
A preliminary report on the MathBrush pen-math system

George Labahn, Scott MacLean, Mirette Marzouk, Ian Rutherford, David Tausky

David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, Ontario, Canada

e–mail: {glabahn,smaclean,msmarzouk,ijrutherford,datausky}@scg.uwaterloo.ca

Abstract

In this paper we give a preliminary description of an experimental system, currently
named MathBrush, for working with mathematics using pen-based devices. The system
allows a user to enter mathematical expressions with a pen and to then do mathematical
computation using a computer algebra system. The system provides a simple and easy way
for users to verify the correctness of their handwritten expressions and, if needed, to correct
any errors in recognition. Choosing mathematical operations is done making use of context
menus, both with input and output expressions.

Key words: PC-tablets, Pen-based input, Maple

1 Introduction

The fact that entering mathematics on a computer is problematic has long been known. To the
mathematically trained person, writing the expression

∫

(

3x2 + 2
)

sin
(

x3 + 2x − 1
)

cos (x3 + 2x − 1)
dx

is much more natural than typing the latex form

\int {\frac { \left(3\,{x}^{2}+2 \right) \sin \left({x}^{3}+2\,x-1 \right) }

{ \cos \left({x}^{3}+2\,x-1 \right)}} ~ dx

or the maple form

Int((3*x^2+2)*sin(x^3+2*x-1)/cos(x^3+2*x-1),x);

of the corresponding expression. Input for other Computer Algebra Systems (CAS) or for text
processing systems provide other examples which use alternate formats and syntax to formulate
a mathematical expression.

While inputting mathematics is best done using classical handwriting it is also the case
that handwriting is not well suited to actually doing the mathematics. For example, the Maple
command representation for the above integral also allows for a simple mechanism for actually
computing the integral itself using the value command :

value(%) = − ln(cos(x3 + 2x − 1)).

Here % is the Maple syntax for the previous expression. Output is also a concern since hand-
written experimentation with pen and paper rarely encounters problems such as massive output
expressions, a common occurrence when using CAS.

Our project focuses on two components of pen-based mathematics. The first is to investigate
the use of pen-based devices for mathematical computation and exploration while the second is to

1

study the key issues when combining pen-based interfaces with CAS. In order to address issues
such as input and output of mathematical expressions, the editing and manipulation of such
expressions and how to interact with CAS taking the advantage of digital ink and gesture and
the power and features in available CAS we are building a pen-based math system MathBrush.

The intend of MathBrush is not to have a commercial product. Rather the intend is
to provide an environment for experimenting with the various components needed for doing
mathematics with pen-based devices. These components include mathematical handwriting
recognizers, computer algebra systems, editing and manipulation of expressions both at input
and output levels and finally mathematical computation itself using pen-based devices.

The state of the art for pen-math based systems currently focuses on mathematical
handwriting recognition. Examples include work by Chan and Yeung [2], the systems In-
fty [12], Freehand Formula Entry System (FFES) [11, 15], and MathJournal from xThink Inc
(www.xthink.com). MathJournal appears to be the first commercial system for inputting math-
ematics on a Tablet PC but is somewhat limited, particularly when it comes to mathematical
capabilities. Indeed for the most part the above systems have very basic mathematical func-
tionality. A different approach is that of MathPad2 [3] from Brown University which attempts
to convert diagrams into mathematical formulas.

We remark that for any pen-based system for doing mathematics there are a number of
challenges. On the level of input recognition, one faces the problem that the recognition of
mathematical symbols is considerably more difficult than recognizing text input. Existing text
recognizers can not be used for many reasons. For example they only work with a limited
character set (alpha-numeric characters) while mathematical symbols have significantly more
variation. In addition, text recognizers gain much of their strengths by depending on lan-
guage specific dictionaries in order to validate combinations of input characters for generation
of meaningful words, something not yet setup for mathematical expressions. A significant chal-
lenge comes at the level of construction of a valid mathematical expression. Text is by nature a
one dimensional input, whereas mathematical expressions are by nature two-dimensional input.
This requires a determination of proper baselines and subscript/superscript regions. In addition,
even when a valid mathematical expression is successfully recognized, there is still the problem
of ambiguous text (for example |2| looks very similar to 121 in handwritten text) and ambigu-
ous expressions (for example u(x + y) has multiple mathematical meanings). Finally there are
significant challenges at the level of display/rendering and editing. In this case problems include
the need for proper line-breaking, along with additional needs for interactivity for both editing
and manipulation of output expressions with a pen.

The remainder of this paper is organized as follows. In Section 2 we give the main system
characteristics used for the MathBrush system, while Sections 3 to 6 give descriptions of the five
main system components for MathBrush. The Section 7 gives some discussion of future work
with the final section giving our conclusions.

2 Main System Characteristics

In this section we list a number of characteristics that are central for the design of the MathBrush
system. This includes modular components, a standard interaction mechanism, ease of use,
context menus and finally a logging mechanism.

Central to the experimental aspect of our system are pluggable components. MathBrush
has been designed so that it allows for replacing of current components with those more advanced
(when available), comparing different versions of a given component, and isolating component
problems. Our design carefully separates features and functionalities of different components

2

taking in mind the standard design and functionalities of similar modules. For example, in
our system we have built a character recognizer to determine the symbols in an input math
expression. This character recognizer is constructed to have a similar interface functions to
those of the Microsoft Recognizer. The standard design guidelines [5] suggested are also taken
into account. From our interface we give the user the option to select from a list of different
available recognizers for comparison. System components are described in details in Section 5.1.

The use of separate, independent modules mandates the use of a standard communication
mechanism. We use MathML [1] as our standard for representation of mathematical expressions
and for communication with the CAS. MathML is used because it is now becoming a mathe-
matics standard and is supported by different CAS. In addition it has support in different web
browsers.

One central concern for pen-based math systems in general is ensuring ease of use for both
entering and manipulating input and output of mathematical expressions. In our case, this
means that the handwritten mathematics is easy to enter and requires the minimum interaction
from the user to ensure that the recognition is correct. Gestures are used in a limited way
and chosen to be similar to those that the user naturally uses when working with pen and
paper. These gestures also need to be consistent with those from other well designed pen-based
applications. These gestures include, for example, the scratch out to delete input characters and
a right click to display context menus.

Working in a pen-based environment leaves only a limited opportunity to operate with com-
mands. This leaves very little chance to do any mathematics once a handwritten mathematical
expression has actually been input into the system. We have chosen to make use of dynamic
context menus as done in Maple (c.f. [6]) to operate with both input and output expressions.
Context menus are easy to use with a pen (considered as a mouse) and without any need for
a keyboard. Items in these context menus are generated to contain operations that are most
likely to be useful on the given expression. The use of context menus allows a user to choose
from a list of limited operations that apply to the current expression rather than choosing from
the whole set of commands. The use of context menus is also helpful in the case of operating on
multiple expressions or on part of an expression. Of course these dynamic context menus need
to be user extensible.

An important feature we are including in our system and which is not available using pen
and paper is a mechanism for logging our mathematical manipulations. By this we mean keeping
track of all the user’s actions while they work on a math sheet (the session that was started and
is currently being worked on). Manipulations on mathematical expressions are done in-place.
Users working on a math sheet (even on a piece of paper) often change expressions in certain
places but do not necessarily reflect these changes on all dependent expressions. As such one
can end up with an inconsistent document or a document that cannot be tracked in any way.
We believe that giving the user the ability of replaying their actions is very important. At some
point of time a user often asks the question : how did one end up having a particular math
sheet. The logging mechanism is available to answer such a question.

3 System Components

The five main system modules that make up MathBrush consist of a user interface, a character
recognizer, a structural analyzer, a CAS interface tool and finally a mathematics rendering tool.
These five system modules and their interdependencies are depicted in Figure (1). A general
architecture for pen-based math systems can be found in [10].

The MathBrush user interface module receives the ink from the user, collects the user’s

3

Figure 1: System Components

interactions and commands (via context menus), and ultimately renders the results back to the
user. The interface module sends the collected ink to the character recognizer. The character
recognizer detects different characters and generates a set of bounding boxes. For each box
it generates a set of candidate characters and the recognition confidence associated with each
candidate. It passes this information back to the interface module. The interface module dis-
plays the recognition results to the user and allows for correction of the results (in our case, by
choosing from a drop down menu containing the alternative candidates). The interface module
then passes the bounding boxes, their character candidates -after applying user’s corrections-
to the structural analyzer. The structural analyzer processes the information from the char-
acter recognizer and constructs a well formed mathematical expression. Presentation MathML
corresponding to this expression is then generated by the analyzer and is passed back to the
interface module. The interface module sends the resulting MathML representation together
with whatever operation specified by the user to the CAS interface tool. This tool is used to
interact with the target CAS system and returns back the computed results generated from the
CAS represented as a presentation MathML expression. The presentation MathML and the
format defined by the user are sent to a MathML rendering tool, which generates a set of boxes
and characters for the interface module to display. These system components are described in
detail in the following sections.

4 Top Level User Interface

The top level of MathBrush is the user interface where the user inputs handwritten mathe-
matical expressions, corrects any mistakes, interacts with the CAS and plays with the resulting
computation or expression. For input the user can write multiple expressions in the math sheet
and has the ability to operate on one or more of such input expressions. After an ink expression
has been entered the user can use context menus to recognize the expression. Optionally it is also
possible that such recognition can be performed automatically after a pause or even after each
stroke input. The user interface displays the recognition results in a separate, nearby window
preserving the original relative location of the input ink strokes. This is used to make it easy
for a user to decide on the characters that need to be corrected. Corrections, when needed, are
accomplished by using a drop down menu of assorted alternate candidates. Figure (2) shows an
example of the use of drop down menus to correct an error in character recognition.

Once the user has the intended valid mathematical expression a context menu can be used
to render the expression. Once an expression is rendered a context menu for output can be used

4

Figure 2: User Interface - Character Recognition Results

Figure 3: User Interface - Expressions Context Menu

to choose mathematical operations and have the chosen CAS perform the intended operations.
Figure (3) shows an example of the use of context menus for operating on output.

Results coming back from a CAS are rendered by the top level user interface. As is the case
with context menus in Maple, operations available in the context menu depend on the expression
itself. For example the context menu generated for a polynomial contains such operations as
factoring while the context menu for an equation contains operations such as solving or isolation
of terms. Again as in the case of context menus in Maple, operations are extensible so that
users can add convenient operations for specific types of output expressions. Of course, the user
can also copy any ink or rendered expression from one place in the math sheet and paste it
elsewhere. The recognition corrections and context menu changes will be preserved with such
operations.

Finally, the interface also gives the user the ability to tailor their environment to their
own preferences. Such preferences include specification of CAS, recognition strategy (after each
stroke, after a pause or when user requests), various formats for the input ink and of the rendered
results, and so on.

5

Figure 4: Character Recognizer

5 Character Recognizer and Structural Analyzer of Input

The mechanism for recognizing handwritten mathematics and its conversion to a valid mathe-
matical expression is handled through the character recognizer and then the structural analyzer.
In this section we give a brief description of these two components as currently used in the
MathBrush system.

5.1 Character Recognizer

The character recognizer [4] used in MathBrush is an implementation of existing methods found
in the literature. We chose to create such a recognizer for practical purposes, since this allowed
us to both experiment and to have full control of this process. On the other hand there was no
obvious candidate that was available and which could full fill our requirements.

The character recognizer module receives the ink from the interface module and generates,
as most character recognizers do, a set of bounding boxes, with each box including a set of
candidate characters along with their recognition confidence values. As shown in Figure (4), the
character recognizer uses a symbols database that contains samples for each symbol.

The character recognizer involves three phases: stoke preprocessing, segmentation and fi-
nally matching. The preprocessing of strokes include (a) Stroke joining - where broken strokes
due to hardware or user’s hesitation are joined (b) Re-sampling - where input points are resam-
pled in a way that preserves end- and cusp-points (c) Trimming - where end points of a stroke
are trimmed if they exhibit high curvature (d) Smoothing - to prevent jitter caused by hardware
or user hesitation and finally (e) Normalization - where we normalize input in order to preserve
aspect ratio.

The second phase is segmentation where the input is broken into distinct stroke groups.
Segmentation is done by first estimating the likely number of strokes which make up the input
symbol. This is then followed by a process of feature extraction. The estimation of stoke numbers
includes determining proximity of strokes, that is how many strokes in a row are intersecting or
are close enough together that they are likely part of the same symbol, and stacking of strokes,
which determines where groups of strokes that appear to be stacked up on each other vertically
(as in +/- or ”equivalent to”). Feature extraction looks at information such as : width, height,
angle between end points and width to height ratio which are all extracted from the input
strokes. Every group of strokes is weighed by comparing its features to the features from the
database. Both processes together generate a ranking of candidates. A confusion matrix is
used to eliminate the possibility of early reporting of symbols with few strokes included in other
symbols. For example, this helps to prevent the reporting of F,- or L,= instead of a correct E.

6

Once the stroke preprocessing and segmentation phases have been completed the characters
are ready to be compared to a database of symbols. The recognition phase combines a number of
matching procedures to obtain a final score or confidence value. These procedures include basic
elastic matching, deformable template matching and finally structural chain code matching.
Elastic matching involves minimizing a distance measure between two stroke groups (we follow
a basic algorithm presented in [13]) with the distance measure including information about
both point-to-point and tangent vector comparisons. Following [9], a weighted measure is also
included where points which lend a symbol its characteristic shape are weighted higher than
points which may be present in any symbol.

The final steps in the recognition phase involves deformable template matching [7] and
structural chain code matching [2]. Deformable template matching converts a model to match
the input with costs associated with each deformation operation. Model points are assigned a
circular Gaussian distribution from which the probability of the model matching the input can
be determined. Costs themselves are assigned for moving model points, model points lying on
white space, and how well the model matches the input. Structural chain code matching is a
process of breaking an input into intervals with an assignment of a numeric code to each interval
based on the stroke direction in that interval. The sequence of these codes extracted from the
input is called a ”chain code”. A process similar to elastic matching is then used to determine
which model’s chain code most closely matches that of the input.

5.2 Structural Analyzer

A structural analysis of an input expression involves the process of converting a set of symbols
into a mathematical expression. The mathematical expression can then be passed to a CAS for
evaluation or computation. The structural analyzer used in MathBrush is described in [8]. In
this subsection we give a flavour of some of the techniques used in the analyzer.

Input for the analyzer is a set of bounding boxes along with a set of candidates for each
box ranked by their recognition confidence values. The analyzer makes use of several additional
pieces of information about these character candidates. This additional information is stored in
a symbol database and includes, for each character candidate, a unique structural type which
defines the symbol’s expected positioning on a baseline and one or more possible semantic types,
which define grammar rules to be applied to a symbol during expression parsing. There are 14
different structural types. These types are used to determine how well a character candidate fits
into a potential baseline. Semantic types are used to determine the grammatical structure of an
expression. There are 17 different semantic types, arranged into 4 groups: brackets, operators,
self-contained operators, and operands. As shown in Figure (5) the structural analyzer uses the
character data and the symbols information in the database to generate a valid math expression.
The resulting expression is then converted to presentation MathML and sent back to the interface
module for rendering.

Our structural analysis framework [8] consists of four consecutive phases: determination
of layout, pre-parsing, structural grouping and final parsing. The phase that determines the
layout uses only the bounding box information to determine the relative symbols locations in
order to construct an initial baseline tree. See Figure (6). Pre-parsing makes use of expected
mathematical content to refine and correct some character candidates. Examples of some of these
refinements include the matching of brackets, integral matching with differential symbols, and
determination of function names and numbers (c.f. Figure (7)). At present the pre-parsing step
is only used when the user wishes to view the expression without first verifying the correctness
of individual characters.

Structural grouping finds baselines in an expression and refines character candidates by

7

Figure 5: Structural Analyzer

Figure 6: Baseline Tree

fitting characters onto these baselines. This is the main phase in the structural analysis. The
grouping process itself works by first estimating a baseline position based on the candidates and
using information from the symbol database. This in turn generates a structural confidence
for each candidate which, when combined with character recognizer confidence values is then
used to update the candidates list and their probabilities. This process is repeated until the
candidate list stabilizes. The final parsing phase involves a final set of refinements making use of
a database of likely expressions in order to select the best result. Examples are in shown Figure
(8).

6 CAS Interface and Rendering Tools

The final two components of MathBrush involve the interaction with a CAS and a final rendering
of the final mathematical expressions. The CAS interface tool depicted in Figure (9) receives
the presentation MathML of a math expression from the interface module together with the
operation the user wants to perform on that expression and the CAS system the user wants to use.
This module forms the appropriate command and sends it to the CAS. It passes the presentation
MathML coming back from the CAS to the interface module for rendering. Currently the CAS
interface tool supports interaction with Maple and can be easily extended to work with any CAS
that supports MathML.

The Math rendering tool shown in Figure (10) takes as its input a presentation MathML
expression passed from the interface module together with any user requested formats and
provides instructions on rendering the expression in the user interface. The tool itself generates
a set of boxes with each of the characters to be displayed in that box for the interface to display.
A database that stores the operator and external entities dictionary as defined by the W3C

8

Figure 7: Pre-Parsing Examples

Figure 8: Parsing Examples

consortium [1] is accessed during rendering. The input MathML is parsed to build an expression
tree which is then processed to generate the boxes. A line breaking algorithm has been implement
with the strategy of trying to keep a sub-tree together. For example, it tries to fit a fraction
in a line (preferably the current line) and if not then it displays it as nominator/dominator).
The rendering algorithm also takes care of stretching certain operators (for example, brackets,
square roots, integral and summation operators) in order to fit multi-lined operands if needed.
The bounding boxes generated use the font and output format provided by the user.

7 Extensions and Future Work

One of the goals of the MathBrush system is to allow use with a wide variety of mathematical
computation systems. This design results in the replacement of the interfaces of such systems.
A significant disadvantage of such an approach is that one cannot take advantage of the features
that are present in todays CAS interfaces. Instead important features need to be implemented
separately, resulting in situations where existing work is repeated. This is the case for our use of
context menus, for example, which have been well implemented in Maple for a number of versions
now. An alternative to the need for replacing existing interfaces is given in [10] where pen-based
windows are proposed which fit into the interfaces of CAS and even text processing systems
such as Microsoft Word. However, as mentioned previously, in our case we are less interested
in creating a complete interface with multiple features, but rather in the creation of a simple
system that allows us to investigate the effectiveness of various techniques for mathematical
explorations with pen-based systems and CAS.

9

Figure 9: The CAS Interface Tool

Figure 10: The Rendering Tool

Work is underway to further improve the MathBrush system. For example, there are still
many classes of expressions not yet recognized by the system, including for example limits and
matrices. The latter in particular offers a significant set of challenges, both in recognition of
such objects and in manipulating the elements inside them. We also plan to investigate the
use of guided input such as ruled lines in order to help the character recognizer to distinguish
between such things as lower and upper case letters and super- and sub-scripts. Such guided
input will also help to establish first approximations of baselines for improved performance for
the structural analyzer.

Additional improvements include a personalized symbol database and the training of our
structural recognizer. Tablet PCs tend to have a single primary user and as such character
recognition will be significantly improved by personalizing the character recognizer database.
Currently the symbols database used by the character recognizer contains different samples for
each character to be used by default. We expect significant improvement when individual writing
characteristics are taken into consideration for individual characters. In addition, the design of
the structural analyzer contains many parameters. We expect to do further experiments with
MathBrush on the training of these parameters in order to obtain optimal values. The use of
the system has shown that the user most likely corrects the recognition results before rendering.
This makes the job of the structural analyzer easier and it makes it better to focus on correcting
other structural errors.

In parallel to the above work, it is also our plan to improve recognition accuracy by using
a different approach to the recognition problem. We plan to investigate the replacement of our
recognizer/analyzer components with a single entity which is based on the use of graphical prob-
abilistic models, in particular Bayesian networks or their extensions. These allow the recognizer
to reason naturally like a human, providing the most reasonable guesses within any context.
As these models are intuitive, they allow us to improve them or to extend them easily. These
models can also be trained easily, which allows them to adapt to individual users.

Currently our focus is also on investigation of editing and manipulation of output expres-
sions making use of a pen. Such actions are typically done with the use of pen and paper and

10

are natural for systems such as MathBrush. We expect to continue with doing such operations
in-place. We also expect that editing and manipulation requirements will require alternate rep-
resentations for our rendered expressions. Having full control over how our output expression is
rendered gives an additional reason why we have preferred to work with an interface which is
independent of current in CAS interfaces.

8 Conclusions

MathBrush is a system for allowing users to experiment with mathematical computation com-
bining pen-based systems along with CAS. It is designed for experimentation, allowing for re-
placement of important components such as the character recognizer or structural analyzer (or
both in case of recognition/analyzers that involve feedback loops), interchange one CAS with a
different CAS, and so on. It has been constructed in order to allow actual users to make use of
such a pen-based system.

The availability of a system such as MathBrush allows for investigation of many issues
related to the user interface of pen-math systems. Such issues include how (and when) to
provide recognition results; how to display results in a mathsheet; methods for allowing users to
choose mathematical operations for expressions; relevant ways, along with associated gestures,
for editing and manipulation; other functionalities that the user might need but which is not
available with a simple use of pen and paper. All these issues will need to be considered for any
pen-math interface which hope to gain wide acceptance with users.

References

[1] D. Carlisle, P. Ion, N. Poppelier, R. Miner (editors), R. Ausbrooks, S. Buswell, S. Dalmas, S.
Devitt, A. Diaz, R. Hunter, B. Smith, N. Soiffer, R. Sutor, S. Watt. Mathematical Markup Language
(MathML) Version 2.0, W3C Recommendation (2001),
http://www.w3.org/TR/2001/REC-MATHML2-20010221.

[2] K-F. Chain and D-Y Yeung, Recognizing on-line handwritten alphanumeric characters through
flexible structural matching Pattern Recognition, 32(7), pp. 1099-1114 (1999)

[3] J.J. LaViola Jr and R.C. Zeleznik, MathPad2: A system for the creation and exploration of Mathe-
matical sketches. ACM Transactions on Graphics. Special Issue: Proceedings of 2004 SIGGRAPH
432-440 (2004)

[4] S. MacLean, The MathBrush character recognizer, Internal report for Symbolic Computation
Group, 20 pages, (2005)

[5] Microsoft Recognizer Guidelines, http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tpcsdk10/lonestar/appendix/tbconcustomrecognizer.asp

[6] M. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron and P. DeMarco,
Maple Advanced Programming Guide (2005)

[7] M. Revow, C. Williams and G. Hinton, Using generative models for handwritten digit recognition,
IEEE Transactions Pattern Analysis and Machine Intelligence 18(6), pp. 592-606 (1996)

[8] I. Rutherford, Structural Analysis for Pen-Based Math Input Systems, MMath Thesis, School of
Computer Science, University of Waterloo, Waterloo, Canada. (2005)

[9] P. Scattolin, Recognition of Handwritten Numerals Using Elastic Matching. Master’s thesis, Com-
puter Science Department, Concordia University Montreal (1993)

[10] E. Smirnova and S.M. Watt, A Context for Pen-Based Mathematical Computing, Proceedings of
the 2005 Maple Summer Workshop, pp. 409-422. (2005)

11

[11] S. Smithies, Freehand Formula Entry System, Master’s thesis, University of Otago, Dunedin, New
Zealand (1999).

[12] M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, T. Kanahori, Infty- an integrated OCR system
for mathematical documents, Proceedings of ACM Symposium on Document Engineering 2003,
Grenoble, Ed. C.Vanoirbeek, C.Roisin, E. Munson, pp.95-104 (2003)

[13] C.C. Tappert, Cursive Script Recognition by Elastic Matching, IBM Journal of Research and de-
velopment 26(6), pp. 765-771 (1982)

[14] Bo Wan and S.M. Watt, An Interactive Mathematical Handwriting Recognizer for the Pocket PC,
Proc. International Conf. on MathML and Math on the Web (MathML 2002), June 28-30 2002,
Chicago USA.

[15] R. Zanibbi, D. Blostein and J.R. Cordy, Aiding manipulation of handwriting mathematical expres-
sions through style preserving morphs, Graphics Interface 2001, pp 127-134 (2001)

12

