aver-
age number of sample points per stroke, and physical stroke
size (average arclength and bounding box size).

Virtually all participants took less time per expression and
per stroke on the Tablet PC than in either iPad configuration.
Most also took less time per expression and per stroke when
using a stylus on the iPad than when using their finger. How-
ever, time per stroke was only roughly correlated with time
per expression. The time taken between strokes was a much
better predictor, being nearly perfectly correlated with time
per expression.

Repeated Measures ANOVA was performed to analyze
the effect of platform on drawing speed and symbol size
(height). Speed was calculated in inches per second on the
displays, and was reported as an average speed for each par-
ticipant. Figure 9 depicts the mean and standard deviation
of users’ pen speeds (i.e. the mean of means and the stan-
dard deviation of means). When analyzing average draw-
ing speed across users on the different platforms, Mauchly’s
Test of Sphericity indicated that the sphericity assumption
was violated (p < 0.001,ε = 0.574); therefore Greenhouse
Geisser correction was applied to analyze within subjects
effect. Repeated measures ANOVA indicates that average
drawing speed differs significantly depending on platform
(F1.149,33.313 = 18.173, p < 0.001). Post-hoc tests with Bon-
ferroni correction indicated that the Tablet PC was signif-
icantly faster than both the stylus and finger on the iPad
(p < 0.001). No significant difference was found between
stylus or finger on the iPad (p = 0.923).

Similarly, height was calculated as the average height
of a mathematical symbol in the expressions drawn. The
average height of symbols (in inches) is depicted in Fig-
ure 10. Similar to drawing speed, we found that Mauchly’s
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Figure 9: Average pen speed in each configuration.

Test of Sphericity indicated that the sphericity did not
hold (ε = 0.052). Repeated measures ANOVA using Green-
house Geisser correction indicates that the average height
of symbols differs significantly depending on platform
(F1.105,32.042 = 27.886, p < 0.001). Post-hoc tests using
Bonferroni correction indicate significant differences be-
tween average heights across all platforms (p < 0.01 in all
cases).
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Figure 10: Average stroke height.

5.2. Relations between physical characteristics and
recognition accuracy

Each of these physical characteristics had an impact on the
quality of recognition, which often varied between config-
urations. The single greatest predictor of recognition accu-
racy was the time taken between strokes. In general, though,
as the time taken to write expressions increased, so too did
all accuracy measurements. This is not surprising, as slower
writing is often neater and easier to read for people as well.
Notably, this observation did not apply to as great an extent
when writing with a finger on the iPad.

The number of points per stroke affected each configura-
tion differently. On the Tablet PC, transcriptions were rec-
ognized more accurately the fewer points they had. This can
be understood by noting that strokes with more points are
longer and more complex, and therefore more succeptible to
recognition errors and precision loss from downsampling.
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On the iPad, so few points were generally available that
downsampling was not employed by the recognition sub-
system. More sample points in these configurations led to
more discernable symbol shapes and bounding boxes, which
enabled higher recognition accuracy by both classification
subsystems, and hence by the math recognition system as a
whole.

Typically, stroke size and writing speed increased or de-
creased together. Faster and larger writing tended to be rec-
ognized more poorly by both the symbol and relation clas-
sifiers, hence reducing the attainability and correctness rates
of the math recognizer. One exception was that the propor-
tion of symbol classification decisions that were correct in-
creased for larger, more quickly-drawn symbols on the iPad.
There are two reasons for this exception. First, the “fat fin-
ger problem” causes small symbols to be drawn inaccurately,
especially given the relatively poor spatial resolution of the
iPad touchscreen. Second, our experiments showed that the
faster one draws on an iPad, the faster its operating system
reports tracking events, increasing the sampling rate. This
makes available more points over the same length of ink,
which, as we saw above, improves recognition accuracy on
the iPad.

5.3. Comparison of scenarios and configurations

The math recognizer’s overall performance was clearly best
in the perfect scenario, with over 90% of expression attain-
able, and about two-thirds of those correct. This result was
expected, as that scenario offers a best-case scenario to the
math recognizer in which there is no ambiguity between
symbol candidates and the top-ranked candidate is always
correct. In the perfect scenario, there was no significant dif-
ference in the math recognizer’s accuracy between the three
configurations. This was because the accuracy of the relation
classifier – the only classifier required in the perfect scenario
– was comparable in all three configurations for most partic-
ipants. The participants for whom there was a significant dif-
ference between configurations were split with roughly half
having more accurate classification on the Tablet PC, and
other half having more accurate classification on the iPad.

Comparisons are more interesting between the default and
pretrain scenarios. As one might expect, math recognition
accuracy was significantly better in the pretrain scenario,
driven by improvements in symbol classification accuracy.
Writer-dependent training of the symbol recognizer caused
roughly 33% more feasible expressions than in the default
scenario. The proportion of feasible expressions that were
correct or attainable increased in spite of the fact that the
feasible transcriptions of the pretrain scenario generally con-
tained more complex math expressions and symbol shapes
than those of the default scenario. Writer-dependent classi-
fier training is therefore an effective strategy for increasing
recognition accuracy in all configurations.

More specifically, the attainability rate increased by 25-

35% between the default and pretrain scenarios in all config-
urations. However, while the proportion of expressions rec-
ognized correctly nearly doubled in the tablet configuration,
it only increased by about 50% in both iPad configurations.
This discrepancy was due to differences in the symbol clas-
sifier’s response to training on each platform. Although the
proportion of ranked decisions made by the symbol classi-
fier increased a similar amount in all configurations, the pro-
portion of correct decisions increased nearly twice as much
on the Tablet PC compared to the iPad. In this sense, the
pretraining step was much more effective on the Tablet PC.
Comparing the number of corrections to symbol classifica-
tion errors between the default and pretrain scenarios further
demonstrates the effectiveness of pretraining on the Tablet
PC: on average, over 35% fewer corrections were required
on the tablet in the pretrain scenario, while the number of
corrections required on the iPad only dropped by 10-15%.

Overall, recognition was most accurate on the Tablet PC,
significantly less accurate on the iPad with a pen, and some-
what less accurate again on the iPad with a finger. We ex-
pected this order at the outset of the experiment, believing
(correctly) that the Tablet PC’s high resolution offered in-
trinsically better recognition capabilities, and (somewhat in-
correctly) that writing with a pen on the iPad would be more
natural and amenable to recognition than writing with a fin-
ger. The Tablet PC’s advantage was not as great as we ini-
tially suspected, though, and was limited almost exclusively
to its superiority in symbol classification. In the default sce-
narios, the proportion of symbol classification decisions that
were correct was roughly 20-25% higher on the tablet than
on the iPad, and the gap increased in the pretrain scenario.
But the proportion of ranked decisions was only 6-8% higher
in the default scenario, and that gap shrank after pretraining.
The difference in the attainability rate between the config-
urations was therefore only about 5% in both scenarios, al-
though more corrections to symbol classification errors were
required on the iPad.

Surprisingly, symbol classification accuracy was higher
on the iPad when writing with a finger than when using
the stylus. This was likely due to the larger, slower writing
style that participants used when writing with their fingers,
which led to more accurate recognition on the iPad, as ex-
plained above. Even so, overall math recognition accuracy
was higher on the iPad when participants wrote with a pen.
This apparent contradiction is explained by the fact that our
classification subsystem tests were performed on isolated
symbols and subexpression groups. In the context of expres-
sion recognition, it is possible for incorrect stroke groups to
be proposed for symbol recognition, or for the correct stroke
group to not be proposed. (For example, if the strokes were
drawn too far apart.) It is also possible for relation classi-
fication confidence to be higher for incorrect subexpression
groups than for the correct ones, thereby causing the math
recognizer to choose an incorrect subexpression structure.
These types of problems are exacerbated by the “fat finger”
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phenomenon, which prevents writers from knowing exactly
where they are inking, and causes strokes to be closer to-
gether or farther apart than intended.

6. Conclusions and Future Work

Multi-touch devices like Apple’s iPad seem to be natural
platforms on which to deploy sketch-based interfaces. We
endeavoured to discover whether, given the relatively low
resolution and limited processing power of these devices,
such interfaces are, in fact, feasible, focusing on our research
area of math expression recognition. We collected transcrip-
tions of thirty mathematical expressions, each written once
by thirty writers on the Tablet PC, on the iPad with a stylus,
and on the iPad with a finger. Then, we ran those transcrip-
tions through our math recognition system, and analyzed the
results. To answer the title question, it is apparent that multi-
touch devices are a viable platform for sketch-based inter-
faces, though this claim comes with some caveats and re-
quirements for future work.

As expected, recognition accuracy was significantly better
on the Tablet PC than in either iPad configuration. But, accu-
racy was not as poor on the iPad as we had anticipated given
the huge difference in temporal and spatial resolution be-
tween it and the Tablet PC. Our relation classifier performed
equally well on both platforms, suggesting that many coarse
features can be adequately recognized on touch devices us-
ing “out-of-the-box” techniques. And although the Tablet PC
platform was significantly better for for recognizing fine fea-
tures, such as those required for symbol classification, its ad-
vantage was not as large as we initially suspected it would
be.

Writer-dependent training successfully improved recog-
nition rates in all configurations, but it benefited the Tablet
PC disproportionately due to the Tablet’s superior resolu-
tion. Given a method for capturing finer-scale details on the
iPad, whether through more powerful hardware or clever al-
gorithms, we expect that the higher rate of correct decisions
observed on the Tablet PC should disappear.

The above observation of our mathematics recognizer’s
behaviour is further validated by observations on the basic
trajectory observations of writing on the two platforms. Our
experiments demonstrated that certain physical properties of
writing engendered more accurate recognition on the iPad.
In particular, a writing style that we might characterize as
“methodical but purposeful” in which ink strokes are placed
carefully, but drawn quickly, led to the best recognition re-
sults on that platform. An interesting question is therefore,
what interfaces can we design that will encourage users to
write in this style? This question is especially important on
mobile touch-based devices, on which the limited display
area permits somewhat more control over users’ input op-
tions than typical Tablet PC programs.
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